Show simple item record

dc.contributor.author
Dorigoni, Daniele
dc.contributor.author
Doroudiani, Mehregan
dc.contributor.author
Drewitt, Joshua
dc.contributor.author
Hidding, Martijn
dc.contributor.author
Kleinschmidt, Axel
dc.contributor.author
Schlotterer, Oliver
dc.contributor.author
Schneps, Leila
dc.contributor.author
Verbeek, Bram
dc.date.accessioned
2024-10-21T11:49:29Z
dc.date.available
2024-10-20T06:25:08Z
dc.date.available
2024-10-21T11:49:29Z
dc.date.issued
2024-10
dc.identifier.issn
1126-6708
dc.identifier.issn
1029-8479
dc.identifier.other
10.1007/JHEP10(2024)053
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/700742
dc.identifier.doi
10.3929/ethz-b-000700742
dc.description.abstract
We study non-holomorphic modular forms built from iterated integrals of holomorphic modular forms for SL(2, ℤ) known as equivariant iterated Eisenstein integrals. A special subclass of them furnishes an equivalent description of the modular graph forms appearing in the low-energy expansion of string amplitudes at genus one. Notably the Fourier expansion of modular graph forms contains single-valued multiple zeta values. We deduce the appearance of products and higher-depth instances of multiple zeta values in equivariant iterated Eisenstein integrals, and ultimately modular graph forms, from the appearance of simpler odd Riemann zeta values. This analysis relies on so-called zeta generators which act on certain non-commutative variables in the generating series of the iterated integrals. From an extension of these non-commutative variables we incorporate iterated integrals involving holomorphic cusp forms into our setup and use them to construct the modular completion of triple Eisenstein integrals. Our work represents a fully explicit realisation of the modular graph forms within Brown’s framework of equivariant iterated Eisenstein integrals and reveals structural analogies between single-valued period functions appearing in genus zero and one string amplitudes.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Diferential and Algebraic Geometry
en_US
dc.subject
Superstrings and Heterotic Strings
en_US
dc.title
Non-holomorphic modular forms from zeta generators
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2024-10-08
ethz.journal.title
Journal of High Energy Physics
ethz.journal.volume
2024
en_US
ethz.journal.issue
10
en_US
ethz.journal.abbreviated
J. High Energ. Phys.
ethz.pages.start
53
en_US
ethz.size
120 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03657 - Gaberdiel, Matthias / Gaberdiel, Matthias
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03657 - Gaberdiel, Matthias / Gaberdiel, Matthias
ethz.date.deposited
2024-10-20T06:25:08Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-10-21T11:49:31Z
ethz.rosetta.lastUpdated
2024-10-21T11:49:31Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Non-holomorphic%20modular%20forms%20from%20zeta%20generators&rft.jtitle=Journal%20of%20High%20Energy%20Physics&rft.date=2024-10&rft.volume=2024&rft.issue=10&rft.spage=53&rft.issn=1126-6708&1029-8479&rft.au=Dorigoni,%20Daniele&Doroudiani,%20Mehregan&Drewitt,%20Joshua&Hidding,%20Martijn&Kleinschmidt,%20Axel&rft.genre=article&rft_id=info:doi/10.1007/JHEP10(2024)053&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record