Show simple item record

dc.contributor.author
Glatz, Eduard
dc.contributor.author
Mavromatidis, Stelios
dc.contributor.author
Ager, Bernhard
dc.contributor.author
Dimitropoulos, Xenofontas
dc.date.accessioned
2021-05-10T08:30:40Z
dc.date.available
2017-06-11T04:40:26Z
dc.date.available
2021-05-10T08:30:40Z
dc.date.issued
2014-01
dc.identifier.issn
0010-485X
dc.identifier.issn
1436-5057
dc.identifier.other
10.1007/s00607-013-0282-8
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/80241
dc.identifier.doi
10.3929/ethz-b-000080241
dc.description.abstract
Visualizing communication logs, like NetFlow records, is extremely useful for numerous tasks that need to analyze network traffic traces, like network planning, performance monitoring, and troubleshooting. Communication logs, however, can be massive, which necessitates designing effective visualization techniques for large data sets. To address this problem, we introduce a novel network traffic visualization scheme based on the key ideas of (1) exploiting frequent itemset mining (FIM) to visualize a succinct set of interesting traffic patterns extracted from large traces of communication logs; and (2) visualizing extracted patterns as hypergraphs that clearly display multi-attribute associations. We demonstrate case studies that support the utility of our visualization scheme and show that it enables the visualization of substantially larger data sets than existing network traffic visualization schemes based on parallel-coordinate plots or graphs. For example, we show that our scheme can easily visualize the patterns of more than 41 million NetFlow records. Previous research has explored using parallel-coordinate plots for visualizing network traffic flows. However, such plots do not scale to data sets with thousands of even millions of flows.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Visualization
en_US
dc.subject
Big data
en_US
dc.subject
Network traffic
en_US
dc.subject
Frequent item-set mining
en_US
dc.subject
Network security
en_US
dc.subject
NetFlow
en_US
dc.title
Visualizing big network traffic data using frequent pattern mining and hypergraphs
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2013-01-23
ethz.journal.title
Computing
ethz.journal.volume
96
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Computing
ethz.pages.start
27
en_US
ethz.pages.end
38
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.notes
It was possible to publish this article open access thanks to a Swiss National Licence with the publisher.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Wien
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2017-06-11T04:44:16Z
ethz.source
ECIT
ethz.identifier.importid
imp5936519a0d01f94574
ethz.ecitpid
pub:125835
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-18T11:49:41Z
ethz.rosetta.lastUpdated
2022-03-29T07:19:03Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Visualizing%20big%20network%20traffic%20data%20using%20frequent%20pattern%20mining%20and%20hypergraphs&rft.jtitle=Computing&rft.date=2014-01&rft.volume=96&rft.issue=1&rft.spage=27&rft.epage=38&rft.issn=0010-485X&1436-5057&rft.au=Glatz,%20Eduard&Mavromatidis,%20Stelios&Ager,%20Bernhard&Dimitropoulos,%20Xenofontas&rft.genre=article&rft_id=info:doi/10.1007/s00607-013-0282-8&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record