Show simple item record

dc.contributor.author
Alf, Malte F.
dc.contributor.author
Martić-Kehl, Marianne I.
dc.contributor.author
Schibli, Roger
dc.contributor.author
Krämer, Stefanie-Dorothea
dc.date.accessioned
2019-03-25T14:00:11Z
dc.date.available
2017-06-11T02:44:05Z
dc.date.available
2019-03-25T14:00:11Z
dc.date.issued
2013-08
dc.identifier.issn
2191-219X
dc.identifier.other
10.1186/2191-219X-3-61
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/77731
dc.identifier.doi
10.3929/ethz-b-000077731
dc.description.abstract
Background Kinetic modeling of brain glucose metabolism in small rodents from positron emission tomography (PET) data using 2-deoxy-2-[18 F]fluoro-d-glucose (FDG) has been highly inconsistent, due to different modeling parameter settings and underestimation of the impact of methodological flaws in experimentation. This article aims to contribute toward improved experimental standards. As solutions for arterial input function (IF) acquisition of satisfactory quality are becoming available for small rodents, reliable two-tissue compartment modeling and the determination of transport and phosphorylation rate constants of FDG in rodent brain are within reach. Methods Data from mouse brain FDG PET with IFs determined with a coincidence counter on an arterio-venous shunt were analyzed with the two-tissue compartment model. We assessed the influence of several factors on the modeling results: the value for the fractional blood volume in tissue, precision of timing and calibration, smoothing of data, correction for blood cell uptake of FDG, and protocol for FDG administration. Kinetic modeling with experimental and simulated data was performed under systematic variation of these parameters. Results Blood volume fitting was unreliable and affected the estimation of rate constants. Even small sample timing errors of a few seconds lead to significant deviations of the fit parameters. Data smoothing did not increase model fit precision. Accurate correction for the kinetics of blood cell uptake of FDG rather than constant scaling of the blood time-activity curve is mandatory for kinetic modeling. FDG infusion over 4 to 5 min instead of bolus injection revealed well-defined experimental input functions and allowed for longer blood sampling intervals at similar fit precisions in simulations. Conclusions FDG infusion over a few minutes instead of bolus injection allows for longer blood sampling intervals in kinetic modeling with the two-tissue compartment model at a similar precision of fit parameters. The fractional blood volume in the tissue of interest should be entered as a fixed value and kinetics of blood cell uptake of FDG should be included in the model. Data smoothing does not improve the results, and timing errors should be avoided by precise temporal matching of blood and tissue time-activity curves and by replacing manual with automated blood sampling.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/2.0/
dc.subject
CMRglc
en_US
dc.subject
FDG
en_US
dc.subject
Fractional blood volume
en_US
dc.subject
Kinetic modeling
en_US
dc.subject
Reliability
en_US
dc.subject
Positron emission tomography
en_US
dc.subject
Infusion
en_US
dc.title
FDG kinetic modeling in small rodent brain PET: optimization of data acquisition and analysis
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 2.0 Generic
dc.date.published
2013-08-06
ethz.journal.title
EJNMMI Research
ethz.journal.volume
3
en_US
ethz.journal.abbreviated
EJNMMI res.
ethz.pages.start
61
en_US
ethz.size
14 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.publication.place
Heidelberg
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02534 - Institut für Pharmazeutische Wiss. / Institute of Pharmaceutical Sciences::03688 - Schibli, Roger / Schibli, Roger
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02534 - Institut für Pharmazeutische Wiss. / Institute of Pharmaceutical Sciences::08830 - Krämer, Stefanie (Tit.-Prof.)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02534 - Institut für Pharmazeutische Wiss. / Institute of Pharmaceutical Sciences::03688 - Schibli, Roger / Schibli, Roger
ethz.date.deposited
2017-06-11T02:45:46Z
ethz.source
ECIT
ethz.identifier.importid
imp5936516edcb8881265
ethz.ecitpid
pub:122432
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-19T11:01:32Z
ethz.rosetta.lastUpdated
2019-03-25T14:00:48Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=FDG%20kinetic%20modeling%20in%20small%20rodent%20brain%20PET:%20optimization%20of%20data%20acquisition%20and%20analysis&rft.jtitle=EJNMMI%20Research&rft.date=2013-08&rft.volume=3&rft.spage=61&rft.issn=2191-219X&rft.au=Alf,%20Malte%20F.&Marti%C4%87-Kehl,%20Marianne%20I.&Schibli,%20Roger&Kr%C3%A4mer,%20Stefanie-Dorothea&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record