Reinforcement Learning Control for Autonomous Hydraulic Material Handling Machines with Underactuated Tools
dc.contributor.author
Spinelli, Filippo A.
dc.contributor.author
Egli, Pascal
dc.contributor.author
Nubert, Julian
dc.contributor.author
Nan, Fang
dc.contributor.author
Bleumer, Thilo
dc.contributor.author
Goegler, Patrick
dc.contributor.author
Brockes, Stephan
dc.contributor.author
Hofmann, Ferdinand
dc.contributor.author
Hutter, Marco
dc.date.accessioned
2025-01-06T09:59:48Z
dc.date.available
2024-11-11T17:13:20Z
dc.date.available
2024-11-12T11:57:37Z
dc.date.available
2025-01-06T09:59:48Z
dc.date.issued
2024
dc.identifier.isbn
979-8-3503-7770-5
en_US
dc.identifier.isbn
979-8-3503-7771-2
en_US
dc.identifier.other
10.1109/IROS58592.2024.10802199
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/704791
dc.identifier.doi
10.3929/ethz-b-000704791
dc.description.abstract
The precise and safe control of heavy material handling machines presents numerous challenges due to the hard-to-model hydraulically actuated joints and the need for collision-free trajectory planning with a free-swinging end effector tool. In this work, we propose an RL-based controller that commands the cabin joint and the arm simultaneously. It is trained in a simulation combining data-driven modeling techniques with first-principles modeling. On the one hand, we employ a neural network model to capture the highly nonlinear dynamics of the upper carriage turn hydraulic motor, incorporating explicit pressure prediction to handle delays better. On the other hand, we model the arm as velocity-controllable and the free-swinging end-effector tool as a damped pendulum using first principles. This combined model enhances our simulation environment, enabling the training of RL controllers that can be directly transferred to the real machine. Designed to reach steady-state Cartesian targets, the RL controller learns to leverage the hydraulic dynamics to improve accuracy, maintain high speeds, and minimize end-effector tool oscillations. Our controller, tested on a mid-size prototype material handler, is more accurate than an inexperienced operator and causes fewer tool oscillations. It demonstrates competitive performance even compared to an experienced professional driver.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Reinforcement Learning Control for Autonomous Hydraulic Material Handling Machines with Underactuated Tools
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2024-12-25
ethz.book.title
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
en_US
ethz.pages.start
12694
en_US
ethz.pages.end
12701
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
37th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
en_US
ethz.event.location
Abu Dhabi, United Arab Emirates
en_US
ethz.event.date
October 14-18, 2024
en_US
ethz.notes
Coference lecture held on October 18, 2024.
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09570 - Hutter, Marco / Hutter, Marco
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02284 - NFS Digitale Fabrikation / NCCR Digital Fabrication
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09570 - Hutter, Marco / Hutter, Marco
en_US
ethz.tag
RSL
en_US
ethz.tag
NCCR dfab
en_US
ethz.date.deposited
2024-11-11T17:13:21Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2025-01-06T09:59:49Z
ethz.rosetta.lastUpdated
2025-02-14T16:33:39Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Reinforcement%20Learning%20Control%20for%20Autonomous%20Hydraulic%20Material%20Handling%20Machines%20with%20Underactuated%20Tools&rft.date=2024&rft.spage=12694&rft.epage=12701&rft.au=Spinelli,%20Filippo%20A.&Egli,%20Pascal&Nubert,%20Julian&Nan,%20Fang&Bleumer,%20Thilo&rft.isbn=979-8-3503-7770-5&979-8-3503-7771-2&rft.genre=proceeding&rft_id=info:doi/10.1109/IROS58592.2024.10802199&rft.btitle=2024%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems%20(IROS)
Files in this item
Publication type
-
Conference Paper [36849]