Show simple item record

dc.contributor.author
Jermann, Tizian
dc.contributor.author
Kolvenbach, Hendrik
dc.contributor.author
Esquivel Estay, Fidel
dc.contributor.author
Krämer, Koen
dc.contributor.author
Hutter, Marco
dc.date.accessioned
2024-09-23T10:49:25Z
dc.date.available
2024-09-23T08:50:05Z
dc.date.available
2024-09-23T09:43:52Z
dc.date.available
2024-09-23T10:49:25Z
dc.date.issued
2024-09-20
dc.identifier.other
10.48550/ARXIV.2409.13511
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/695494
dc.identifier.doi
10.3929/ethz-b-000695494
dc.description.abstract
We introduce a novel strategy for multi-robot sorting of waste objects using Reinforcement Learning. Our focus lies on finding optimal picking strategies that facilitate an effective coordination of a multi-robot system, subject to maximizing the waste removal potential. We realize this by formulating the sorting problem as an OpenAI gym environment and training a neural network with a deep reinforcement learning algorithm. The objective function is set up to optimize the picking rate of the robotic system. In simulation, we draw a performance comparison to an intuitive combinatorial game theory-based approach. We show that the trained policies outperform the latter and achieve up to 16% higher picking rates. Finally, the respective algorithms are validated on a hardware setup consisting of a two-robot sorting station able to process incoming waste objects through pick-and-place operations.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Cornell University
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject
Robotics (cs.RO)
en_US
dc.subject
FOS: Computer and information sciences
en_US
dc.subject
Robtotics
en_US
dc.title
An Efficient Multi-Robot Arm Coordination Strategy for Pick-and-Place Tasks using Reinforcement Learning
en_US
dc.type
Working Paper
dc.rights.license
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
ethz.journal.title
arXiv
ethz.pages.start
2409.13511
en_US
ethz.size
7 p.
en_US
ethz.version.edition
v1
en_US
ethz.identifier.arxiv
2409.13511
ethz.publication.place
Ithaca, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09570 - Hutter, Marco / Hutter, Marco
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09570 - Hutter, Marco / Hutter, Marco
en_US
ethz.date.deposited
2024-09-23T08:50:05Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-09-23T10:49:26Z
ethz.rosetta.lastUpdated
2024-09-23T10:49:26Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=An%20Efficient%20Multi-Robot%20Arm%20Coordination%20Strategy%20for%20Pick-and-Place%20Tasks%20using%20Reinforcement%20Learning&rft.jtitle=arXiv&rft.date=2024-09-20&rft.spage=2409.13511&rft.au=Jermann,%20Tizian&Kolvenbach,%20Hendrik&Esquivel%20Estay,%20Fidel&Kr%C3%A4mer,%20Koen&Hutter,%20Marco&rft.genre=preprint&rft_id=info:doi/10.48550/ARXIV.2409.13511&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record