Show simple item record

dc.contributor.author
Balduzzi, David
dc.contributor.author
Vanchinathan, Hastagiri
dc.contributor.author
Buhman, Joachim M.
dc.date.accessioned
2018-05-03T07:18:09Z
dc.date.available
2017-06-11T13:27:31Z
dc.date.available
2018-05-03T07:18:09Z
dc.date.issued
2015
dc.identifier.isbn
978-1-57735-698-1
en_US
dc.identifier.isbn
978-1-57735-699-8
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/91735
dc.language.iso
en
en_US
dc.publisher
AAAI Press
en_US
dc.title
Kickback cuts Backprop’s red-tape: Biologically plausible credit assignment in neural networks
en_US
dc.type
Conference Paper
dc.date.published
2015-01-25
ethz.book.title
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence and the Twenty-Seventh Innovative Applications of Artificial Intelligence Conference
en_US
ethz.journal.volume
1
en_US
ethz.pages.start
485
en_US
ethz.pages.end
491
en_US
ethz.event
29th AAI Conference on Artificial Intelligence (AAAI'15)
en_US
ethz.event.location
Austin, TX, USA
en_US
ethz.event.date
January 25-30, 2015
en_US
ethz.identifier.scopus
ethz.identifier.nebis
010507366
ethz.publication.place
Palo Alto, CA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03659 - Buhmann, Joachim M. / Buhmann, Joachim M.
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03659 - Buhmann, Joachim M. / Buhmann, Joachim M.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
ethz.date.deposited
2017-06-11T13:28:09Z
ethz.source
ECIT
ethz.identifier.importid
imp5936527a0acc831325
ethz.ecitpid
pub:144273
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2017-07-25T10:21:21Z
ethz.rosetta.lastUpdated
2018-05-03T07:18:14Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Kickback%20cuts%20Backprop%E2%80%99s%20red-tape:%20Biologically%20plausible%20credit%20assignment%20in%20neural%20networks&rft.date=2015&rft.volume=1&rft.spage=485&rft.epage=491&rft.au=Balduzzi,%20David&Vanchinathan,%20Hastagiri&Buhman,%20Joachim%20M.&rft.isbn=978-1-57735-698-1&978-1-57735-699-8&rft.genre=proceeding&rft.btitle=Proceedings%20of%20the%20Twenty-Ninth%20AAAI%20Conference%20on%20Artificial%20Intelligence%20and%20the%20Twenty-Seventh%20Innovative%20Applications%20of%20Artificial%20I
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record