Sparse learning of Markovian population models in random environments
dc.contributor.author
Zechner, Christoph
dc.contributor.author
Wadehn, Federico
dc.contributor.author
Köppl, Heinz
dc.contributor.editor
Boje, Edward
dc.contributor.editor
Xia, Xiaohua
dc.date.accessioned
2021-07-28T11:12:37Z
dc.date.available
2017-06-11T14:31:53Z
dc.date.available
2017-10-25T07:54:03Z
dc.date.available
2018-03-01T08:54:08Z
dc.date.available
2018-09-12T13:56:17Z
dc.date.available
2021-07-28T11:12:37Z
dc.date.issued
2014-09
dc.identifier.isbn
978-3-902823-62-5
en_US
dc.identifier.issn
1474-6670
dc.identifier.other
10.3182/20140824-6-ZA-1003.01974
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/94250
dc.identifier.doi
10.3929/ethz-a-010362110
dc.description.abstract
Markovian population models are suitable abstractions to describe well-mixed interacting particle systems in situation where stochastic fluctuations are significant due to the involvement of low copy particles. In molecular biology, measurements on the single-cell level attest to this stochasticity and one is tempted to interpret such measurements across an isogenic cell population as different sample paths of one and the same Markov model. Over recent years evidence built up against this interpretation due to the presence of cell-to-cell variability stemming from factors other than intrinsic fluctuations. To account for this extrinsic variability, Markovian models in random environments need to be considered and a key emerging question is how to perform inference for such models. We model extrinsic variability by a random parametrization of all propensity functions. To detect which of those propensities have significant variability, we lay out a sparse learning procedure captured by a hierarchical Bayesian model whose evidence function is iteratively maximized using a variational Bayesian expectation-maximization algorithm.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Stochastic chemical kinetics
en_US
dc.subject
Population models
en_US
dc.subject
Sparse Bayesian learning
en_US
dc.subject
Variational inference
en_US
dc.subject
Extrinsic variability
en_US
dc.title
Sparse learning of Markovian population models in random environments
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2016-04-25
ethz.book.title
19th IFAC World Congress, IFAC 2014. Proceedings
en_US
ethz.journal.title
IFAC Proceedings Volumes
ethz.journal.volume
47
en_US
ethz.journal.issue
3
en_US
ethz.pages.start
1723
en_US
ethz.pages.end
1728
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::621.3 - Electric engineering
en_US
ethz.event
19th World Congress of the International Federation of Automatic Control (IFAC 2014)
en_US
ethz.event.location
Cape Town, South Africa
en_US
ethz.event.date
August 24-29, 2014
en_US
ethz.publication.place
Oxford
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02639 - Inst. f. Signal- und Informationsverarb. / Signal and Information Processing Lab.::03568 - Loeliger, Hans-Andrea / Loeliger, Hans-Andrea
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02639 - Inst. f. Signal- und Informationsverarb. / Signal and Information Processing Lab.::03568 - Loeliger, Hans-Andrea / Loeliger, Hans-Andrea
ethz.date.deposited
2017-06-11T14:32:01Z
ethz.source
ECOL
ethz.source
ECIT
ethz.identifier.importid
imp593652a88860d79049
ethz.identifier.importid
imp59366b6db90c775071
ethz.ecolpid
eth:47292
ethz.ecitpid
pub:148135
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-25T13:53:03Z
ethz.rosetta.lastUpdated
2022-03-29T10:46:15Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Sparse%20learning%20of%20Markovian%20population%20models%20in%20random%20environments&rft.jtitle=IFAC%20Proceedings%20Volumes&rft.date=2014-09&rft.volume=47&rft.issue=3&rft.spage=1723&rft.epage=1728&rft.issn=1474-6670&rft.au=Zechner,%20Christoph&Wadehn,%20Federico&K%C3%B6ppl,%20Heinz&rft.isbn=978-3-902823-62-5&rft.genre=proceeding&rft_id=info:doi/10.3182/20140824-6-ZA-1003.01974&rft.btitle=19th%20IFAC%20World%20Congress,%20IFAC%202014.%20Proceedings
Files in this item
Publication type
-
Conference Paper [33128]