Mapping out the Space of Human Feedback for Reinforcement Learning: A Conceptual Framework
dc.contributor.author
Metz, Yannick
dc.contributor.author
Lindner, David
dc.contributor.author
Baur, Raphaël
dc.contributor.author
El-Assady, Mennatallah
dc.date.accessioned
2025-01-23T16:23:58Z
dc.date.available
2025-01-23T16:07:28Z
dc.date.available
2025-01-23T16:23:58Z
dc.date.issued
2024-11-18
dc.identifier.other
10.48550/arXiv.2411.11761
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/717817
dc.identifier.doi
10.3929/ethz-b-000717817
dc.description.abstract
Reinforcement Learning from Human feedback (RLHF) has become a powerful tool to fine-tune or train agentic machine learning models. Similar to how humans interact in social contexts, we can use many types of feedback to communicate our preferences, intentions, and knowledge to an RL agent. However, applications of human feedback in RL are often limited in scope and disregard human factors. In this work, we bridge the gap between machine learning and human-computer interaction efforts by developing a shared understanding of human feedback in interactive learning scenarios. We first introduce a taxonomy of feedback types for reward-based learning from human feedback based on nine key dimensions. Our taxonomy allows for unifying human-centered, interface-centered, and model-centered aspects. In addition, we identify seven quality metrics of human feedback influencing both the
human ability to express feedback and the agent’s ability to learn from the feedback. Based on the feedback taxonomy and quality criteria, we derive requirements and design choices for systems learning from human feedback. We relate these requirements and design choices to existing work in interactive machine learning. In the process, we identify gaps in existing work and future research opportunities. We call for interdisciplinary collaboration to harness the full potential of reinforcement learning with data-driven co-adaptive modeling and varied interaction mechanics.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Cornell University
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
reinforcement learning from human feedback
en_US
dc.subject
RLHF
en_US
dc.subject
Framework
en_US
dc.subject
Human feedback
en_US
dc.subject
Human centered computing
en_US
dc.title
Mapping out the Space of Human Feedback for Reinforcement Learning: A Conceptual Framework
en_US
dc.type
Working Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.journal.title
arXiv
ethz.size
61 p.
en_US
ethz.version.edition
v1
en_US
ethz.code.ddc
DDC - DDC::0 - Computer science, information & general works::004 - Data processing, computer science
en_US
ethz.publication.place
Ithaca, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::09822 - El-Assady, Mennatallah / El-Assady, Mennatallah
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::09822 - El-Assady, Mennatallah / El-Assady, Mennatallah
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::09822 - El-Assady, Mennatallah / El-Assady, Mennatallah
en_US
ethz.date.deposited
2025-01-23T16:07:29Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2025-01-23T16:23:59Z
ethz.rosetta.lastUpdated
2025-02-14T16:58:29Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Mapping%20out%20the%20Space%20of%20Human%20Feedback%20for%20Reinforcement%20Learning:%20A%20Conceptual%20Framework&rft.jtitle=arXiv&rft.date=2024-11-18&rft.au=Metz,%20Yannick&Lindner,%20David&Baur,%20Rapha%C3%ABl&El-Assady,%20Mennatallah&rft.genre=preprint&rft_id=info:doi/10.48550/arXiv.2411.11761&
Files in this item
Publication type
-
Working Paper [6098]