Show simple item record

dc.contributor.author
Bozyigit, Deniz
dc.contributor.author
Lin, Weyde
dc.contributor.author
Yazdani, Nuri
dc.contributor.author
Yarema, Olesya
dc.contributor.author
Wood, Vanessa
dc.date.accessioned
2018-09-12T09:34:26Z
dc.date.available
2017-06-11T16:26:25Z
dc.date.available
2018-09-12T09:34:26Z
dc.date.issued
2015
dc.identifier.other
10.1038/ncomms7180
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/98798
dc.identifier.doi
10.3929/ethz-b-000098798
dc.description.abstract
Improving devices incorporating solution-processed nanocrystal-based semiconductors requires a better understanding of charge transport in these complex, inorganic–organic materials. Here we perform a systematic study on PbS nanocrystal-based diodes using temperature-dependent current–voltage characterization and thermal admittance spectroscopy to develop a model for charge transport that is applicable to different nanocrystal-solids and device architectures. Our analysis confirms that charge transport occurs in states that derive from the quantum-confined electronic levels of the individual nanocrystals and is governed by diffusion-controlled trap-assisted recombination. The current is limited not by the Schottky effect, but by Fermi-level pinning because of trap states that is independent of the electrode–nanocrystal interface. Our model successfully explains the non-trivial trends in charge transport as a function of nanocrystal size and the origins of the trade-offs facing the optimization of nanocrystal-based solar cells. We use the insights from our charge transport model to formulate design guidelines for engineering higher-performance nanocrystal-based devices.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature Publishing Group
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
A quantitative model for charge carrier transport, trapping and recombination in nanocrystal-based solar cells
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2015-01-27
ethz.journal.title
Nature Communications
ethz.journal.volume
6
en_US
ethz.pages.start
6180
en_US
ethz.size
10 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.identifier.nebis
007044158
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02634 - Institut für Elektronik / Institute for Electronics::03895 - Wood, Vanessa / Wood, Vanessa
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02634 - Institut für Elektronik / Institute for Electronics::03895 - Wood, Vanessa / Wood, Vanessa
ethz.date.deposited
2017-06-11T16:26:42Z
ethz.source
ECIT
ethz.identifier.importid
imp593652fc350f777335
ethz.ecitpid
pub:154587
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-12T21:50:28Z
ethz.rosetta.lastUpdated
2019-02-03T07:53:35Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20quantitative%20model%20for%20charge%20carrier%20transport,%20trapping%20and%20recombination%20in%20nanocrystal-based%20solar%20cells&rft.jtitle=Nature%20Communications&rft.date=2015&rft.volume=6&rft.spage=6180&rft.au=Bozyigit,%20Deniz&Lin,%20Weyde&Yazdani,%20Nuri&Yarema,%20Olesya&Wood,%20Vanessa&rft.genre=article&
 Search via SFX

Files in this item

Thumbnail

Publication type

Show simple item record