A scenario approach to non-convex control design: Preliminary probabilistic guarantees
dc.contributor.author
Grammatico, Sergio
dc.contributor.author
Zhang, Xiaojing
dc.contributor.author
Margellos, Kostas
dc.contributor.author
Goulart, Paul
dc.contributor.author
Lygeros, John
dc.date.accessioned
2022-03-10T11:49:08Z
dc.date.available
2017-06-11T14:56:15Z
dc.date.available
2019-07-03T12:32:54Z
dc.date.available
2022-03-10T11:49:08Z
dc.date.issued
2014
dc.identifier.isbn
978-1-4799-3275-7
en_US
dc.identifier.isbn
978-1-4799-3274-0
en_US
dc.identifier.isbn
978-1-4799-3272-6
en_US
dc.identifier.other
10.1109/ACC.2014.6859142
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/95066
dc.description.abstract
Randomized optimization is a recently established tool for control design with modulated robustness. While for uncertain convex programs there exist randomized approaches with efficient sampling, this is not the case for non-convex problems. Approaches based on statistical learning theory are applicable for a certain class of non-convex problems, but they usually are conservative in terms of performance and are computationally demanding. In this paper, we present a novel scenario approach for a wide class of random non-convex programs. We provide a sample complexity similar to the one for uncertain convex programs, but valid for all feasible solutions inside a set of a-priori chosen complexity. Our scenario approach applies to many non-convex control-design problems, for instance control synthesis based on uncertain bilinear matrix inequalities.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
A scenario approach to non-convex control design: Preliminary probabilistic guarantees
en_US
dc.type
Conference Paper
dc.date.published
2014-07-21
ethz.book.title
2014 American Control Conference
ethz.pages.start
3431
en_US
ethz.pages.end
3436
en_US
ethz.event
2014 American Control Conference (ACC 2014)
en_US
ethz.event.location
Portland, OR, USA
en_US
ethz.event.date
June 4-6, 2014
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::03751 - Lygeros, John / Lygeros, John
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02650 - Institut für Automatik / Automatic Control Laboratory::03751 - Lygeros, John / Lygeros, John
ethz.date.deposited
2017-06-11T14:56:53Z
ethz.source
ECIT
ethz.identifier.importid
imp593652b7a1d6422534
ethz.ecitpid
pub:149222
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2017-07-13T15:10:01Z
ethz.rosetta.lastUpdated
2024-02-02T16:30:17Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20scenario%20approach%20to%20non-convex%20control%20design:%20Preliminary%20probabilistic%20guarantees&rft.date=2014&rft.spage=3431&rft.epage=3436&rft.au=Grammatico,%20Sergio&Zhang,%20Xiaojing&Margellos,%20Kostas&Goulart,%20Paul&Lygeros,%20John&rft.isbn=978-1-4799-3275-7&978-1-4799-3274-0&978-1-4799-3272-6&rft.genre=proceeding&rft_id=info:doi/10.1109/ACC.2014.6859142&rft.btitle=2014%20American%20Control%20Conference
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35255]