
Open access
Date
2024-07-14Type
- Working Paper
ETH Bibliography
yes
Altmetrics
Abstract
Designing incentives for an adapting population is a ubiquitous problem in a wide array of economic applications and beyond. In this work, we study how to design additional rewards to steer multi-agent systems towards desired policies \emph{without} prior knowledge of the agents' underlying learning dynamics. We introduce a model-based non-episodic Reinforcement Learning (RL) formulation for our steering problem. Importantly, we focus on learning a \emph{history-dependent} steering strategy to handle the inherent model uncertainty about the agents' learning dynamics. We introduce a novel objective function to encode the desiderata of achieving a good steering outcome with reasonable cost. Theoretically, we identify conditions for the existence of steering strategies to guide agents to the desired policies. Complementing our theoretical contributions, we provide empirical algorithms to approximately solve our objective, which effectively tackles the challenge in learning history-dependent strategies. We demonstrate the efficacy of our algorithms through empirical evaluations. Show more
Permanent link
https://doi.org/10.3929/ethz-b-000691110Publication status
publishedExternal links
Journal / series
arXivPublisher
Cornell UniversityEdition / version
v1Organisational unit
09729 - He, Niao / He, Niao
Funding
207343 - RING: Robust Intelligence with Nonconvex Games (SNF)
More
Show all metadata
ETH Bibliography
yes
Altmetrics