Show simple item record

dc.contributor.author
Pavón, Maël
dc.date.accessioned
2017-06-11T15:53:11Z
dc.date.available
2017-06-11T15:53:11Z
dc.date.issued
2014-10-27
dc.identifier.uri
http://hdl.handle.net/20.500.11850/97433
dc.description.abstract
It was shown by Nachbin in 1950 that an n -dimensional normed space X is injective or equivalently is an absolute 1-Lipschitz retract if and only if X is linearly isometric to l n ∞ (i.e., R n endowed with the l ∞ -metric). We give an effective convex geometric characterization of injective convex polyhedra in l n ∞ . As an application, we prove that if the set of solutions to a linear system of inequalities with at most two variables per inequality is non-empty, then it is injective when endowed with the l ∞ -metric.
dc.language.iso
en
dc.publisher
Cornell University
dc.title
Injective Convex Polyhedra
dc.type
Working Paper
ethz.journal.title
arXiv
ethz.pages.start
arXiv:1410.7306
ethz.size
24 p.
ethz.notes
Submitted 27 October 2014.
ethz.publication.place
Ithaca, NY
ethz.publication.status
published
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03500 - Lang, Urs / Lang, Urs
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02003 - Mathematik Selbständige Professuren::03500 - Lang, Urs / Lang, Urs
ethz.identifier.url
http://arxiv.org/abs/1410.7306
ethz.date.deposited
2017-06-11T15:53:29Z
ethz.source
ECIT
ethz.identifier.importid
imp593652e17c60434680
ethz.ecitpid
pub:152384
ethz.eth
yes
ethz.availability
Metadata only
ethz.rosetta.installDate
2017-07-13T15:38:10Z
ethz.rosetta.lastUpdated
2018-11-02T18:13:08Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Injective%20Convex%20Polyhedra&rft.jtitle=arXiv&rft.date=2014-10-27&rft.spage=arXiv:1410.7306&rft.au=Pav%C3%B3n,%20Ma%C3%ABl&rft.genre=preprint&
 Search via SFX

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record