Metadata only

Author

Eichmair, Michael

Metzger, Jan

Date

2012-05-19Type

- Working Paper

Altmetrics

Abstract

Let (M, g, k) be an initial data set for the Einstein equations of general relativity. We prove that there exist solutions of the Plateau problem for marginally outer trapped surfaces (MOTSs) that are stable in the sense of MOTSs. This answers a question of G. Galloway and N. O'Murchadha and is an ingredient in the proof of the spacetime positive mass theorem given by L.-H. Huang, D. Lee, R. Schoen and the first author. We show that a canonical solution of the Jang equation exists in the complement of the union of all weakly future outer trapped regions in the initial data set with respect to a given end, provided that this complement contains no weakly past outer trapped regions. The graph of this solution relates the area of the horizon to the global geometry of the initial data set in a non-trivial way. We prove the existence of a Scherk-type solution of the Jang equation outside the union of all weakly future or past outer trapped regions in the initial data set. This result is a natural exterior analogue for the Jang equation of the classical Jenkins--Serrin theory. We extend and complement existence theorems by Jenkins-Serrin, Spruck, Nelli-Rosenberg, Hauswirth-Rosenberg-Spruck, and Pinheiro for Scherk-type constant mean curvature graphs over polygonal domains in (M, g), where (M, g) is a complete Riemannian surface. We can dispense with the a priori assumptions that a sub solution exists and that (M, g) has particular symmetries. Also, our method generalizes to higher dimensions Show more

Publication status

publishedPages

Publisher

Cornell UniversityOrganisational unit

03935 - Eichmair, Michael
Notes

Submitted on 19 May 2012.More

Show all metadata
Altmetrics