COIN-LIO: Complementary Intensity-Augmented LiDAR Inertial Odometry
dc.contributor.author
Pfreundschuh, Patrick
dc.contributor.author
Oleynikova, Helen
dc.contributor.author
Cadena, Cesar
dc.contributor.author
Siegwart, Roland
dc.contributor.author
Andersson, Olov
dc.date.accessioned
2024-10-29T14:26:58Z
dc.date.available
2024-10-29T10:32:44Z
dc.date.available
2024-10-29T12:53:22Z
dc.date.available
2024-10-29T14:26:58Z
dc.date.issued
2024
dc.identifier.isbn
979-8-3503-8457-4
en_US
dc.identifier.isbn
979-8-3503-8458-1
en_US
dc.identifier.other
10.1109/icra57147.2024.10610938
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/702477
dc.identifier.doi
10.3929/ethz-b-000702477
dc.description.abstract
We present COIN-LIO, a LiDAR Inertial Odometry pipeline that tightly couples information from LiDAR intensity with geometry-based point cloud registration. The focus of our work is to improve the robustness of LiDAR-inertial odometry in geometrically degenerate scenarios, like tunnels or flat fields. We project LiDAR intensity returns into an image, and present a novel image processing pipeline that produces filtered images with improved brightness consistency within the image as well as across different scenes. We effectively leverage intensity as an additional modality, using our new feature selection scheme that detects uninformative directions in the point cloud registration and explicitly selects patches with complementary image information. Photometric error minimization in the image patches is then fused with inertial measurements and point-to-plane registration in an iterated Extended Kalman Filter. The proposed approach improves accuracy and robustness on a public dataset. We additionally publish a new dataset, that captures five real-world environments in challenging, geometrically degenerate scenes. By using the additional photometric information, our approach shows drastically improved robustness against geometric degeneracy in environments where all compared baseline approaches fail.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
COIN-LIO: Complementary Intensity-Augmented LiDAR Inertial Odometry
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2024-08-08
ethz.book.title
2024 IEEE International Conference on Robotics and Automation (ICRA)
en_US
ethz.pages.start
1730
en_US
ethz.pages.end
1737
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
41st IEEE International Conference on Robotics and Automation (ICRA 2024)
en_US
ethz.event.location
Yokohama, Japan
en_US
ethz.event.date
May 13-17, 2024
en_US
ethz.grant
NCCR Digital Fabrication
en_US
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::03737 - Siegwart, Roland Y. / Siegwart, Roland Y.
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02284 - NFS Digitale Fabrikation / NCCR Digital Fabrication
en_US
ethz.grant.agreementno
--
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
NCCR (NFS)
ethz.date.deposited
2024-10-29T10:32:44Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-10-29T14:26:59Z
ethz.rosetta.lastUpdated
2024-10-29T14:26:59Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=COIN-LIO:%20Complementary%20Intensity-Augmented%20LiDAR%20Inertial%20Odometry&rft.date=2024&rft.spage=1730&rft.epage=1737&rft.au=Pfreundschuh,%20Patrick&Oleynikova,%20Helen&Cadena,%20Cesar&Siegwart,%20Roland&Andersson,%20Olov&rft.isbn=979-8-3503-8457-4&979-8-3503-8458-1&rft.genre=proceeding&rft_id=info:doi/10.1109/icra57147.2024.10610938&rft.btitle=2024%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)
Files in this item
Publication type
-
Conference Paper [35873]