Invariant Approximations of the Maximal Invariant Set or “Encircling the Square”
Metadata only
Datum
2008Typ
- Conference Paper
ETH Bibliographie
yes
Altmetrics
Abstract
This paper offers a method for the computation of invariant approximations of the maximal invariant set for constrained linear discrete time systems subject to bounded, additive, disturbances. The main advantage of the method is that it generates invariant sets at any step of the underlying set iteration. Conditions under which the sequence of generated invariant sets is monotonically non–decreasing and converges to the maximal invariant set are provided. Explicit formulae for the estimates of the Hausdorff distance between the underlying iterates and the maximal invariant set are derived. Mehr anzeigen
Publikationsstatus
publishedExterne Links
Buchtitel
Proceedings of the 17th IFAC World CongressZeitschrift / Serie
IFAC Proceedings VolumesBand
Seiten / Artikelnummer
Verlag
ElsevierKonferenz
Thema
Set Invariance; Invariant Approximations; Maximal Invariant SetOrganisationseinheit
03416 - Morari, Manfred (emeritus)
ETH Bibliographie
yes
Altmetrics