Zur Kurzanzeige

dc.contributor.author
Staar, Peter
dc.contributor.author
Maier, Thomas
dc.contributor.author
Schulthess, Thomas C.
dc.date.accessioned
2020-07-09T05:27:29Z
dc.date.available
2017-06-10T21:23:20Z
dc.date.available
2020-07-09T05:27:29Z
dc.date.issued
2013-09-15
dc.identifier.issn
1098-0121
dc.identifier.issn
0163-1829
dc.identifier.issn
1550-235X
dc.identifier.issn
0556-2805
dc.identifier.issn
2469-9969
dc.identifier.issn
1095-3795
dc.identifier.issn
2469-9950
dc.identifier.other
10.1103/PhysRevB.88.115101
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/71772
dc.description.abstract
The dynamical cluster approximation (DCA) is a systematic extension beyond the single-site approximation in dynamical mean field theory, to include spatially nonlocal correlations in quantum many-body simulations of strongly correlated systems. We extend the DCA with a continuous lattice self-energy in order to achieve better convergence with cluster size. This method, which we call DCA+, cures the cluster-shape dependence problems of the DCA, without suffering from causality violations of previous attempts to interpolate the cluster self-energy. A practical approach based on standard inference techniques is given to deduce the continuous lattice self-energy from an interpolated cluster self-energy. We study the pseudogap region of a hole-doped two-dimensional Hubbard model and find that, in the DCA+algorithm, the self-energy and pseudogap temperature T∗ converge monotonously with cluster size. Introduction of a continuous lattice self-energy eliminates artificial long-range correlations and thus significantly reduces the sign problem of the quantum Monte Carlo cluster solver in the DCA+algorithm compared to the normal DCA. Simulations with much larger cluster sizes thus become feasible, which, along with the improved convergence in cluster size, raises hope that precise extrapolations to the exact infinite cluster size limit can be reached for other physical quantities as well.
en_US
dc.language.iso
en
en_US
dc.publisher
American Physical Society
en_US
dc.title
Dynamical cluster approximation with continuous lattice self-energy
en_US
dc.type
Journal Article
dc.date.published
2013-09-03
ethz.journal.title
Physical Review B
ethz.journal.volume
88
en_US
ethz.journal.issue
11
en_US
ethz.journal.abbreviated
Phys. Rev., B
ethz.pages.start
115101
en_US
ethz.size
16 p.
en_US
ethz.identifier.wos
ethz.identifier.nebis
007660715
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03830 - Schulthess, Thomas C. / Schulthess, Thomas C.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03830 - Schulthess, Thomas C. / Schulthess, Thomas C.
ethz.date.deposited
2017-06-10T21:24:32Z
ethz.source
ECIT
ethz.identifier.importid
imp593650fe7599467228
ethz.ecitpid
pub:113793
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2017-07-13T12:31:47Z
ethz.rosetta.lastUpdated
2022-03-29T02:37:04Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Dynamical%20cluster%20approximation%20with%20continuous%20lattice%20self-energy&rft.jtitle=Physical%20Review%20B&rft.date=2013-09-15&rft.volume=88&rft.issue=11&rft.spage=115101&rft.issn=1098-0121&0163-1829&1550-235X&0556-2805&2469-9969&rft.au=Staar,%20Peter&Maier,%20Thomas&Schulthess,%20Thomas%20C.&rft.genre=article&rft_id=info:doi/10.1103/PhysRevB.88.115101&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

DateienGrößeFormatIm Viewer öffnen

Zu diesem Eintrag gibt es keine Dateien.

Publikationstyp

Zur Kurzanzeige