Multiresolution compression and reconstruction
dc.contributor.author
Staadt, Oliver G.
dc.contributor.author
Gross, Markus
dc.contributor.author
Weber, Roger
dc.date.accessioned
2017-11-08T16:27:25Z
dc.date.available
2017-06-10T18:38:47Z
dc.date.available
2017-11-08T16:27:25Z
dc.date.issued
1997
dc.identifier.uri
http://hdl.handle.net/20.500.11850/68795
dc.identifier.doi
10.3929/ethz-a-006652072
dc.description.abstract
This paper presents a framework for multiresolution compression and geometric reconstruction of arbitrarily dimensioned data designed for distributed applications. Although being restricted to uniform sampled data, our versatile approach enables the handling of a large variety of real world elements. Examples include nonparametric, parametric and implicit lines, surfaces or volumes, all of which are common to large scale data sets. The framework is based on two fundamental steps: Compression is carried out by a remote server and generates a bitstream transmitted over the underlying network. Geometric reconstruction is performed by the local client and renders a piecewise linear approximation of the data. More precisely, our compression scheme consists of a newly developed pipeline starting from an initial B-spline wavelet precoding. The fundamental properties of wavelets allow progressive transmission and interactive control of the compression gain by means of global and local oracles. In particular we discuss the problem of oracles in semiorthogonal settings and propose sophisticated oracles to remove unimportant coefficients. In addition, geometric constraints such as boundary lines can be compressed in a lossless manner and are incorporated into the resulting bit-stream. The reconstruction pipeline performs a piecewise adaptive linear approximation of data using a fast and easy to use point removalstrategy which works with any subsequent triangulation technique. As a result, the pipeline renders line segments, triangles or tetrahedra. Moreover, the underlying continuous approximation of the wavelet representation can be exploited to reconstruct implicit functions, such as isolines and isosurfaces more smoothly and precisely than commonplace methods. Although it scales straightforwardly to higher dimensions the performance of our framework is illustrated with results achieved on data very popular in practice: parametric curves and surfaces, digital terrain models, and volume data.
en_US
dc.format
application/pdf
dc.language.iso
en
en_US
dc.publisher
ETH Zürich, Computer Science Department
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Isosurfaces
en_US
dc.subject
DATENKOMPRIMIERUNG (INFORMATIONSTHEORIE)
en_US
dc.subject
Triangulation
en_US
dc.subject
VERTEILTE ALGORITHMEN + PARALLELE ALGORITHMEN (PROGRAMMIERMETHODEN)
en_US
dc.subject
DISTRIBUTED APPLICATIONS + CLOUD COMPUTING + GRID COMPUTING (COMPUTER SYSTEMS)
en_US
dc.subject
Meshing
en_US
dc.subject
DATA COMPRESSION (INFORMATION THEORY)
en_US
dc.subject
DISTRIBUTED ALGORITHMS + PARALLEL ALGORITHMS (PROGRAMMING METHODS)
en_US
dc.subject
Tetrahedralization
en_US
dc.subject
VERTEILTE ANWENDUNGEN + CLOUD COMPUTING + GRID COMPUTING (COMPUTERSYSTEME)
en_US
dc.subject
Wavelets
en_US
dc.subject
Oracles
en_US
dc.subject
Volumes
en_US
dc.title
Multiresolution compression and reconstruction
en_US
dc.type
Report
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.journal.title
Computer Science Department, ETH Zürich
ethz.journal.volume
270
en_US
ethz.size
12 p.
en_US
ethz.code.ddc
DDC - DDC::0 - Computer science, information & general works::004 - Data processing, computer science
en_US
ethz.notes
Technical Reports D-INFK.
en_US
ethz.identifier.nebis
006652072
ethz.publication.place
Zürich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science
en_US
ethz.date.deposited
2017-06-10T18:42:27Z
ethz.source
ECOL
ethz.source
ECIT
ethz.identifier.importid
imp593650bf3237d74678
ethz.identifier.importid
imp59366b0a7858949091
ethz.ecolpid
eth:4312
ethz.ecitpid
pub:109142
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-25T17:45:01Z
ethz.rosetta.lastUpdated
2020-02-15T09:00:34Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Multiresolution%20compression%20and%20reconstruction&rft.jtitle=Computer%20Science%20Department,%20ETH%20Z%C3%BCrich&rft.date=1997&rft.volume=270&rft.au=Staadt,%20Oliver%20G.&Gross,%20Markus&Weber,%20Roger&rft.genre=report&
Files in this item
Publication type
-
Report [6941]