Assessing confidence in AI-Assisted grading of physics exams through psychometrics: An exploratory study
dc.contributor.author
Kortemeyer, Gerd
dc.contributor.author
Nöhl, Julian
dc.date.accessioned
2025-05-27T15:19:12Z
dc.date.available
2025-04-17T06:53:51Z
dc.date.available
2025-05-02T13:11:39Z
dc.date.available
2025-05-27T15:19:12Z
dc.date.issued
2025-04
dc.identifier.issn
2469-9896
dc.identifier.other
10.1103/PhysRevPhysEducRes.21.010136
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/731805
dc.identifier.doi
10.3929/ethz-b-000731805
dc.description.abstract
This study explores the use of artificial intelligence in grading high-stakes physics exams, emphasizing the application of psychometric methods, particularly item response theory, to evaluate the reliability of AI-Assisted grading. We examine how grading rubrics can be iteratively refined and how threshold parameters can determine when AI-generated grades are reliable versus when human intervention is necessary. By adjusting thresholds for correctness measures and uncertainty, AI can grade with high precision, significantly reducing grading workloads while maintaining accuracy. Our findings show that AI can achieve a coefficient of determination of R² ≈ 0.91 when handling half of the grading load, and R² ≈ 0.96 for one-fifth of the load. These results demonstrate AI's potential to assist in grading large-scale assessments, reducing both human effort and associated costs. However, the study underscores the importance of human oversight in cases of uncertainty or complex problem solving, ensuring the integrity of the grading process.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Physical Society
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Assessing confidence in AI-Assisted grading of physics exams through psychometrics: An exploratory study
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2025-04-07
ethz.journal.title
Physical Review Physics Education Research
ethz.journal.volume
21
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Phys. Rev. Phys. Educ. Res.
ethz.pages.start
010136
en_US
ethz.size
24 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.date.deposited
2025-04-17T06:53:53Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2025-05-02T13:11:41Z
ethz.rosetta.lastUpdated
2025-05-02T13:11:41Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Assessing%20confidence%20in%20AI-Assisted%20grading%20of%20physics%20exams%20through%20psychometrics:%20An%20exploratory%20study&rft.jtitle=Physical%20Review%20Physics%20Education%20Research&rft.date=2025-04&rft.volume=21&rft.issue=1&rft.spage=010136&rft.issn=2469-9896&rft.au=Kortemeyer,%20Gerd&N%C3%B6hl,%20Julian&rft.genre=article&rft_id=info:doi/10.1103/PhysRevPhysEducRes.21.010136&
Files in this item
Publication type
-
Journal Article [135823]