Global Photosynthesis Acclimates to Rising Temperatures Through Predictable Changes in Photosynthetic Capacities, Enzyme Kinetics, and Stomatal Sensitivity
dc.contributor.author
Schneider, Pascal Daniel
dc.contributor.author
Gessler, Arthur
dc.contributor.author
Stocker, Benjamin
dc.date.accessioned
2025-05-20T13:07:22Z
dc.date.available
2025-05-09T04:52:27Z
dc.date.available
2025-05-20T13:07:22Z
dc.date.issued
2025-04-28
dc.identifier.issn
1942-2466
dc.identifier.other
10.1029/2024MS004789
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/734430
dc.identifier.doi
10.3929/ethz-b-000734430
dc.description.abstract
Thermal acclimation of photosynthesis, the physiological adjustment to temperature over weeks, may help plants mitigate adverse impacts of global warming, but is often under-represented in Earth System Models (ESMs). We evaluated a plant functional type (PFT)-agnostic, optimality-based model of C$_3$ photosynthesis with a global data set of leaf gas exchange measurements. We investigated how three key photosynthesis traits vary along a gradient of growing-season temperatures (T$_{growth}$): optimal photosynthesis temperature (T$_{opt}$), net photosynthesis rate at T$_{opt}$ (A$_{opt}$), and the width of the temperature response curve (T$_{span}$). We analyzed how each trait is influenced by three acclimation processes: acclimation of photosynthetic capacities (carboxylation, electron transport, and respiration), their enzymatic responses, and stomatal sensitivity to vapor pressure deficit. The inclusion of all three acclimation processes was essential for reproducing observed patterns: a linear increase in T$_{opt}$ with T$_{growth}$, and no correlations of A$_{opt}$ and T$_{span}$ with T$_{growth}$. Acclimation of enzymatic responses and stomatal sensitivity was crucial for accurately predicting T$_{opt}$ and T$_{span}$. Acclimation of the photosynthetic capacities was necessary to avoid a bias in A$_{opt}$ that can arise when relying on static, PFT-specific parameters. Comparing a model with all and a model without any acclimation processes showed that thermal acclimation buffers the response of photosynthesis to warming substantially, leading to smaller increases in photosynthesis in cold climates (+2% instead of +18%) and smaller declines in warm climates (−4% instead of −22%). Our observations-constrained photosynthesis predictions suggest an important role of thermal acclimation in ESM, partly mitigating adverse effects of a warming climate.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
photosynthesis
en_US
dc.subject
thermal acclimation
en_US
dc.subject
Earth system models
en_US
dc.subject
eco-evolutionary optimality theory
en_US
dc.subject
climate change
en_US
dc.subject
global warming
en_US
dc.title
Global Photosynthesis Acclimates to Rising Temperatures Through Predictable Changes in Photosynthetic Capacities, Enzyme Kinetics, and Stomatal Sensitivity
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
ethz.journal.title
Journal of Advances in Modeling Earth Systems
ethz.journal.volume
17
en_US
ethz.journal.issue
4
en_US
ethz.pages.start
e2024MS004789
en_US
ethz.size
22 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
next-generation Modelling of the biosphere - Including New Data streams and optimality approaches
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.grant.agreementno
181115
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Eccellenza
ethz.date.deposited
2025-05-09T04:52:29Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2025-05-20T13:07:24Z
ethz.rosetta.lastUpdated
2025-05-20T13:07:24Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Global%20Photosynthesis%20Acclimates%20to%20Rising%20Temperatures%20Through%20Predictable%20Changes%20in%20Photosynthetic%20Capacities,%20Enzyme%20Kinetics,%20and%20Stom&rft.jtitle=Journal%20of%20Advances%20in%20Modeling%20Earth%20Systems&rft.date=2025-04-28&rft.volume=17&rft.issue=4&rft.spage=e2024MS004789&rft.issn=1942-2466&rft.au=Schneider,%20Pascal%20Daniel&Gessler,%20Arthur&Stocker,%20Benjamin&rft.genre=article&rft_id=info:doi/10.1029/2024MS004789&
Files in this item
Publication type
-
Journal Article [135390]