Zur Kurzanzeige

dc.contributor.author
Anet, Julien
dc.contributor.author
Muthers, Stefan
dc.contributor.author
Rozanov, Eugene
dc.contributor.author
Raible, Christoph C.
dc.contributor.author
Peter, Thomas
dc.contributor.author
Stenke, Andrea
dc.contributor.author
Shapiro, Alexander I.
dc.contributor.author
Beer, Jürg
dc.contributor.author
Steinhilber, Friedhelm
dc.contributor.author
Brönnimann, Stefan
dc.contributor.author
Arfeuille, Florian
dc.contributor.author
Brugnara, Yuri
dc.contributor.author
Schmutz, Werner
dc.date.accessioned
2018-11-05T12:45:35Z
dc.date.available
2017-06-11T00:14:27Z
dc.date.available
2018-11-05T12:45:35Z
dc.date.issued
2013
dc.identifier.issn
1680-7375
dc.identifier.issn
1680-7367
dc.identifier.other
10.5194/acp-13-10951-2013
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/74822
dc.identifier.doi
10.3929/ethz-b-000074822
dc.description.abstract
The response of atmospheric chemistry and dynamics to volcanic eruptions and to a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere–ocean chemistry general circulation model SOCOL-MPIOM (modeling tools for studies of SOlar Climate Ozone Links-Max Planck Institute Ocean Model) covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric dynamics in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15%, which represents the presently discussed highest estimate of UV irradiance change caused by solar activity changes, causes global ozone decrease below the stratopause reaching as much as 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the mid-stratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere, allowing more water vapour to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx, leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation when all forcing factors are applied during the Dalton Minimum (DM) – this effect is especially well visible for NOx/NOy. Thus, this study also shows the non-linear behaviour of the coupled chemistry-climate system. Finally, we conclude that especially UV and volcanic eruptions dominate the changes in the ozone, temperature and dynamics while the NOx field is dominated by the energetic particle precipitation. Visible radiation changes have only very minor effects on both stratospheric dynamics and chemistry.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Copernicus
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.title
Forcing of stratospheric chemistry and dynamics during the Dalton Minimum
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 3.0 Unported
dc.date.published
2013-11-08
ethz.journal.title
Atmospheric Chemistry and Physics
ethz.journal.volume
13
en_US
ethz.journal.issue
21
en_US
ethz.journal.abbreviated
Atmos. chem. phys.
ethz.pages.start
10951
en_US
ethz.pages.end
10967
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.scopus
ethz.identifier.nebis
004294181
ethz.publication.place
Göttingen
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02717 - Institut für Atmosphäre und Klima / Inst. Atmospheric and Climate Science::03517 - Peter, Thomas / Peter, Thomas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02717 - Institut für Atmosphäre und Klima / Inst. Atmospheric and Climate Science::03517 - Peter, Thomas / Peter, Thomas
ethz.date.deposited
2017-06-11T00:14:52Z
ethz.source
ECIT
ethz.identifier.importid
imp5936513730e0091914
ethz.ecitpid
pub:118267
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-13T07:58:27Z
ethz.rosetta.lastUpdated
2021-02-15T02:23:50Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Forcing%20of%20stratospheric%20chemistry%20and%20dynamics%20during%20the%20Dalton%20Minimum&rft.jtitle=Atmospheric%20Chemistry%20and%20Physics&rft.date=2013&rft.volume=13&rft.issue=21&rft.spage=10951&rft.epage=10967&rft.issn=1680-7375&1680-7367&rft.au=Anet,%20Julien&Muthers,%20Stefan&Rozanov,%20Eugene&Raible,%20Christoph%20C.&Peter,%20Thomas&rft.genre=article&rft_id=info:doi/10.5194/acp-13-10951-2013&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige