Reinforcement Learning-Based Bucket Filling for Autonomous Excavation
dc.contributor.author
Egli, Pascal
dc.contributor.author
Terenzi, Lorenzo
dc.contributor.author
Hutter, Marco
dc.date.accessioned
2024-11-06T11:16:10Z
dc.date.available
2024-11-05T11:31:00Z
dc.date.available
2024-11-05T12:11:13Z
dc.date.available
2024-11-05T12:54:24Z
dc.date.available
2024-11-06T11:16:10Z
dc.date.issued
2024
dc.identifier.issn
2997-1101
dc.identifier.other
10.1109/tfr.2024.3432508
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/703673
dc.identifier.doi
10.3929/ethz-b-000703673
dc.description.abstract
This article presents a bucket-filling controller for autonomous excavation. The key innovation of this controller is that it can react to the encountered soil conditions and adapt the excavation behavior online without the explicit knowledge of soil properties while respecting machine limitations to avoid stalling. At the same time, the controller takes into account the current terrain elevation and adheres to a maximum-depth constraint to achieve a desired design. The controller is trained entirely in simulation with reinforcement learning (RL). A simple analytical soil model based on the fundamental equation of Earth moving (FEE) is used to simulate ground interactions. To learn an appropriate excavation strategy for a wide variety of scenarios, soil parameters, as well as other properties of the environment, are randomized extensively during training. We test and evaluate the controller on a 12-ton excavator with a conventional two-stage hydraulic system in a wide range of different soil conditions. In addition, we show the excavation of a complete trench by integrating the controller into an autonomous excavation planning system. The experiments demonstrate that the controller can robustly adapt the excavation trajectory based on the encountered conditions and shows competitive performance compared to a professional machine operator.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Autonomous excavation
en_US
dc.subject
Hydraulic actuators
en_US
dc.subject
Reinforcement learning (RL)
en_US
dc.title
Reinforcement Learning-Based Bucket Filling for Autonomous Excavation
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2024-07-31
ethz.journal.title
IEEE Transactions on Field Robotics
ethz.journal.volume
1
en_US
ethz.pages.start
170
en_US
ethz.pages.end
191
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09570 - Hutter, Marco / Hutter, Marco
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02284 - NFS Digitale Fabrikation / NCCR Digital Fabrication
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09570 - Hutter, Marco / Hutter, Marco
en_US
ethz.date.deposited
2024-11-05T11:31:00Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-11-06T11:16:11Z
ethz.rosetta.lastUpdated
2025-02-14T15:25:39Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Reinforcement%20Learning-Based%20Bucket%20Filling%20for%20Autonomous%20Excavation&rft.jtitle=IEEE%20Transactions%20on%20Field%20Robotics&rft.date=2024&rft.volume=1&rft.spage=170&rft.epage=191&rft.issn=2997-1101&rft.au=Egli,%20Pascal&Terenzi,%20Lorenzo&Hutter,%20Marco&rft.genre=article&rft_id=info:doi/10.1109/tfr.2024.3432508&
Files in this item
Publication type
-
Journal Article [135393]