A spatial matrix factorization method to characterize ecological assemblages as a mixture of unobserved sources: An application to fish eDNA surveys
dc.contributor.author
Lamperti, Letizia
dc.contributor.author
Francois, Olivier
dc.contributor.author
Mouillot, David
dc.contributor.author
Mathon, Laëtitia
dc.contributor.author
Sanchez, Théophile
dc.contributor.author
Albouy, Camille
dc.contributor.author
Pellissier, Loïc
dc.contributor.author
Manel, Stéphanie
dc.date.accessioned
2024-12-23T14:22:57Z
dc.date.available
2024-10-31T06:44:39Z
dc.date.available
2024-10-31T09:16:45Z
dc.date.available
2024-12-23T14:22:57Z
dc.date.issued
2024-12
dc.identifier.issn
2041-210X
dc.identifier.issn
2041-2096
dc.identifier.other
10.1111/2041-210X.14430
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/702763
dc.identifier.doi
10.3929/ethz-b-000702763
dc.description.abstract
1. Understanding how ecological assemblages vary in space and time is essential for advancing our knowledge of biodiversity dynamics and ecosystem functioning. Metabarcoding of environmental DNA (eDNA) is an efficient method for documenting biodiversity changes in both marine and terrestrial ecosystems. However, current methods fail to detect and display the biodiversity structure within and between eDNA samples limiting ecological and biogeographical interpretations. 2. We present a spatial matrix factorization method that identifies optimal eDNA sample assemblages-called pools-assuming that taxonomic unit composition is based on a fixed number of unknown sources. These sources, in turn, represent taxonomic units sharing similar habitat properties or characteristics. The method aims to reduce the multi-taxa composition structure into a low number of dimensions defined by these sources. This method is inspired by admixture analysis in population genetics. Using a marine fish eDNA survey on 263 sampling stations detecting 2888 molecular operational taxonomic units (MOTUs), we apply this method to analyse the biogeography and mixing patterns of fish assemblages at regional and large scales. 3. At large scale, our analysis reveals six primary pools of fish samples characterized by distinct biogeographic patterns, with some mixtures between these pools. We identify pools composed of unique sources, corresponding to distinct and more isolated regions such as the Mediterranean and Scotia Seas. We also identify pools composed of a greater mix of sources, corresponding to geographically connected areas, such as tropical regions. Additionally, we identify the taxa underpinning the formation of each pool. In the regional analysis of Mediterranean eDNA samples, our method successfully identifies different pools, allowing the detection of not only geographic gradients but also human-induced gradients corresponding to protection levels. 4. Spatial matrix factorization adds a new method in community ecology, where each sample is considered as a mixture of K unobserved sources, to assess the dissimilarity of ecological assemblages revealing environmental and human-induced gradients. Beyond the study of fish eDNA samples, this method has the potential to shed new light on any biodiversity survey and provide new bioindicators of global change.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.subject
biogeography
en_US
dc.subject
environmental DNA (eDNA)
en_US
dc.subject
fish communities
en_US
dc.subject
matrix factorization
en_US
dc.subject
metabarcoding
en_US
dc.title
A spatial matrix factorization method to characterize ecological assemblages as a mixture of unobserved sources: An application to fish eDNA surveys
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
dc.date.published
2024-10-22
ethz.journal.title
Methods in Ecology and Evolution
ethz.journal.volume
15
en_US
ethz.journal.issue
12
en_US
ethz.journal.abbreviated
Methods Ecol. Evol.
ethz.pages.start
2301
en_US
ethz.pages.end
2315
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02722 - Institut für Terrestrische Oekosysteme / Institute of Terrestrial Ecosystems::09553 - Pellissier, Loïc / Pellissier, Loïc
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02722 - Institut für Terrestrische Oekosysteme / Institute of Terrestrial Ecosystems::09553 - Pellissier, Loïc / Pellissier, Loïc
ethz.date.deposited
2024-10-31T06:44:45Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-12-23T14:23:00Z
ethz.rosetta.lastUpdated
2024-12-23T14:23:00Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20spatial%20matrix%20factorization%20method%20to%20characterize%20ecological%20assemblages%20as%20a%20mixture%20of%20unobserved%20sources:%20An%20application%20to%20fi&rft.jtitle=Methods%20in%20Ecology%20and%20Evolution&rft.date=2024-12&rft.volume=15&rft.issue=12&rft.spage=2301&rft.epage=2315&rft.issn=2041-210X&2041-2096&rft.au=Lamperti,%20Letizia&Francois,%20Olivier&Mouillot,%20David&Mathon,%20La%C3%ABtitia&Sanchez,%20Th%C3%A9ophile&rft.genre=article&rft_id=info:doi/10.1111/2041-210X.14430&
Files in this item
Publication type
-
Journal Article [132922]