Show simple item record

dc.contributor.author
Sun, Lijun
dc.contributor.author
Jin, Jian G.
dc.contributor.author
Lee, Der-Horng
dc.contributor.author
Axhausen, Kay W.
dc.date.accessioned
2019-08-12T06:23:19Z
dc.date.available
2017-06-11T11:05:22Z
dc.date.available
2018-05-30T14:53:59Z
dc.date.available
2019-08-12T06:23:19Z
dc.date.issued
2015
dc.identifier.uri
http://hdl.handle.net/20.500.11850/86850
dc.description.abstract
Understanding passenger transfer behavior is crucial to designing better multimodal transport networks and improving public transport service quality. However, obtaining data for modeling transfer behavior remains a challenge, in particular under complex facility configurations. The recent emergence of smart card data provides us with new and efficient data-driven approaches to modeling public transport systems. In this paper, we present the effect of time of day, day of week, age of passengers, crowdedness at stop/station and collective pressure in determining passenger transfer time. By analyzing transfer profiles provided by smart card transactions, we apply regression models to estimate the impact of each factor in determining passenger behavior under different scenarios. Using morning peak period as a base category, we find that passengers are faster during morning peaks even though it is more crowded. In terms of age of passengers, we find that children and senior citizens generally transfer slower than adults. However, children may outperform adults in passing through an overpass. The crowding effect at bus stop is not substantial unless passenger demand reaches its capacity, while the crowdedness at fare gantries always delays transferring. Finally, we identify the effect of collective pressure by using the number of fastest/slowest passengers around one individual as a proxy. A fast passenger around one individual is found to reduce his/her transfer time, while a slow passenger may delay the transfer significantly. This work presents some empirical evidence in understanding passenger transfer behavior in a multimodal transit network. The results could be integrated with physical surveys to better model pedestrian behaviors, supporting convenient facility design and public policy making.
en_US
dc.language.iso
en
en_US
dc.publisher
National Academies of Sciences, Engineering, and Medicine
en_US
dc.subject
Transfer
en_US
dc.subject
Multimodal
en_US
dc.subject
Public transport
en_US
dc.title
Characterizing multimodal transfer time using smart card data
en_US
dc.type
Conference Paper
ethz.title.subtitle
The effect of time, passenger age, crowdedness and collective pressure
en_US
ethz.pages.start
15-3776
en_US
ethz.size
15 p.
en_US
ethz.event
94th Annual Meeting of the Transportation Research Board Location (TRB 2015)
en_US
ethz.event.location
Washington, DC
en_US
ethz.event.date
January 11-15, 2015
en_US
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00003 - Schulleitung und Dienste::00022 - Bereich VP Forschung & Wirtschaftsbez. / Domain VP Research & Corporate Relations::08058 - Singapore ETH Centre (SEC) / Singapore ETH Centre (SEC)
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::03521 - Axhausen, Kay W. / Axhausen, Kay W.
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt und Landschaft D-ARCH::02226 - NSL - Netzwerk Stadt und Landschaft / NSL - Network City and Landscape
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt und Landschaft D-ARCH
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::03521 - Axhausen, Kay W. / Axhausen, Kay W.
ethz.identifier.url
https://trid.trb.org/view/1338263
ethz.date.deposited
2017-06-11T11:05:36Z
ethz.source
ECIT
ethz.identifier.importid
imp5936521c3e0bb38870
ethz.ecitpid
pub:136641
ethz.eth
yes
en_US
ethz.identifier.internal
1013
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2018-05-30T14:54:03Z
ethz.rosetta.lastUpdated
2019-08-12T06:23:27Z
ethz.rosetta.exportRequired
false
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Characterizing%20multimodal%20transfer%20time%20using%20smart%20card%20data&rft.date=2015&rft.spage=15-3776&rft.au=Sun,%20Lijun&Jin,%20Jian%20G.&Lee,%20Der-Horng&Axhausen,%20Kay%20W.&rft.genre=proceeding&rft.btitle=Characterizing%20multimodal%20transfer%20time%20using%20smart%20card%20data
 Search via SFX

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record