Show simple item record

dc.contributor.author
Dougherty, Erin M.
dc.contributor.author
Prein, Andreas F.
dc.contributor.author
Gutmann, Ethan D.
dc.contributor.author
Newman, Andrew J.
dc.date.accessioned
2024-09-19T09:05:43Z
dc.date.available
2024-09-11T13:20:25Z
dc.date.available
2024-09-19T09:05:43Z
dc.date.issued
2023-02-27
dc.identifier.issn
0148-0227
dc.identifier.issn
2169-897X
dc.identifier.other
10.1029/2022JD037537
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/693424
dc.description.abstract
Mesoscale convective systems (MCSs) are responsible for a majority of warm season flash flood events in the central U.S. Given their high impact, it is critical to understand how MCSs will change in a future climate. This study identifies eight flood-producing MCS cases of different archetypes and runs ensembles of 192 high-resolution historical and future simulations in order to analyze the range in future MCS rainfall and structural changes. Future area-average rainfall increases by 98% on average, with an 89%–111% range among ensemble members, while maximum rainfall increases by 31%, with a 24%–43% range. MCSs components are classified into deep convective cores (DCCs), wide convective cores (WCCs), and broad stratiform regions (BSRs) to understand how changes in these structures contribute to future rainfall changes. In a warmer climate, the number of DCCs increase on average by +30 (+5,545%), the average WCC area increases by 75%, and the average BSR area increases by 40%. The future rainfall increases are mainly due to increases in convective rainfall with large variability in rainfall from DCCs and less variability from WCCs. Despite their increase in size, BSR rainfall shows little increase. These rainfall and structural changes vary among MCS types, with back-building MCSs exhibiting the largest increases in future rainfall mainly due to increases in the number of DCCs and WCC area. Such information is critical to better understand the drivers of change in future MCS rainfall and improve prediction of future flood impacts.
en_US
dc.language.iso
en
en_US
dc.publisher
American Geophysical Union
en_US
dc.title
Future Simulated Changes in Central U
en_US
dc.type
Journal Article
dc.date.published
2023-02-09
ethz.journal.title
Journal of Geophysical Research: Atmospheres
ethz.journal.volume
128
en_US
ethz.journal.issue
4
en_US
ethz.journal.abbreviated
J. geophys. res., Atmos.
ethz.pages.start
e2022JD037537
en_US
ethz.size
15 p.
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02717 - Institut für Atmosphäre und Klima / Inst. Atmospheric and Climate Science::09844 - Prein, Andreas Franz / Prein, Andreas Franz
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02717 - Institut für Atmosphäre und Klima / Inst. Atmospheric and Climate Science::09844 - Prein, Andreas Franz / Prein, Andreas Franz
ethz.date.deposited
2024-09-11T13:20:25Z
ethz.source
BATCH
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-09-19T09:05:44Z
ethz.rosetta.lastUpdated
2024-09-19T09:05:44Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Future%20Simulated%20Changes%20in%20Central%20U&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.date=2023-02-27&rft.volume=128&rft.issue=4&rft.spage=e2022JD037537&rft.issn=0148-0227&2169-897X&rft.au=Dougherty,%20Erin%20M.&Prein,%20Andreas%20F.&Gutmann,%20Ethan%20D.&Newman,%20Andrew%20J.&rft.genre=article&rft_id=info:doi/10.1029/2022JD037537&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record