Non-holomorphic modular forms from zeta generators
dc.contributor.author
Dorigoni, Daniele
dc.contributor.author
Doroudiani, Mehregan
dc.contributor.author
Drewitt, Joshua
dc.contributor.author
Hidding, Martijn
dc.contributor.author
Kleinschmidt, Axel
dc.contributor.author
Schlotterer, Oliver
dc.contributor.author
Schneps, Leila
dc.contributor.author
Verbeek, Bram
dc.date.accessioned
2024-10-21T11:49:29Z
dc.date.available
2024-10-20T06:25:08Z
dc.date.available
2024-10-21T11:49:29Z
dc.date.issued
2024-10
dc.identifier.issn
1126-6708
dc.identifier.issn
1029-8479
dc.identifier.other
10.1007/JHEP10(2024)053
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/700742
dc.identifier.doi
10.3929/ethz-b-000700742
dc.description.abstract
We study non-holomorphic modular forms built from iterated integrals of holomorphic modular forms for SL(2, ℤ) known as equivariant iterated Eisenstein integrals. A special subclass of them furnishes an equivalent description of the modular graph forms appearing in the low-energy expansion of string amplitudes at genus one. Notably the Fourier expansion of modular graph forms contains single-valued multiple zeta values. We deduce the appearance of products and higher-depth instances of multiple zeta values in equivariant iterated Eisenstein integrals, and ultimately modular graph forms, from the appearance of simpler odd Riemann zeta values. This analysis relies on so-called zeta generators which act on certain non-commutative variables in the generating series of the iterated integrals. From an extension of these non-commutative variables we incorporate iterated integrals involving holomorphic cusp forms into our setup and use them to construct the modular completion of triple Eisenstein integrals. Our work represents a fully explicit realisation of the modular graph forms within Brown’s framework of equivariant iterated Eisenstein integrals and reveals structural analogies between single-valued period functions appearing in genus zero and one string amplitudes.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Diferential and Algebraic Geometry
en_US
dc.subject
Superstrings and Heterotic Strings
en_US
dc.title
Non-holomorphic modular forms from zeta generators
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2024-10-08
ethz.journal.title
Journal of High Energy Physics
ethz.journal.volume
2024
en_US
ethz.journal.issue
10
en_US
ethz.journal.abbreviated
J. High Energ. Phys.
ethz.pages.start
53
en_US
ethz.size
120 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03657 - Gaberdiel, Matthias / Gaberdiel, Matthias
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03657 - Gaberdiel, Matthias / Gaberdiel, Matthias
ethz.date.deposited
2024-10-20T06:25:08Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-10-21T11:49:31Z
ethz.rosetta.lastUpdated
2024-10-21T11:49:31Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Non-holomorphic%20modular%20forms%20from%20zeta%20generators&rft.jtitle=Journal%20of%20High%20Energy%20Physics&rft.date=2024-10&rft.volume=2024&rft.issue=10&rft.spage=53&rft.issn=1126-6708&1029-8479&rft.au=Dorigoni,%20Daniele&Doroudiani,%20Mehregan&Drewitt,%20Joshua&Hidding,%20Martijn&Kleinschmidt,%20Axel&rft.genre=article&rft_id=info:doi/10.1007/JHEP10(2024)053&
Files in this item
Publication type
-
Journal Article [132230]