Show simple item record

dc.contributor.author
Schillings, Claudia
dc.contributor.author
Schwab, Christoph
dc.date.accessioned
2017-11-02T11:07:01Z
dc.date.available
2017-06-11T14:43:39Z
dc.date.available
2017-11-02T11:07:01Z
dc.date.issued
2014-10
dc.identifier.uri
http://hdl.handle.net/20.500.11850/94632
dc.identifier.doi
10.3929/ethz-a-010386179
dc.description.abstract
Computational Bayesian inversion of operator equations with distributed uncertain input parameters is based on an infinite-dimensional version of Bayes’ formula established in [31] and its numerical realization in [27, 28]. Based on the sparsity of the posterior density shown in [29], dimensionadaptive Smolyak quadratures afford higher convergence rates than MCMC in terms of the number M of solutions of the forward (parametric operator) equation [27, 28]. The error bounds and convergence rates obtained in [27, 28] are independent of the parameter dimension (in particular free from the curse of dimensionality) but depend on the (co)variance G > 0 of the additive, Gaussian observation noise as exp(bG−1) for some constant b > 0. It is proved that the Bayesian estimates admit asymptotic expansions as G ↓ 0. Sufficient (nondegeneracy) conditions for the existence of finite limits as G ↓ 0 are presented. For Gaussian priors, these limits are related to MAP estimators obtained from Tikhonov regularized least-squares functionals. Non-intrusive identification of concentration points and curvature information of the posterior density at these points by Quasi-Newton (QN) minimization of the Bayesian potential with SR1 updates from [7,14] is proposed. Two Bayesian estimation algorithms with robust in G performance are developed: first, dimension-adaptive Smolyak quadrature from [27, 28] combined with a novel, curvature-based reparametrization of the parametric Bayesian posterior density near the (assumed unique) global maximum of the posterior density and, second, extrapolation to the limit of vanishing observation noise variance. For either approach, we prove convergence with rates independent of the number of parameters as well as of the observation noise variance G. The generalized Richardson extrapolation to the limit G ↓ 0 due to A. Sidi [30] is justified by establishing asymptotic expansions wr. to G ↓ 0 of the Bayesian estimates. Numerical experiments are presented which indicate a performance independent of G on the curvature-rescaled, adaptive Smolyak algorithm.
en_US
dc.format
application/pdf
dc.language.iso
en
en_US
dc.publisher
ETH-Zürich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
BOUNDARY VALUE PROBLEMS FOR PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER (NUMERICAL MATHEMATICS)
en_US
dc.subject
INVERSE PROBLEME BEI PARTIELLEN DIFFERENTIALGLEICHUNGEN (ANALYSIS)
en_US
dc.subject
INVERSE PROBLEMS FOR PARTIAL DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS)
en_US
dc.subject
LINEARE OPERATOREN UND OPERATORENGLEICHUNGEN (FUNKTIONALANALYSIS)
en_US
dc.subject
LINEAR OPERATORS AND OPERATOR EQUATIONS (FUNCTIONAL ANALYSIS)
en_US
dc.subject
RANDWERTPROBLEME BEI PARTIELLEN DIFFERENTIALGLEICHUNGEN HÖHERER ORDNUNG (NUMERISCHE MATHEMATIK)
en_US
dc.title
Scaling Limits in Computational Bayesian Inversion
en_US
dc.type
Report
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2015
ethz.journal.title
Research Report
ethz.journal.volume
2014-26
en_US
ethz.journal.issue
26
en_US
ethz.size
40 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::510 - Mathematics
en_US
ethz.grant
Automated Urban Parking and Driving
en_US
ethz.identifier.nebis
010386179
ethz.publication.place
Zürich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
en_US
ethz.grant.agreementno
247277
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
FP7
ethz.date.deposited
2017-06-11T14:43:50Z
ethz.source
ECOL
ethz.source
ECIT
ethz.identifier.importid
imp593652af5238330062
ethz.identifier.importid
imp59366b6ed12a511001
ethz.ecolpid
eth:47354
ethz.ecitpid
pub:148582
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-25T11:55:45Z
ethz.rosetta.lastUpdated
2021-02-14T19:55:57Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Scaling%20Limits%20in%20Computational%20Bayesian%20Inversion&rft.jtitle=Research%20Report&rft.date=2014-10&rft.volume=2014-26&rft.issue=26&rft.au=Schillings,%20Claudia&Schwab,%20Christoph&rft.genre=report&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record