Show simple item record

dc.contributor.author
Mayr, Christian G.
dc.contributor.author
Partzsch, Johannes
dc.contributor.author
Noack, Marko
dc.contributor.author
Schüffny, Rene
dc.date.accessioned
2019-04-04T15:44:51Z
dc.date.available
2017-06-11T15:18:19Z
dc.date.available
2019-04-04T15:44:51Z
dc.date.issued
2014-07-22
dc.identifier.issn
1662-453X
dc.identifier.issn
1662-4548
dc.identifier.other
10.3389/fnins.2014.00201
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/96000
dc.identifier.doi
10.3929/ethz-b-000096000
dc.description.abstract
Efficient Analog-Digital Converters (ADC) are one of the mainstays of mixed-signal integrated circuit design. Besides the conventional ADCs used in mainstream ICs, there have been various attempts in the past to utilize neuromorphic networks to accomplish an efficient crossing between analog and digital domains, i.e., to build neurally inspired ADCs. Generally, these have suffered from the same problems as conventional ADCs, that is they require high-precision, handcrafted analog circuits and are thus not technology portable. In this paper, we present an ADC based on the Neural Engineering Framework (NEF). It carries out a large fraction of the overall ADC process in the digital domain, i.e., it is easily portable across technologies. The analog-digital conversion takes full advantage of the high degree of parallelism inherent in neuromorphic networks, making for a very scalable ADC. In addition, it has a number of features not commonly found in conventional ADCs, such as a runtime reconfigurability of the ADC sampling rate, resolution and transfer characteristic.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Frontiers Research Foundation
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
dc.subject
Neural network analog digital converter
en_US
dc.subject
Neural engineering framework
en_US
dc.subject
ADC with signal processing
en_US
dc.subject
Multiple input ADC
en_US
dc.title
Configurable analog-digital conversion using the neural engineering framework
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 3.0 Unported
ethz.journal.title
Frontiers in Neuroscience
ethz.journal.volume
8
en_US
ethz.journal.abbreviated
Front Neurosci
ethz.pages.start
201
en_US
ethz.size
16 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.nebis
009497874
ethz.publication.place
Lausanne
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
03453 - Douglas, Rodney J.
en_US
ethz.leitzahl.certified
03453 - Douglas, Rodney J.
ethz.date.deposited
2017-06-11T15:18:22Z
ethz.source
ECIT
ethz.identifier.importid
imp593652c9219fb58434
ethz.ecitpid
pub:150563
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-13T03:30:18Z
ethz.rosetta.lastUpdated
2019-04-04T15:45:00Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Configurable%20analog-digital%20conversion%20using%20the%20neural%20engineering%20framework&rft.jtitle=Frontiers%20in%20Neuroscience&rft.date=2014-07-22&rft.volume=8&rft.spage=201&rft.issn=1662-453X&1662-4548&rft.au=Mayr,%20Christian%20G.&Partzsch,%20Johannes&Noack,%20Marko&Sch%C3%BCffny,%20Rene&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record