Zur Kurzanzeige

dc.contributor.author
Gillebert, Céline R.
dc.contributor.author
Humphreys, Glyn W.
dc.contributor.author
Mantini, Dante
dc.date.accessioned
2019-07-01T12:53:00Z
dc.date.available
2017-06-11T14:49:20Z
dc.date.available
2019-07-01T12:53:00Z
dc.date.issued
2014
dc.identifier.issn
2213-1582
dc.identifier.other
10.1016/j.nicl.2014.03.009
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/94821
dc.identifier.doi
10.3929/ethz-b-000094821
dc.description.abstract
Computed tomographic (CT) images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.subject
Stroke
en_US
dc.subject
Computerized tomography
en_US
dc.subject
Lesion segmentation
en_US
dc.subject
Medical imaging
en_US
dc.subject
Software tool
en_US
dc.title
Automated delineation of stroke lesions using brain CT images
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 3.0 Unported
dc.date.published
2014-03-21
ethz.journal.title
NeuroImage: Clinical
ethz.journal.volume
4
en_US
ethz.pages.start
540
en_US
ethz.pages.end
548
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.nebis
007621316
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::02535 - Institut für Bewegungswiss. und Sport / Institut of Human Movement Sc. and Sport::03963 - Wenderoth, Nicole / Wenderoth, Nicole
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::02535 - Institut für Bewegungswiss. und Sport / Institut of Human Movement Sc. and Sport::03963 - Wenderoth, Nicole / Wenderoth, Nicole
ethz.date.deposited
2017-06-11T14:49:34Z
ethz.source
ECIT
ethz.identifier.importid
imp593652b2bc61248693
ethz.ecitpid
pub:148921
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-19T12:52:05Z
ethz.rosetta.lastUpdated
2019-07-01T12:54:06Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Automated%20delineation%20of%20stroke%20lesions%20using%20brain%20CT%20images&rft.jtitle=NeuroImage:%20Clinical&rft.date=2014&rft.volume=4&rft.spage=540&rft.epage=548&rft.issn=2213-1582&rft.au=Gillebert,%20C%C3%A9line%20R.&Humphreys,%20Glyn%20W.&Mantini,%20Dante&rft.genre=article&rft_id=info:doi/10.1016/j.nicl.2014.03.009&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige