Show simple item record

dc.contributor.author
Tagliabue, Giulia
dc.contributor.author
Eghlidi, Hadi
dc.contributor.author
Poulikakos, Dimos
dc.date.accessioned
2018-10-11T09:33:40Z
dc.date.available
2017-06-11T14:47:07Z
dc.date.available
2018-10-11T09:33:40Z
dc.date.issued
2014-11-24
dc.identifier.other
10.1038/srep07181
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/94719
dc.identifier.doi
10.3929/ethz-b-000094719
dc.description.abstract
Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their surface emissivity can be spectrally tuned to suppress infrared thermal radiation. These capabilities make plasmonic absorbers promising candidates for fast light-to-heat applications, such as radiation sensors. Here we investigate the light-to-heat conversion properties of a metal-insulator-metal broadband plasmonic absorber, fabricated as a free-standing membrane. Using a fast IR camera, we show that the transient response of the absorber has a characteristic time below 13 ms, nearly one order of magnitude lower than a similar membrane coated with a commercial black spray. Concurrently, despite the small thickness, due to the large absorption capability, the achieved absorbed light power-to-temperature sensitivity is maintained at the level of a standard black spray. Finally, we show that while black spray has emissivity similar to a black body, the plasmonic absorber features a very low infra-red emissivity of almost 0.16, demonstrating its capability as selective coating for applications with operating temperatures up to 400°C, above which the nano-structure starts to deform.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature Publishing Group
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Optical materials and structures
en_US
dc.subject
Materials for devices
en_US
dc.title
Rapid-Response Low Infrared Emission Broadband Ultrathin Plasmonic Light Absorber
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
ethz.journal.title
Scientific Reports
ethz.journal.volume
4
en_US
ethz.pages.start
7181
en_US
ethz.size
6 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.nebis
006751867
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02627 - Institut für Energietechnik / Institute of Energy Technology::03462 - Poulikakos, Dimos / Poulikakos, Dimos
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02627 - Institut für Energietechnik / Institute of Energy Technology::03462 - Poulikakos, Dimos / Poulikakos, Dimos
ethz.date.deposited
2017-06-11T14:47:23Z
ethz.source
ECIT
ethz.identifier.importid
imp593652b0a813133069
ethz.ecitpid
pub:148679
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-13T13:40:29Z
ethz.rosetta.lastUpdated
2019-01-02T14:25:53Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Rapid-Response%20Low%20Infrared%20Emission%20Broadband%20Ultrathin%20Plasmonic%20Light%20Absorber&rft.jtitle=Scientific%20Reports&rft.date=2014-11-24&rft.volume=4&rft.spage=7181&rft.au=Tagliabue,%20Giulia&Eghlidi,%20Hadi&Poulikakos,%20Dimos&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record