Pecan: Cost-Efficient ML Data Preprocessing with Automatic Transformation Ordering and Hybrid Placement
dc.contributor.author
Graur, Dan
dc.contributor.author
Mraz, Oto
dc.contributor.author
Li, Muyu
dc.contributor.author
Pourghannad, Sepehr
dc.contributor.author
Thekkath, Chandramohan A.
dc.contributor.author
Klimovic, Ana
dc.contributor.editor
Bagchi, Saurabh
dc.contributor.editor
Zhang, Yiying
dc.date.accessioned
2024-10-03T09:21:52Z
dc.date.available
2024-09-11T04:49:17Z
dc.date.available
2024-10-03T09:21:52Z
dc.date.issued
2024
dc.identifier.isbn
978-1-939133-41-0
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/693180
dc.description.abstract
Input data preprocessing is a common bottleneck in machine teaming (ML) jobs, that can significantly increase training time and cost as expensive GPUs or Till's idle waiting for input data. Previous Work has shown that offloading data preprocessing to remote CPU servers successfully alleviates data stalls and improves training time. However, remote CPU workers in disaggregated data processing systems comprise a significant fraction of total training costs. Meanwhile, current disaggregated solutions often underutilize CPU and DRAM resources available on ML accelerator nodes. We propose two approaches to alleviate ML input data stalls while minimizing costs. First, we dynamically schedule data preprocessing workers on ML accelerator host resources to minimize the number of remote CPU workers needed to achieve peak data ingestion bandwidth. Second, we analyze the characteristics of input pipelines and automatically reorder transformations to increase data preprocessing worker throughput. We observe that relaxing commutativity increases throughput while maintaining high model accuracy for a variety of ML data pipelines. We build Pecan, an ML data preprocessing service that automates data preprocessing worker placement and transformation reordering decisions. Pecan reduces preprocessing costs by 87% on average and total training costs by up to 60% compared to training with slate-of-the-art disaggregated data preprocessing and total training costs by 55% on average compared to collocated data preprocessing.
en_US
dc.language.iso
en
en_US
dc.publisher
USENIX Association
en_US
dc.title
Pecan: Cost-Efficient ML Data Preprocessing with Automatic Transformation Ordering and Hybrid Placement
en_US
dc.type
Conference Paper
ethz.book.title
ATC'24: Proceedings of the 2024 USENIX Annual Technical Conference
en_US
ethz.pages.start
649
en_US
ethz.pages.end
665
en_US
ethz.event
USENIX Annual Technical Conference (ATC 2024)
en_US
ethz.event.location
Santa Clara, CA, USA
en_US
ethz.event.date
July 10-12, 2024
en_US
ethz.grant
MLin: Machine Learning Input Data Processing as a Service
en_US
ethz.identifier.wos
ethz.publication.place
Berkeley, CA
en_US
ethz.publication.status
published
en_US
ethz.identifier.url
https://www.usenix.org/conference/atc24/presentation/graur
ethz.grant.agreementno
204620
ethz.grant.agreementno
204620
ethz.grant.fundername
SNF
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.grant.program
Projekte MINT
ethz.date.deposited
2024-09-11T04:49:23Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-10-03T09:21:53Z
ethz.rosetta.lastUpdated
2024-10-03T09:21:53Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Pecan:%20Cost-Efficient%20ML%20Data%20Preprocessing%20with%20Automatic%20Transformation%20Ordering%20and%20Hybrid%20Placement&rft.date=2024&rft.spage=649&rft.epage=665&rft.au=Graur,%20Dan&Mraz,%20Oto&Li,%20Muyu&Pourghannad,%20Sepehr&Thekkath,%20Chandramohan%20A.&rft.isbn=978-1-939133-41-0&rft.genre=proceeding&rft.btitle=ATC'24:%20Proceedings%20of%20the%202024%20USENIX%20Annual%20Technical%20Conference
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35875]