Show simple item record

dc.contributor.author
Gutknecht, Martin
dc.date.accessioned
2022-08-04T09:09:50Z
dc.date.available
2017-06-11T15:11:51Z
dc.date.available
2022-08-04T09:09:50Z
dc.date.issued
2015-06
dc.identifier.issn
1017-1398
dc.identifier.issn
1572-9265
dc.identifier.other
10.1007/s11075-014-9906-0
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/95656
dc.identifier.doi
10.3929/ethz-b-000095656
dc.description.abstract
In the mid-1980s Parsons (SIAM J. Numer. Anal. 24, 188–198, 1987), and the author (Gutknecht, Numer. Math. 56, 179–213, 1989) independently had the idea to generalize linear stationary k-step methods to stationary (k, ℓ)-step methods, which were further generalized to nonstationary and even nonlinear (k, ℓ)-step methods. Later, conjugate-gradient-type methods that are (k, ℓ)-step methods of a similar sort were introduced and investigated in the PhD thesis of Barth (1996) under T. A. Manteuffel. Recently, the family of Induced Dimension Reduction (IDR) methods (Sonneveld and van Gijzen, SIAM J. Sci. Comp. 31, 1035–1062, 2008) aroused some interest for the class of linear nonstationary (k, ℓ)-step methods because IDR(s) fits into it and belongs to a somewhat special subclass; see Gutknecht (ETNA 36, 126–148, 2010). In this paper we first reformulate and review the class of nonlinear nonstationary (k, ℓ)-step methods and a basic theoretical result obtained in the author’s 1989 article. Then we specialize to linear methods and introduce alternative iterations that can be used to implement them and compare them with the iterations suggested and investigated by Barth and Manteuffel.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Iterative method
en_US
dc.subject
Linear equations
en_US
dc.subject
Nonlinear equations
en_US
dc.subject
Krylov subspace method
en_US
dc.subject
(k, ℓ)–step method
en_US
dc.subject
(s, t)–recursion
en_US
dc.subject
Semiiterative method
en_US
dc.title
Revisiting (k,l)-step methods
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2014-09-17
ethz.journal.title
Numerical Algorithms
ethz.journal.volume
69
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
Numer. Algorithms
ethz.pages.start
455
en_US
ethz.pages.end
469
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.notes
It was possible to publish this article open access thanks to a Swiss National Licence with the publisher.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.identifier.nebis
000588407
ethz.publication.place
Berlin
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03435 - Schwab, Christoph / Schwab, Christoph
ethz.date.deposited
2017-06-11T15:12:20Z
ethz.source
ECIT
ethz.identifier.importid
imp593652c36fa3687476
ethz.ecitpid
pub:150012
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-12T23:55:57Z
ethz.rosetta.lastUpdated
2023-02-07T05:03:09Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Revisiting%20(k,l)-step%20methods&rft.jtitle=Numerical%20Algorithms&rft.date=2015-06&rft.volume=69&rft.issue=2&rft.spage=455&rft.epage=469&rft.issn=1017-1398&1572-9265&rft.au=Gutknecht,%20Martin&rft.genre=article&rft_id=info:doi/10.1007/s11075-014-9906-0&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record