Tunable universe type inference
dc.contributor.author
Dietl, Werner
dc.contributor.author
Ernst, Michael
dc.contributor.author
Müller, Peter
dc.date.accessioned
2017-07-06T13:30:50Z
dc.date.available
2017-06-10T19:33:44Z
dc.date.available
2017-07-06T13:30:50Z
dc.date.issued
2009
dc.identifier.uri
http://hdl.handle.net/20.500.11850/69837
dc.identifier.doi
10.3929/ethz-a-006843105
dc.description.abstract
Object ownership is useful for many applications such as program verification, thread synchronization, and memory management. However, even lightweight ownership type systems impose considerable annotation overhead, which hampers their widespread application. This paper address this issue by presenting a tunable static type inference for Universe types. In contrast to classical type systems, ownership types have no single most general typing. Therefore, our inference is tunable: users can indicate a preference for certain typings by configuring heuristics through weights. A particularly effective way of tuning the static inference is to obtain these weights automatically through runtime ownership inference. We present how the constraints of the Universe type system can be encoded as a boolean satisfiability (SAT) problem, how the runtime ownership inference produces weights from program executions, and how a weightedMax-SAT solver finds a correct Universe typing that optimizes the weights. Our implementation provides the static and runtime inference engines, as well as a visualization tool.
en_US
dc.format
application/pdf
dc.language.iso
en
en_US
dc.publisher
ETH, Department of Computer Science
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
INFERENCE RULES (MATHEMATICAL LOGIC)
en_US
dc.subject
THEORIE DER PROGRAMMIERUNG
en_US
dc.subject
INFERENZREGELN (MATHEMATISCHE LOGIK)
en_US
dc.subject
THEORY OF PROGRAMMING
en_US
dc.title
Tunable universe type inference
en_US
dc.type
Report
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2011
ethz.journal.title
Technical Report / ETH Zurich, Department of Computer Science
ethz.journal.volume
659
en_US
ethz.size
26 p.
en_US
ethz.code.ddc
DDC - DDC::0 - Computer science, information & general works::004 - Data processing, computer science
en_US
ethz.notes
Technical Reports D-INFK.
en_US
ethz.identifier.nebis
006843105
ethz.publication.place
Zürich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science
en_US
ethz.date.deposited
2017-06-10T19:34:36Z
ethz.source
ECOL
ethz.source
ECIT
ethz.identifier.importid
imp59366b1a378af97206
ethz.identifier.importid
imp593650d4c995417939
ethz.ecolpid
eth:5049
ethz.ecitpid
pub:110593
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-06T13:31:03Z
ethz.rosetta.lastUpdated
2020-02-15T06:13:03Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Tunable%20universe%20type%20inference&rft.jtitle=Technical%20Report%20/%20ETH%20Zurich,%20Department%20of%20Computer%20Science&rft.date=2009&rft.volume=659&rft.au=Dietl,%20Werner&Ernst,%20Michael&M%C3%BCller,%20Peter&rft.genre=report&
Files in this item
Publication type
-
Report [6581]