Show simple item record

dc.contributor.author
Bühlmann, Peter
dc.contributor.author
Mandozzi, Jacopo
dc.date.accessioned
2021-05-01T08:05:10Z
dc.date.available
2017-06-10T21:44:40Z
dc.date.available
2021-05-01T08:05:10Z
dc.date.issued
2014-06
dc.identifier.issn
0943-4062
dc.identifier.issn
0723-712X
dc.identifier.other
10.1007/s00180-013-0436-3
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/72111
dc.identifier.doi
10.3929/ethz-b-000072111
dc.description.abstract
We review variable selection and variable screening in high-dimensional linear models. Thereby, a major focus is an empirical comparison of various estimation methods with respect to true and false positive selection rates based on 128 different sparse scenarios from semi-real data (real data covariables but synthetic regression coefficients and noise). Furthermore, we present some theoretical bounds for the bias in subsequent least squares estimation, using the selected variables from the first stage, which have direct implications for construction of p-values for regression coefficients.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Elastic net
en_US
dc.subject
Lasso
en_US
dc.subject
Linear model
en_US
dc.subject
Ridge
en_US
dc.subject
Sparsity
en_US
dc.subject
Sure independence screening
en_US
dc.subject
Variable selection
en_US
dc.title
High-dimensional variable screening and bias in subsequent inference, with an empirical comparison
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2013-07-23
ethz.journal.title
Computational Statistics
ethz.journal.volume
29
en_US
ethz.journal.issue
3
en_US
ethz.pages.start
407
en_US
ethz.pages.end
430
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.notes
It was possible to publish this article open access thanks to a Swiss National Licence with the publisher.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Berlin
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02537 - Seminar für Statistik (SfS) / Seminar for Statistics (SfS)::03502 - Bühlmann, Peter L. / Bühlmann, Peter L.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02537 - Seminar für Statistik (SfS) / Seminar for Statistics (SfS)::03502 - Bühlmann, Peter L. / Bühlmann, Peter L.
ethz.date.deposited
2017-06-10T21:46:19Z
ethz.source
ECIT
ethz.identifier.importid
imp5936510596f6f96752
ethz.ecitpid
pub:114285
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-15T02:33:58Z
ethz.rosetta.lastUpdated
2022-03-29T06:59:36Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=High-dimensional%20variable%20screening%20and%20bias%20in%20subsequent%20inference,%20with%20an%20empirical%20comparison&rft.jtitle=Computational%20Statistics&rft.date=2014-06&rft.volume=29&rft.issue=3&rft.spage=407&rft.epage=430&rft.issn=0943-4062&0723-712X&rft.au=B%C3%BChlmann,%20Peter&Mandozzi,%20Jacopo&rft.genre=article&rft_id=info:doi/10.1007/s00180-013-0436-3&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record