Notice
This record is in review state, the data has not yet been validated.
AutoSkull: Learning-Based Skull Estimation for Automated Pipelines
dc.contributor.author
Milojevic, Aleksandar
dc.contributor.author
Peter, Daniel
dc.contributor.author
Huber, Niko B.
dc.contributor.author
Azevedo, Luis
dc.contributor.author
Latyshev, Andrei
dc.contributor.author
Sailer, Irena
dc.contributor.author
Gross, Markus
dc.contributor.author
Thomaszewski, Bernhard
dc.contributor.author
Solenthaler, Barbara
dc.contributor.author
Gozcu, Baran
dc.date.accessioned
2024-11-29T06:41:16Z
dc.date.available
2024-11-29T06:41:16Z
dc.date.issued
2024-01-01
dc.identifier.isbn
978-3-031-72104-5
dc.identifier.isbn
978-3-031-72103-8
dc.identifier.other
10.1007/978-3-031-72104-5_11
dc.identifier.uri
http://hdl.handle.net/20.500.11850/708155
dc.description.abstract
In medical imaging, accurately representing facial features is crucial for applications such as radiation-free medical visualizations and treatment simulations. We aim to predict skull shapes from 3D facial scans with high accuracy, prioritizing simplicity for seamless integration into automated pipelines. Our method trains an MLP network on PCA coefficients using data from registered skin- and skull-mesh pairs obtained from CBCT scans, which is then used to infer the skull shape for a given skin surface. By incorporating teeth positions as additional prior information extracted from intraoral scans, we further improve the accuracy of the model, outperforming previous work. We showcase a clinical application of our work, where the inferred skull information is used in an FEM model to compute the outcome of an orthodontic treatment.
dc.subject
Machine Learning
dc.subject
Digital Patient
dc.subject
Skull Estimation
dc.subject
Mesh Processing
dc.title
AutoSkull: Learning-Based Skull Estimation for Automated Pipelines
dc.type
Conference Paper
ethz.journal.title
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VII
ethz.journal.volume
15007
ethz.pages.start
109
ethz.pages.end
118
ethz.event
27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
ethz.event.location
Marrakesh
ethz.event.date
OCT 06-10, 2024
ethz.identifier.wos
ethz.date.deposited
2024-11-29T06:41:25Z
ethz.source
WOS
ethz.rosetta.exportRequired
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=AutoSkull:%20Learning-Based%20Skull%20Estimation%20for%20Automated%20Pipelines&rft.jtitle=MEDICAL%20IMAGE%20COMPUTING%20AND%20COMPUTER%20ASSISTED%20INTERVENTION%20-%20MICCAI%202024,%20PT%20VII&rft.date=2024-01-01&rft.volume=15007&rft.spage=109&rft.epage=118&rft.au=Milojevic,%20Aleksandar&Peter,%20Daniel&Huber,%20Niko%20B.&Azevedo,%20Luis&Latyshev,%20Andrei&rft.isbn=978-3-031-72104-5&978-3-031-72103-8&rft.genre=proceeding&rft_id=info:doi/10.1007/978-3-031-72104-5_11&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35904]