$\alpha$-Molecules
dc.contributor.author
Grohs, Philipp
dc.contributor.author
Keiper, Sandra
dc.contributor.author
Kutyniok, Gitta
dc.contributor.author
Schaefer, Martin
dc.date.accessioned
2017-06-11T15:37:13Z
dc.date.available
2017-06-11T15:37:13Z
dc.date.issued
2014-07
dc.identifier.uri
http://hdl.handle.net/20.500.11850/96699
dc.description.abstract
Within the area of applied harmonic analysis, various multiscale systems such as wavelets, ridgelets, curvelets, and shearlets have been introduced and successfully applied. The key property of each of those systems are their (optimal) approximation properties in terms of the decay of the L2-error of the best N-term approximation for a certain class of functions. In this paper, we introduce the general framework of α-molecules, which encompasses most multiscale systems from applied harmonic analysis, in particular, wavelets, ridgelets, curvelets, and shearlets as well as extensions of such with α being a parameter measuring the degree of anisotropy, as a means to allow a unified treatment of approximation results within this area. Based on an α-scaled index distance, we first prove that two systems of α-molecules are almost orthogonal. This leads to a general methodology to transfer approximation results within this framework, provided that certain consistency and time-frequency localization conditions of the involved systems of α-molecules are satisfied. We finally utilize these results to enable the derivation of optimal sparse approximation results for a specific class of cartoon- like functions by sufficient conditions on the ‘control’ parameters of a system of α-molecules.
dc.language.iso
en
dc.publisher
ETH Zürich
dc.subject
Anisotropic Scaling
dc.subject
Curvelets
dc.subject
Nonlinear Approximation
dc.subject
Ridgelets
dc.subject
Shearlets
dc.subject
Sparsity Equivalence
dc.subject
Wavelets
dc.title
$\alpha$-Molecules
dc.type
Report
ethz.journal.title
Research Report
ethz.journal.volume
2014-16
ethz.size
36 p.
ethz.publication.place
Zürich
ethz.publication.status
published
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich, direkt::00012 - Lehre und Forschung, direkt::00007 - Departemente, direkt::02000 - Departement Mathematik / Department of Mathematics::02501 - Seminar für Angewandte Mathematik (SAM) / Seminar for Applied Mathematics (SAM)::03941 - Grohs, Philipp (ehemalig)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich, direkt::00012 - Lehre und Forschung, direkt::00007 - Departemente, direkt::02000 - Departement Mathematik / Department of Mathematics::02501 - Seminar für Angewandte Mathematik (SAM) / Seminar for Applied Mathematics (SAM)::03941 - Grohs, Philipp (ehemalig)
ethz.identifier.url
http://www.sam.math.ethz.ch/sam_reports/reports_final/reports2014/2014-16.pdf
ethz.date.deposited
2017-06-11T15:37:50Z
ethz.source
ECIT
ethz.identifier.importid
imp593652d55edd643218
ethz.ecitpid
pub:151398
ethz.eth
yes
ethz.availability
Metadata only
ethz.rosetta.installDate
2017-07-13T17:58:53Z
ethz.rosetta.lastUpdated
2018-01-10T05:28:50Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=$%5Calpha$-Molecules&rft.jtitle=Research%20Report&rft.date=2014-07&rft.volume=2014-16&rft.au=Grohs,%20Philipp&Keiper,%20Sandra&Kutyniok,%20Gitta&Schaefer,%20Martin&rft.genre=report&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Report [6917]