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Abstract

Pathway reconstruction has proven to be an indispensable tool for analyzing the underlying
molecular mechanisms of a cell. Nested effects models (NEMs) are a class of probabilistic
graphical models, that have been designed to reconstruct pathways from high dimensional
observations resulting from RNA interference (RNAi) experiments. NEMs assume that the
short-interfering RNAs (siRNAs) designed to knockdown specific genes are always on-target.
However, in reality most siRNAs exhibit strong off-target effects which further confound the
RNAi screen data, thus resulting in inaccurate reconstruction of networks by NEMs. Here,
we used an extension of NEMs called combinatorial nested effects models (c-NEMs) which
capitalize on the ancillary siRNA off-target effects information for network reconstruction
from combinatorial gene knockdown data. We investigated and delineated the possible
siRNA off-target effects that favored feasible inference of three and four node networks
using c-NEMs and further evaluated the identifiability of c-NEMs. An extensive simulation
study examining the performance of network inference as a function of the number of effects
and the number of off-targeted genes (per siRNA) demonstrated that c-NEMs improves the
inference of networks over NEMs by utilizing the supplementary siRNA off-target effects
information. Validation by reconstructing an eight node network from Bartonella henselae
infection RNAi screen data showed a 15.06% improvement in performance by c-NEMs.
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1Motivation and Problem
Statement

Discerning the relations among different genes provides an in-depth insight of the underlying
biological mechanisms and processes. In particular, understanding the connections between
the different components of biological pathways involved in diseases enables to identify
possible drug targets [1]. Observations from experimental perturbations of different genes
have shown to provide information about the roles and dependencies between them [2].
RNA interference (RNAi) screening is one such extensively used experimental technique for
observing effects of active perturbations in biological systems [1, 3].

Since the discovery of controlling the flow of genetic information through RNAi by Nobel
laureates Andrew Z. Fire and Craig C. Mello, perturbation experiments using RNAi have
become increasingly popular. In RNAi screens, cell lines are transfected with small interfering
RNAs (siRNAs). These siRNAs along with a protein complex called RNA induced silencing
complex (RISC) bind to the targeted messenger RNA (mRNA), with matching complementary
sequence to the siRNA. The RISC cleaves the mRNA preventing the translation of the mRNA.
Thus, this entire process results in very low or no yield of the gene product [4]. The main
advantage of RNAi screens is that they provide high-dimensional data and can be performed
in large-scale.

Given a pathway, perturbing a single downstream gene will only affect a subset of the
phenotype obtained by blocking the complete pathway. Thus, RNAi screens data encode a
hierarchy in the observed perturbation effects which enable the inference of the relations
between different perturbed genes. One established and well characterized computational
framework for inferring networks from high-dimensional RNAi screens data are the nested
effects models (NEMs) [3]. NEMs are a class of probabilistic graphical models that aim
to infer the connectivity between different perturbed genes using the nested structure of
observed effects [5]. NEMs assume each perturbation experiments to be on-target. However,
in reality siRNAs knockdown multiple genes resulting in combinatorial gene knockdowns [6,
7]. This makes the interpretation of RNAi screens more complex i.e. the effects observed
are a combination of multiple knockdowns. Since NEMs assume the siRNAs to be specific, it
may result in inaccurate inference of networks from combinatorial gene knockdown data.

In this thesis, we postulated that by using the ancillary combinatorial gene knockdown
information, we can improve the overall network inference. In order to analyse this, we
used an extension of NEMs called combinatorial nested effects models (c-NEMs) to infer
the underlying network structures [8]. Originally, c-NEMs were designed to infer networks
from genome wide expression data (effects) where the genes constituting the networks were
subject to combinatorial mutations (perturbations) [8].
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Our goal was to study the extent of predicted siRNA off-target effects, capitalize on this
supplementary combinatorial gene knockdown information for network reconstruction
using c-NEMs and evaluate the performance. Further, we aimed to analyse the feasibility
of network inference using c-NEMs for different networks and different combinatorial
perturbation schemes. In particular, we were interested in understanding the conditions
on the network structure and combinatorial perturbations that would enable us to infer
the network correctly. Finally, we aimed to apply c-NEMs to reconstruct network from
experimental data and compare the inferred network to the network provided in KEGG
[9].

2 Chapter 1 Motivation and Problem Statement



2Introduction to combinatorial
Nested Effects Models

„All models are wrong, but some are useful.

— George E. P. Box

This chapter focuses on introducing nested effects models (NEMs) and its extension, com-
binatorial nested effects models (c-NEMs). NEMs have been designed to learn the flow of
signals from high dimensional perturbation data. However, NEMs assume that the interven-
tions performed are specific. Thus, we introduce its extension c-NEMs which can handle
non-specific combinatorial perturbations.

2.1 Nested effects models (NEMs)

Nested effects models (NEMs) are probabilistic graphical models used to model the effects
of gene perturbations using high-dimensional phenotypes like expression profiles or cell
morphology. The main idea of NEMs is to infer the relationship between a set of perturbed
genes using the subset relationships between observed phenotypes. This inferred structure
inturn helps to understand the flow of signals within a cell. Thus, NEMs have a wide range
of applications in the field of medicine, molecular biology and systems biology [10].

2.1.1 Formal definition

The NEMs framework consists of two types of genes: the perturbed (or silenced) genes
called signalling genes (S-genes) and the downstream measurable entities called effects
genes (E-genes). Let E be a set of m E-genes and S be a set of n S-genes. Let K be a set
of K knockdown experiments. Knocking down a specific S-gene Sk obstructs the signal
flow in the downstream pathway, and hence an effect on the E-genes attached to Sk or its
downstream genes is expected. This results in a nested structure of effects which can be
used to reconstruct the original signal graph.

Formally, the relations between the different S-genes is given by a binary n× n adjacency
matrix Φ (signal graph), with Φij = 1 whenever S-gene i is upstream of S-gene j for all
{i, j} ∈ S. The linking of E-genes to S-genes is formally represented by a n ×m binary
matrix θ (effects graph), with θes = 1 indicating a connection between E-gene e ∈ E and
S-gene s ∈ S (Fig. 2.1). Given Φ and θ, NEMs ascertain that perturbing S-gene s ∈ S
leads to an observable downstream effect for E-gene e ∈ E , if there is a path from s to e i.e

3



∃s′ ∈ S, | Φss′ = 1 and θse = 1. Thus, mathematically a static NEM (F) can be represented
as the cross product of the Φ and θ.

F = Φ× θ (2.1)

Fig. 2.1: A schematic summary of NEMs: A NEM is parametrized by the signal graph
(Φ) encoding the relations between signalling genes (S-genes in blue), together
with a directed graph attaching each effects gene (E-gene) to a S-gene given by
the effects graph (θ). The data is comprised of observable effects (E1-E6) for
different perturbation experiments (K1-K3). In experiment K1, perturbation of
S-gene S1 affects the downstream signaling genes (S2 and S3), and hence effects
associated with S1, S2 and S3 are observed (black shading). Using the subset
relations of effects in the data from different knockdown experiments NEMs infer
the hierarchical architecture of the signal graph and the associations between
effects and the signalling genes.

2.1.2 Structure inference

The NEMs package [10] implements several algorithms to infer the pathway structure from
the data. Two algorithms relevant to this thesis are the exhaustive search and the greedy
algorithm. The former method exhaustively searches the space of all feasible models and
returns the model with the highest likelihood. This algorithm is computationally inefficient
for larger networks as the search space increases exponentially with number of S-genes. The
greedy algorithm starts with an initial network and successively adds (or removes) edges
until the maximum likelihood is reached. A detailed description of the likelihood of NEMs
which forms the basis for structure inference with these algorithms is described in the next
section.

4 Chapter 2 Introduction to combinatorial Nested Effects Models



2.1.3 Likelihood estimation

In each experiment, a single S-gene is perturbed and the effects are recorded. The results of
all the perturbation experiments are stored in a m ×K data matrix D. Each entry in the
matrix D, Dek denotes the effect e for experiment k ∈ K.

Formally, the complete likelihood is defined as [2]

P (D | Φ, θ) =
∏
e∈E

∏
k∈K

P (Dek | e = Fke)

=
∏
e∈E

∏
k∈K

P (Dek | Φ, θe)
(2.2)

To compute it, the following assumptions were made:

1. The observations in D are sampled independently and distributed identically.

2. Position of each E-gene is independent of other E-genes.

3. The prior probability of the E-genes to be attached to the S-genes is uniform.

However, since the effects graph is unknown, the position of edges between S-genes and
E-genes are interpreted as nuisance parameters, and averaged over to obtain a marginal
likelihood [2]. Thus, the observed (marginal) likelihood is defined as

P (D | Φ) =
∏
e∈E

∑
s∈S

∏
k∈K

P (Dek | Φ, θes)P (θes) (2.3)

Here, θes refers to effect e linked to S-gene s.

Now, given the NEM F and a null model N predicting no effects, we can define the likelihood
ratio as

log
P (D | F )
P (D | N) =

∑
e∈E

∑
k∈K

log
P (Dek | e = Fke)
P (Dek | e = 0)

=
∑
e∈E

∑
k∈K

Rek if Fke = 1

0 if Fke = 0
=
∑
e∈E

∑
k∈K

FkeRek

=
∑
k∈K

(FR)kk

= trace(FR)

L(F ) = trace(FR) + const

(2.4)

Here, R is a m×K measured effect matrix where each entry Rek = log P (Dek|e=1)
P (Dek|e=0) > 0 if the

data favours an effect of k on e. L(F ) = logP (D | F ) is the log-likelihood of the data and
const corresponds to logP (D | N) [11].

2.1 Nested effects models (NEMs) 5



Likelihood of discrete data

Each entry of the data matrix Dek is modelled as binary random variables. The probability
to observe data Dek given Fke depends on the false-positive (α) and false negative (β) rates
(Tab. 2.1).

Tab. 2.1: Conditional probability of observing data Dek given predicted observation
of effect e in experiment k by the model (Fke): If the parent of effect e is not in
the perturbed set of genes in experiment k, the probability of observing Dek = 1
is α (type-I error). If the parent of effect e belongs to the set of perturbed set
of genes in experiment k, the probability of observing observing Dek = 0 is β
(type-II error). Subsequently, 1− α and 1− β describe the true negative and true
positive probabilities respectively.

Dek = 0 Dek = 1
1− α

True negative
α

False positive Fke = 0

β
False negative

1− β
True positive Fke = 1

Let nij be the number of times we observed E-genes in state i when their parent S-gene in
Φ was in state j, then the likelihood is

P (D | F ) =
∏
e∈E

∏
k∈K

P (Dek | e = Fke)

= αn01(1− α)n00βn10(1− β)n11

(2.5)

Likelihood of continuous data

In continuous data, each entry Dek is modelled as a continuous random variable. The
data D is a matrix of (raw) P-values, which specify the likelihood of observing an effect e
after knock-down of S-gene s. They are assumed to be drawn from a mixture of uniform
distribution representing the null hypothesis and another distribution f1 reflecting alternative
hypothesis. Further, for the alternative hypothesis, smaller P-values have a high density
and decreases drastically for increasing P-values, similar to a beta distribution. Thus, the
likelihood P (Dek|Φ, θe) is

P (Dek|Φ, θe) =

f1(Dek) if Fke = 1

1 if Fke = 0
(2.6)

where f1(Dek) is modelled as a three component Uniform-Beta mixture Model [12].

2.2 Combinatorial nested effects models (c-NEMs)

So far NEMs assumed that the siRNAs designed to knockdown genes, are specific to the
target gene. However, as described earlier (Sec. 1) they exhibit strong off-target effects,
which makes the interpretation of RNAi screens difficult and could hinder their use for
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network reconstruction. Thus, we use an extension of the NEMs called combinatorial nested
effects models (c-NEMs) [8], which can handle combinatorial perturbations (combination of
signalling genes knocked down in each experiment) from the siRNA off-targets.

2.2.1 Formal definition

As defined earlier for NEMs, consider the set of m E-genes (E), set of n S-genes (S) and
a set of K experiments (K) which include both singular and combinatorial perturbations.
LetM be the K × n knockout map which describes the set of S-genes perturbed in each
experiment.

Fig. 2.2: A schematic summary of c-NEMs: Given the knockout map M, a c-NEM is
parametrized by a signal graph (Φ) encoding the relations between signalling
genes (S-genes in blue), together with a directed graph attaching each effects gene
(E-gene) to a S-gene given by effects graph (θ). Each node has two biological
replicates (different siRNA designed to knockdown the same gene) where Kx.y is
the yth replicate for siRNA x. The data represents the observable effects (E1-E6)
for different perturbation experiments. In experiment K2.1, the siRNA designed to
knockdown S-gene S2 is specific and consequently effects associated with S2 and
its downstream gene S3 are observed (black shading). However, in experiment
K2.2, the siRNA designed to knockdown S2 also perturbs S1 and hence, the
effects associated with all three genes are observed. Thus, using the combinatorial
perturbation information encoded inM, c-NEMs allow to infer the hierarchical
architecture of the signal graph and the associations between effects and the
signalling genes.

2.2 Combinatorial nested effects models (c-NEMs) 7



The model can now be defined as [8]:

F ∗ = f(M× Φ)× θ
= Φ∗ × θ

(2.7)

where

f(x) =

1 x>0

0 x=0

and Φ∗ is a K × n propagation matrix which is the product of the knockout map (M)
and the signal graph (Φ). It describes the propagation of perturbations performed in each
experiment along the network. The model F ∗ is a K ×m matrix where each entry F ∗ke is
defined as [8]:

F ∗ke =

1 Effect e ∈ E is observed in experiment k ∈ K when s ∈ S are perturbed

0 otherwise
(2.8)

2.2.2 Likelihood estimation

As described in Sec. 2.1.2, c-NEMs also follow similar algorithms for structure inference. Let
D be the m×K data matrix with each entry Dek denoting the observation of an effect e ∈ E
for an experiment k ∈ K. The likelihood for the c-NEM is [8]

P (D | F ∗) =
∏
e∈E

∏
k∈K

P (Dek | e = F ∗ke)

=
∏
e∈E

∏
k∈K

P (Dek | Φ∗, θe)
(2.9)

Similar to the standard NEM the marginal likelihood for c-NEM is given by

P (D | Φ∗) =
∏
e∈E

∑
s∈S

∏
k∈K

P (Dek | Φ∗, θes)P (θes) (2.10)

As described for NEM given c-NEM F ∗ and a null-model N , we can define the likelihood
ratio as

log
P (D | F ∗)
P (D | N) =

∑
e∈E

∑
k∈K

log
P (Dek | e = F ∗ke)
P (Dek | e = 0)

=
∑
e∈E

∑
k∈K

Rek if F ∗ke = 1

0 if F ∗ke = 0
=
∑
e∈E

∑
k∈K

F ∗keRek

=
∑
k∈K

(F ∗R)kk

= trace(F ∗R)

L(F ∗) = trace(FR) + const

= trace(f(MΦ)θR) + const

(2.11)
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For specific knockouts, the knockout mapM is equivalent to an identity matrix and therefore
the log likelihood is the same as for NEM.

L(F ∗) = trace(f(MΦ)θR) + const

For specific knockoutsM = I

= trace(ΦθR) + const

= L(F )

(2.12)

2.2 Combinatorial nested effects models (c-NEMs) 9



3Implications of combinatorial gene
knockdowns for network inference

„Thoughts without content are empty, intuitions
without concepts are blind.

— Immanuel Kant
German Philosopher

This chapter focuses on exploring and understanding the knockout map space for inferring
networks with c-NEMs efficiently. This is further important to understand the identifiability
of c-NEMs.

3.1 Combinatorial simulation approach
To discern the conditions on knockout maps for network inference using c-NEMs, we
performed a combinatorial simulation study. The study involved extensive analysis of
network inference for all possible knockout maps and networks with three and four signalling
genes respectively.

3.1.1 Definition of the knockout map space

We first simulated the set of all possible transitively closed n node networks, G. We chose
only the unique, connected networks from G for inference. Subsequently, we generated the
set of all possible knockout maps K̂. The number of knockout maps for a n node network
with r experiments per gene is:

Nr =
(
r + x− 1

r

)n

where

x = 2n−1

For example, given n = 3, the number of knockout maps with one siRNA per gene N1 = 64
and with four siRNAs per gene N4 = 42, 875.

NEMs treat biological replicates (different siRNA designed to knockout the same gene) as
technical replicates (same experiment repeated several times). As a result, the off-target
effects in the data are treated as noise and this further complicates the comparison between
the two models. Thus, we restricted the downstream analysis to N1.
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3.1.2 Feasible knockout maps for inferring three and four node
networks

In this thesis, we define feasible knockout maps as knockout maps with off-target hits that
enable correct inference of the network by c-NEMs with a unique maximum likelihood. In
order to get a better understanding of the conditions on the knockout map we performed
the following simulation study.

First, we generated all possible (five) unique and connected networks with three signalling
genes ∈ G (Fig. 3.1)1. Subsequently, we generated 64 knockout maps (N1) with a single
siRNA per gene. We used a single randomly generated effects graph with 180 phenotypic
effects, for all networks with a uniform prior probability. We assigned 10% of the effects
as uninformative effects (effects that are not associated with any of the S-genes). Having
defined the networks, the knockout maps and the effects graph we simulated binary data
without noise from the c-NEMs framework. Given the data and the knockout map, we
learned the network with c-NEMs using an inference algorithm which performs exhaustive
search over all possible structures, treating the data to be devoid of noise. For NEMs we
used the same parameters without the knockout map.

In order to assess the performance, we calculated the area under the ROC curve (AUC) based
on the edges of the inferred network. For the ROC curve, true positive rate was determined
by correctly inferred edges and false positive rate by incorrectly inferred edges (spurious
edges). Further, to ensure that we analysed only those combinations of knockout maps and
networks for which each model uniquely inferred the original network correctly, we filtered
the results based on combinations with a unique maximum likelihood when inferred using
c-NEMs or NEMs. For the entries with unique maximum likelihood when inferred using
NEMs we further chose only those entries with an AUC of 1 for networks inferred using
NEMs. For entries with unique maximum likelihood when inferred using c-NEMs we did not
have to perform this additional filtering step since all the entries had an AUC of 1.

Fig. 3.1: Set of transitively closed three node networks: Five unique and connected
three node networks with uni- and bi-directional edges.

1Since, the search space includes both cyclic and acyclic DAGs we decided to include cyclic networks
in G.

3.1 Combinatorial simulation approach 11



Out of the five networks, only one network (first network in Fig. 3.1) had feasible knockout
maps (see Tab. 3.1). The feasible knockout map for this network had three experiments
(K1-K3) designed to knock down S-genes S1-S3 respectively. Experiments (or siRNA) K1
and K2 were on-target and silenced genes S1 and S2 respectively. However, experiment k3
exhibited off-target effects by simultaneously knocking down (S3 and S1) or (S3 and S2) or
(S3 and S1 and S2). Formally this is summarized as S3 ∧

({S1,S2}
x

)
x=(1∨2).

Similarly for four signalling genes, we generated all possible (20), unique, connected
networks ∈ G (Fig. 3.2). Subsequently we generated 4096 knockout maps ∈ K̂ with single
siRNA per gene. The analysis was repeated as described for three node networks.

Fig. 3.2: Set of transitively closed four node networks: Twenty unique and connected
four node networks with uni- and bi-directional edges between the nodes.

Out of the 20 networks, eight networks had a total of 78 viable knockout maps with off-
target perturbations (see Tab. 3.1) for which they could be inferred with a unique maximum
likelihood using c-NEMs.

In the context of both three and four networks, data generated from knockout maps with
only downstream genes as off-targets, were the only cases for which the networks were
correctly inferred (AUC 1) by NEMs with a unique maximum likelihood. This is because,
downstream off-target hits resulted in the same observations as purely on-target siRNAs.
Since, NEMs assume all siRNAs to be on-target, the correct network is inferred (Fig. 3.3).
However, in such cases c-NEMs almost always fail to infer the network as it can find a simpler
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model with lesser number of edges having the same likelihood as the true model (see Sec.
3.2).

Fig. 3.3: Experiments with downstream off-targets resulting in the same observations
as on-target experiments: (a). In experiment K1, S1 is the on-target hit while
S2 and S3 are the off-target hits. Similarly K2 is designed to silence S2 but has
an off-target hit on S3; K3 is designed to knockout S3 and has no off-targets. (b).
Knockout map with only on-target hits.
Both these knockout maps when acting on the same network reproduce the same
set of observations.

Tab. 3.1: Feasible knockout maps with off-target hits for three and four node net-
works: The list consists of one three node network and eight four node networks
and the corresponding viable knockout maps with off-target perturbations for
which c-NEMs inferred the networks with a unique maximum likelihood. ki
represents experiment designed to knockdown the corresponding ith S-gene (Si).
The combinatorial perturbations are defined formally using notations ∨ (or) and
∧ (and). For instance S3 ∧

({S1,S2}
x

)
x=(1∨2) expands to (S3 and S1) or (S3 and

S2) or (S3 and S1 and S2).

Networks Feasible knockout maps

•

K1: S1
K2: S2
K3: S3 ∧

({S1,S2}
x

)
x=(1∨2)

•

K1: S1
K2: S2
K3: S3
K4: S4 ∧

({S1,S2,S3}
x

)
x=(1∨2∨3)

3.1 Combinatorial simulation approach 13



•

K1: S1
K2: S2
K3: S3
K4: S4 ∧

({S1,S2,S3}
x

)
x=(1∨2∨3)

•

K1: S1
K2: S2 ∧ S3
K3: S3
K4: S4 ∧ S1 ∧ S2

•

K1: S1
K2: S2 ∧ S1
K3: S3
K4: S4 ∧ S2 ∧ S3

•

K1: S1
K2: S2 ∧ S4
K3: S3
K4: S4 ∧

({S1,S3}
x

)
x=(1∨2)

•

K1: S1
K2: S2 ∧

({S1,S3}
x

)
x=(1∨2)

K3: S3
K4: S4 ∧ S2

•

K1: S1
K2: S2
K3: S3
K4: S4 ∧

({S1,S2,S3}
x

)
x=(1∨2∨3)

•

K1: S1 ∧ S3
K2: S2
K3: S3
K4: S4 ∧ S1

•

K1: S1
K2: S2 ∧ S3
K3: S3
K4: S4 ∧ S2

•

K1: S1 ∧ S3
K2: S2
K3: S3
K4: S4 ∧ S1 ∧ S2

•

K1: S1
K2: S2 ∧ S3
K3: S3
K4: S4

•

K1: S1
K2: S2
K3: S3
K4: S4 ∧ S3
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•

K1: S1
K2: S2
K3: S3 ∧

({S1,S2,S4}
x

)
x=(1∨2∨3)

K4: S4

•

K1: S1
K2: S2 ∧ S1
K3: (S3)∨(S3∧

({S1,S2,S4}
1

)
)∨(S3∧

S1 ∧
({S2,S4}

x

)
x=(1∨2))

K4: S4

•

K1: S1
K2: S2
K3: (S3)∨(S3∧

({S1,S2,S4}
1

)
)∨(S3∧

S1 ∧
({S2,S4}

x

)
x=(1∨2))

K4: S4 ∧ S1

•

K1: S1
K2: S2 ∧ S1 ∧ S3
K3: (S3) ∨ (S3 ∧ S1)
K4: S4

•

K1: S1
K2: S2
K3: (S3) ∨ (S3 ∧ S1)
K4: S4 ∧ S1 ∧ S3

•

K1: S1
K2: S2 ∧

({S1,S3,S4}
x

)
x=(1∨2∨3)

K3: S3
K4: S4

•
K1: S1 ∧

({S3,S4}
x

)
x=(1∨2)

K2: S2 ∧ S1
K3: S3
K4: S4

•

K1: S1 ∧ S2
K2: S2 ∧

({S3,S4}
x

)
x=(1∨2)

K3: S3
K4: S4

•

K1: S1 ∧ (S3 ∨ S4)
K2: S2 ∧ S1 ∧ (S3 ∨ S4)
K3: S3
K4: S4

•

K1: (S1) ∨ (S1 ∧ S2)
K2: S2 ∧ S3
K3: S3
K4: S4
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•

K1: S1
K2: S2 ∧ S3
K3: S3 ∧ S4
K4: S4 ∧ S2

•

K1: S1
K2: S2 ∧ S4
K3: S3 ∧ S2
K4: S4 ∧ S3

In general, given a knockout mapM the ability (inability) to infer the network Φ correctly
using c-NEMs depends on the existence (non-existence) of unique maximum likelihood. This
in turn is governed by the existence (non-existence) of a unique f(MΦ) where

f(x) =

1 x>0

0 x=0
(3.1)

This is further illustrated using the following example.

3.2 Illustration of likelihood equivalence in c-NEMs

Fig. 3.4: Example of likelihood equivalence for two different networks for a defined
knockout map: Two different transitively closed networks Φ1 and Φ2 when
multiplied with the knockout map (M) and binarized by the step function result
in the same product.
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Intuitively, the product of the knockout map and network encodes the propagation of gene-
silencing for different experiments. The function f only eliminates the redundant sources of
silencing signals for each gene, stemming from off-target perturbations of siRNAs.

In Fig. 3.4, despite the productMΦ being unique for each network, the function f makes
the products equivalent resulting in equal likelihood for both networks. Hence, c-NEMs
fail to learn the network uniquely. In such cases, networks can be learnt if and only if the
knockout map has experiments without any off-target hits. More precisely, if the knockout
map has on-target siRNA for each signalling gene, then these experiments are represented
as an identity matrix and thus the product f(MΦ1) can be equal to f(MΦ2) if and only if
the networks are identical. Thus, given a knockout map with off-target effects, by virtue of
likelihood equivalence, c-NEMs can infer only some networks. This leads to the concept of
identifability which is discussed in detail in the next section.

3.3 Feasible knockout map for model identifiability

In statistics, a model is said to be identifiable if it is theoretically possible to learn the true
value of the parameters from infinite number of observations obtained from the model.
This is equivalent to saying that different values of the parameter must generate different
probability distributions of the observable variables. If two or more parameterizations are
observationally equivalent, then the model is said to be unidentifiable. However, in some
cases, despite the model being unidentifiable, the model is able to learn true values of a
certain subset of model parameters, in which case the model is partially identifiable.

Now, based on the definition of identifiability of a model, c-NEMs is identifiable only if for a
given knockout map all pairs of signal graphs and effects graphs map to unique likelihood
values. Formally, identifiability of c-NEMs can be defined as follows:

Let E be a set of m E-genes, S be a set of n S-genes and K be a set of n knockdown
experiments with one experiment per S-gene. Let D = {Dek | (e, k) ∈ (E × K)} constitute
the data and f be a function such that

f(x) =

1 x>0

0 x=0

Consider F ∗ to be a c-NEM with parameters Φ∗ and θ and F be a NEM with parameters Φ
and θ. Let Φ be a transitively closed acyclic signal graph with n nodes andM be a knockout
map with n experiments and θ be an effects graph with m effects. We know that formally
the c-NEM is

F ∗ = Φ∗θ

= f(MΦ)θ
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By definition of identifiability, F ∗ is identifiable if and only if

(Φ, θ) 7→ P (D | F ∗), is one-to-one

⇔

(Φ, θ) 7→ P (D | Φ∗, θ), is one-to-one

⇔

(Φ, θ) 7→ P (D | f(MΦ), θ), is one-to-one

Thus, F ∗ is identifiable if and only if all pairs of parameters (Φ, θ) correspond to distinct
likelihood values. However, from the results of our combinatorial study (Tab. 3.1), we
observed that no single knockout map with off-target effects enabled inference of all the
networks using c-NEMs. That is, for each knockout map with off-target effects, there existed
at least one pair of networks that had equal likelihoods. Thus, for knockout maps with one
biological replicate exhibiting off-target effects, c-NEMs is not identifiable. This is further
proven using the following theorem.

Theorem
If G =

{
Φ ∈ {0, 1}n×n : f(Φ2) = Φ

}
is a set of all transitively closed acyclic signal graphs

with n nodes, K̂ =
{
M∈ {0, 1}n×n :Mii = 1 for i = {1, ...n}

}
is a set of all knockout maps

with n knockdown experiments, T =
{
θ ∈ {0, 1}n×m :

n∑
i=1

θij = 1 for j = {1, ...m}
}

is a set

of effects graph with m effects and for each M ∈ K̂, PM : (G × T ) 7→ [0, 1] defined as
PM(Φ, θ) = P (D | f(MΦ), θ) then

∀M ∈ K̂\I , PM is not injective.

Proof
Consider anyM∈ K̂\I with at least one pair of indices i, j (i 6= j) such thatMi,j = 1. Let E
be a n× n matrix such that

Ei′j′ =

1 i’=i and j’=j

0 otherwise

Let Φ and Φ′ be a pair of acyclic signal graphs in G with Φ = I and Φ′ = I + E.

Multiplying both Φ and Φ′ withM and applying the function f

f(MΦ) = f(MΦ′) =M

Further, for any given θ ∈ T

P (D | f(MΦ), θ) = P (D | f(MΦ′), θ)

PM(Φ, θ) = PM(Φ′, θ)

Therefore, PM is not injective for anyM∈ K̂\I .

In the case ofM = I, for any given signal graph Φ ∈ G and θ ∈ T
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F ∗ = f(MΦ)θ = Φθ = F

Thus, c-NEMs reduces to regular NEMs and it has already been proven that the model F is
identifiable [11].

Since, the function PM is not injective for anyM∈ K̂\I , (Φ, θ) 7→ P (D | f(MΦ), θ) is not
one-to-one and subsequently F ∗ is not identifiable.

Despite c-NEMs being unidentifiable for knockout maps with one biological replicate exhibit-
ing off-target effects, based on the combinatorial simulation study, we know that they are
able to infer a subset of networks and hence are partially identifiable for some knockout
maps. It would be interesting to formally define this space of feasible knockout maps which
can further help us design perturbation experiments for pathway reconstruction.
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4Improved network inference with
c-NEMs from simulated data

„If we want to solve a problem that we have never
solved before, we must leave the door to the unknown
ajar.

— Richard P. Feynman
( Theoretical Physicist )

This chapter focuses on the assessment of performance of network inference using c-NEMs
and NEMs from simulated combinatorial gene knockdowns data. We originally performed
the study on simulated networks and knockout maps and then extended the study to KEGG
based networks and knockout maps based on experimental data.

4.1 Simulated knockout maps

In order to understand the effect of combinatorial knockouts we performed a simulation
study using simulated networks and knockout maps comparing the performances of c-NEMs
and NEMs as a function of (a) the number of phenotypic effects (features) and (b) the
number of biological replicates (different siRNA designed to knockout the same gene)
contributing to off-target effects.

To compare the two models as a function of phenotypic effects we generated 30 random
scale-free DAG network structures with 5 signaling genes and a random knockout map for
each network with four biological replicates per signalling gene. Out of the four biological
replicates we chose one of them to be on-target and the other three to exhibit off-target
effects (double or triple combinatorial perturbations). We used a single randomly generated
effects graph with m ∈ {10, 20, 30, 40, 50, 60, 100, 140, 180, 220, 260, 300} for all networks
such that the prior probability of the E-genes to be attached to the S-genes was uniform.
In each case, we appended new phenotypic effects to existing effects for the effects graph
and assigned 10% of the effects as uninformative effects. Binary data was generated from
each network structure (Φ), corresponding knockout map (M) and effects graph (θ) with
error rates αdata = 0.05 and βdata = 0.2, using the c-NEMs framework. Given the data and
the knockout map, we learned the network with c-NEMs using greedy inference algorithm
and default parameters (αinfer = 0.13 and βinfer = 0.05). To assess the robustness of the
learned networks, we repeated the inference on 1000 bootstrap samples of the data with a
threshold of 0.9. For NEMs we used the same parameters without the knockout map.

20



In order to assess the performance we calculated the area under the ROC curve (AUC) based
on the edge frequencies of the bootstrap samples. For the ROC curve, true positive rate
was determined by correctly inferred edges and false positive rate by incorrectly inferred
edges (spurious edges). The general trend suggested that as we increase the number of
effects, the performance improves (Fig. 4.1). Initially, for smaller number of effects (20-30
effects) both models performed poorly. From approximately 140 effects c-NEM consistently
performed better and it performed significantly better with at least 220 effects. To check the
significance of improved performance with c-NEMS we used Wilcoxon test with a confidence
level of 99%.

Fig. 4.1: Performance of c-NEMs and NEMs on simulated data from simulated net-
works and knockout maps with varying number of phenotypic effects: The
AUC (y-axis) measuring the performance of learning 30 different simulated five
node structures using c-NEM (blue) and NEM (green) with varying number of
effects (x-axis). The data was simulated using simulated knockout maps with
four biological replicates per S-gene with error rates αdata = 0.05 and βdata = 0.2.
The networks were inferred on 1000 bootstrap samples with threshold 0.9, using
greedy algorithm with parameters αinfer = 0.13 and βinfer = 0.05 and with
(without) the knockout map for c-NEMs (NEMs) respectively. Significance level:
*:p < 0.01

In order to compare the two models as a function of biological replicates contributing to
off-target effects we used the same 30 random DAG network structures with five signaling
genes. We used a single randomly generated effects graph with 300 phenotypic effects, for
all networks such that the prior probability of the E-genes to be attached to the S-genes
was uniform. We assigned 10% of the effects as uninformative effects. We generated a
knockout map for each network with number of biological replicates per S-gene contributing
to off-target effects k ∈ {0, 1, 2, 3, 5, 7}. In other words, we started with only specific siRNAs
and added new siRNAs per gene which exhibited off-target effects. The data generation and
inference was repeated as described in the simulation study to assess the performance as a
function of number of effects.
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Fig. 4.2: Performance of c-NEMs and NEMs on simulated data from simulated net-
works and knockout maps with varying number of siRNA contributing to
off-target effects: The AUC (y-axis) measuring the performance of learning 30
different five node structures using c-NEM (blue) and NEM (green) with different
number of biological replicates with off-target hits (x-axis). The data was simulated
with 300 effects attached uniformly to the S-genes and 30 uninformative effects
and error rates αdata = 0.05 and βdata = 0.2. The networks were inferred on 1000
bootstrap samples with threshold 0.9, using greedy algorithm with parameters
αinfer = 0.13 and βinfer = 0.05 and with (without) the knockout map for c-NEMs
(NEMs) respectively. Significance level: *:p < 0.01

We found that c-NEMs performed consistently with an AUC of 1 for all values of k (Fig. 4.2)
while NEMs performed well till k <= 2 (AUC=1) after which the performance dropped.
c-NEMs performed significantly better than NEMs with k > 2. This is because NEMs assume
each siRNA to be on-target and as a result the data appears to be increasingly noisy with
increasing off-target effects. Again, we used Wilcoxon test with a confidence level of 99% to
check the significance of improved performance with c-NEMS.

4.2 Knockout maps based on experimental data

In order to get closer to the true underlying distribution of networks and knockout maps
we extended the simulation study to biological networks and knockout maps based on
experimental data. Further, in contrast to the previous study, we used the same noise levels
for data generation and inference in this study. This step ensured that we did not introduce
bias in the study.
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4.2.1 Knockout maps extraction from siRNA off-target predictions

TargetScan [13] Version 6.2 was used to predict siRNA off-targets. We analysed the pre-
dicted siRNA-to-Gene target relations matrix with 91,003 siRNAs (rows) and 27,240 genes
(columns) [14] to understand the off-target distribution. Each entry in this matrix xij gives
the predicted knockout strength of siRNA i on gene j and is equal to 1− 2fij where fij is
the predicted log2 induced fold-change of gene j upon transfection with siRNA i [14].

Since, c-NEMs support only binary values (0,1) in the knockout maps, we had to binarize the
target relations matrix. For this purpose, we chose different values of knockdown strength
(Fig. 4.2) as threshold values τ ∈ {0, 0.0441, 0.12, 0.2}. Threshold value of 0.2 corresponds
to the knockout strength at the bottom of the distribution, 0.12 corresponds to knockout
strength at the half of the mode, 0.0441 corresponds to the knockout strength at the mode
of the distribution and 0 corresponds to the whole distribution respectively (Fig. 4.3). The
distributions of off-targets per siRNA are summarized in the Fig. 4.4. We observed that for
high threshold values i.e. τ = {0.12, 0.2} the distributions were skewed and led to loss of
considerable portion of off-target hits. Therefore, we ignored these two threshold values for
further analysis.

Fig. 4.3: Distribution of the predicted strength of knockdown across all 91,003 siRNAs
and 27,240 genes. Frequency (y-axis) of the predicted percentage strength
of knockdown of siRNAs (x-axis). The percentage strength of knockdown is
proportional to predicted log2 induced fold-change of genes upon transfection
with siRNA.
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Fig. 4.4: Distribution of predicted off-target hits by binarizing the target relations ma-
trix using four different threshold values: The predicted strength of knockdown
in the target relations matrix was binarized with four different threshold values
τ ∈ {0, 0.0441, 0.12, 0.2}. For each threshold the histogram represent the frequency
(y-axis) of predicted off-targets per siRNA (x-axis).

4.2.2 Network sampling from KEGG database

In order to exploit the siRNA off-target effects for network inference from combinatorial
knockdown data, we identified sub-networks from KEGG pathways [9] with corresponding
siRNAs exhibiting maximum off-target perturbations within the sub-network. For this, we
first ranked the pathways using a scoring function based on three main criteria:

• Maximize the number of experiments (siRNAs) which inturn would maximize the data

• Maximize the gene coverage with respect to siRNAs i.e choose genes which have been
transfected by large number of siRNAs

• Maximize the combinatorial knockdown in the network

In order to determine the score we first computed the weight per gene

wi = |si|
Ŝ

∑
j∈si

|gj |
Ĝ

(4.1)
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where, Ŝ is the number of siRNAs (91,003) and Ĝ is the number of genes (27,240) from the
target relations matrix, gj is the set of genes knocked out by siRNA j and si is the set of
siRNA knocking down gene i. The scoring function for each pathway Pk is given by

SPk
=
∑
i∈Pk

wi −
∑
i/∈Pk

wi (4.2)

It is the difference of weights of genes within the pathway and those outside the pathway. The
pathways were then ranked according to their scores and the "Metabolic pathways - Homo
sapiens" (hsa01100) was ranked one. However, since the pathway hsa01100 corresponds to
the whole metabolic pathway, sampling sub-networks from this would have been tedious.
Therefore, we chose the next best pathway - hsa05200 which was titled "Pathways in cancer".
Further, we observed that this was the best pathway regardless of the threshold value chosen
to binarize the target relations matrix.

Once we had the pathway with maximum number of off-target hits, we sampled 30 sub-
networks each consisting of 8 signalling genes from this pathway, using the random walk
algorithm as summarized in Fig. 4.5.

Fig. 4.5: Sampling pathways with high combinatorial knockdowns from the KEGG
database: Summarizes the selection of 30 networks with eight signalling genes
from KEGG for the simulation study.
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Once we had the networks and the corresponding knockout maps, we compared the off-
target distributions across these sub-networks with the off-target distributions across the
simulated networks in the initial simulation study (Fig. 4.6). Although the number of the
signalling genes were different between these two studies, we observed that overall we had
strongly over-estimated the off-target perturbations in the simulated knockout maps. Even
with τ = 0 we observed that the number of on-target perturbations were more frequent
and therefore contradicted our assumption of more off-target hits in the initial study. This
observation corroborated our rationale to extend the simulation study to real networks and
knockout maps.

Fig. 4.6: Off-target distributions across 30 simulated and siRNA off-target predictions
based knockout maps: Frequency (y-axis) of number of off-target perturbations
(x-axis) from 30 simulated knockout maps for the 30 simulated networks (left);
number of off-target perturbations for the 30 KEGG based networks derived from
binarized target relations matrix with threshold = 0.0441 (middle); number of
off-target perturbations for KEGG based networks derived from binarized target
relations matrix with threshold = 0 (right).

4.2.3 Performance assessment of c-NEMs and NEMs

As described in Sec. 4.2.2, we retrieved 30 networks with eight nodes and corresponding
knockout maps. The knockout map consisted of four biological replicates per signalling gene.
As described in the previous study we compared the performance of c-NEMs and NEMs as a
function of (a) the number of phenotypic effects (features) (b) number of off-target hits

To compare the two models as a function of number of phenotypic effects we used a
single randomly generated effects graph with m ∈ {16, 32, 48, 64, 120, 200, 240, 320} for all
networks such that the prior probability of the E-genes to be attached to the S-genes was
uniform. We appended new phenotypic effects to existing effects for the effects graph and
assigned 10% of the effects as uninformative effects i.e. effects that are not associated
with any of the S-genes. To compare the models as a function of biological replicates
contributing to off-target effects, we grouped experiments based on the number of off-target
hits, h ∈ {0, 1, 2, 3, 4, 5}. We used a single randomly generated effects graph with 300
phenotypic effects, for all networks such that the prior probability of the E-genes to be
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attached to the S-genes was uniform. We assigned 10% of the effects as uninformative
effects.

Since, NEMs model each experiment as an individual node and therefore cannot explicitly
handle biological replicates we used two different methods for inferring the networks using
NEMs:

1. Treating biological replicates as technical replicates (experiments repeated with same
siRNA knocking down same genes)1

2. Averaging the data across biological replicates (computing the mean over replicates)
followed by binarizing the average value with 0.5 as threshold

The data generation and inference was repeated as described in Sec. 4.1. However, we
changed the number of bootstrap samples to 250 and the noise parameters for inference to
αinfer = 0.05 and βinfer = 0.2 (the same noise parameters used for data generation).

It is important to note that the performance of both NEMs and c-NEMs are affected by the
variation in the number of replicates. This is because the likelihood estimator is proportional
to true and false positives and negatives. Imbalance in the number of replicates introduces
bias in the computation of the same. The asymmetry in the number of replicates per gene
is a result of grouping the siRNAs (experiments) based on the number of off-target effects.
To further illustrate this, consider a network with signalling genes S-gene ∈ {S1, ..., S8}
and four biological replicates per gene. Let genes S1, S3 and S8 have two siRNAs that are
on-target, one with one off-target and the other with two off-target hits. Let the remaining
genes have only on-target siRNAs. Since the experiments are grouped based on the number
of off-target effects, for simulations with zero off-target effects genes S1, S3 and S8 will
have the data only for two replicates while other genes will have data for all four replicates.
Similarly, for simulations with one off-target hit, genes S1, S3 and S8 will each have data for
three replicates while remaining genes will have data for all four replicates. This asymmetry
in the number of experiments per gene in turn biases the maximum likelihood estimator.
Only for simulations with experiments having two off-target hits, all genes will have data for
all four replicates.

The performance of the two models as a function of effects and off-target hits using knockout
maps derived at two different thresholds (τ = {0, 0.0441}) is summarized in Fig. 4.6. Each
facet in the panel describes the performance (AUC) of the two models for inferring networks
using a fixed number of effects and experiments with a fixed number of off-target hits. The
columns delineate the performances with increasing number of effects for experiments with
a fixed number of off-target perturbations while the rows depict the performances with
increasing off-target hits but for a fixed number of effects. The general trend of improvement
in performance with increasing number of effects was observed across all columns. Moving
along the rows, we noted that the performance started low even though it initiated with 0
off-target effects. This is because, we grouped the experiments based on number of off-target
hits as a result of which there was an imbalance in the number of experiments per gene
(skewed number of replicates per gene).

1method used for comparing NEM and c-NEM in the introductory simulation study
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The performance of c-NEMs improved initially and remained constant with increasing
number of experiments with off-target hits. Similarly, an initial improvement was observed
in the case of learning networks treating biological replicates as technical replicates with
NEMs but the performance dropped with further increase in off-target hits. The initial
improvement can be attributed to reduction in the asymmetry in the number of biological
replicates per gene by addition of experiments as we increase the number of off-target hits.
The drop in performance following the maxima could be attributed to off-target effects
that confound the inference for NEMs. However, the sample size of networks is very small
for simulations with siRNAs with four or five off-target hits and hence is insufficient to
corroborate this finding. In the case of networks learnt on binarized averaged data (method
2) using NEMs, the performance was better and similar to c-NEMs. This was by virtue of
averaging the off-target effects in the data which usually posed as noise for NEMs.

In general, the simulation studies suggested that using the supplementary information of
siRNA off-target effects encoded in the knockout map improves the network inference from
combinatorial gene knockdown data. Further, the results implied that the inference improves
with larger number of independent effects.

(a) Networks and knockout maps based on binarized target relations matrix with τ = 0.0441
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(b) Networks and knockout maps based on binarized target relations matrix with τ = 0

Fig. 4.6: Performance of c-NEMs and NEMs on simulated data from 30 KEGG based
networks and 30 siRNA off-target predictions based knockout maps with
varying number of effects (features) and off-target hits: Performance assess-
ment of networks and knockout maps which are derived from binarized target
relations matrix with (a). τ = 0.0441 and (b). τ = 0. Each facet reports the
performance in terms of AUC (y-axis) of network inference with c-NEMS (blue),
NEMs treating biological replicates as technical replicates (green) and NEMs from
binarized data derived by averaging across the biological replicates (purple) for
a fixed number of effects and experiments with fixed number of off-target hits.
Each column defines the performances of network inference from binary data
simulated with experiments with fixed number of off-target effects but varying
number of effects ({16, 32, 48, 64, 120, 200, 240, 320}). Conversely each row corre-
sponds to performances of network inference from binary data simulated for a
fixed number of effects but different number of off-target hits ({0− 4} or {0− 5}).
Since the experiments were grouped based on the number of off-target hits, the
number of networks along rows changes. The data was simulated with parameters
αdata = 0.05 and βdata = 0.2. Subsequently, the networks were inferred on 250
bootstrap samples with a bootstrap threshold of 0.9 using greedy algorithm and
parameters αinfer = 0.13 and βinfer = 0.05. Additionally, knockout maps were
provided only for c-NEMs.
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5Network inference from pathogen
infection RNAi screen data

„It is a capital mistake to theorize before one has data.

— Arthur Conan Doyle
( Writer and Physician )

In this chapter, we delineate the steps involved in the selection of signalling genes and data
processing of pathogen infection RNAi screen data for pathway reconstruction using c-NEMs.
Further we discuss about the performance of inference and validate the robustness of the
inferred network.

5.1 Gene selection for pathway reconstruction

As described in Sec.4.2.2, we first selected "Pathways in cancer" (hsa05200). Subsequently,
we ranked the genes of the hsa05200 pathway in decreasing order of weights and selected
the top eight genes which formed a connected DAG signalling network. It was interesting to
note that these top eight genes belonged to important pathways like the MAPK signaling
pathway and the JAK-STAT signaling pathway. Both pathways are studied and validated in
great detail [15, 16, 17, 18] and the hence the signalling network from KEGG database is a
good reference for assessing the performance of c-NEMs.

5.2 Gene level data abstraction from single cell data

We applied c-NEMs to infer the selected signalling network from Bartonella henselae infection
RNAi screen data. B. henselae is the causative agent of cat-scratch disease. The data
was derived from microscopy image based infection assays wherein ATCC HeLa cells were
transfected with a genome-wide single-siRNA library from Qiagen followed by infection
with B. henselae. The cells were then fixated, stained and imaged. Cell features (effects)
were extracted from the grid of 9 images per knock-down experiment using the software
CellProfiler [19]. Features were grouped based on their source segmented objects (parts of
the cell) which include: Cells (cell body), Nuclei (cell nuclei), Perinuclei (perinuclear space),
etc.

The siRNA library from Qiagen consists of four biological replicates per gene i.e four siRNAs
are designed to knockdown a single gene. We gathered the corresponding IDs of siRNAs from
the Qiagen library for each of the eight signalling genes. Thus, we had 32 experiments in
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Fig. 5.1: Extraction of binary gene level data from B. henselae infected single cell RNAi
screen data: Each well (pink circle) is seeded with ATCC HeLa cells, transfected
with a siRNA designed to knockdown a particular gene and finally the cells are
infected with B. henselae (green cells). After a suitable incubation time the cells
are fixated, stained and imaged. Subsequently, features are extracted from these
images (9 images per well). For the control, cells are sampled from random
wells while for the test, cells are sampled from a fixed well (e.g. D08). For both
the control and test, we only use features associated with cells from the central
image. P-values are computed for each well and each feature using Wilcoxon
test comparing the test to the control. The P-values are fitted to a Beta-Uniform
Mixture model. The density values for each feature are computed and this is
further binarized. It should be noted that the density values are computed only for
the experiments associated with genes involved in the pathway.
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total. Using the gene names and the siRNA ID we derived the knockout maps from binarized
target relations matrix (τ = {0, 0.0441, 0.12}).

Since, NEMs and c-NEMs support only gene level data, we had to convert single cell data
to gene-level data [1]. The input data sets from the selected knockdown gene experiments
were computed as follows (Fig. 5.1). As mentioned earlier, for each experiment the well is
split into 3× 3 grid of images. We only sampled cells from the middle image as it has the
highest quality. Since the experiments lacked reliable controls, we randomly sampled cells
from the plates, assuming that the majority of knockdowns do not exhibit any effects. In
order to test for the significance of features observed in a given experiment, we performed
Wilcoxon test for each feature comparing the cell population of each knock-down to the
control distribution. As described in Sec. 2.1.3, the resulting p-value distributions were
fitted to a three component mixture of a uniform, a Beta(1, βk) (βk > 2) and a Beta(αk, 1)
(αk < 1) distribution [10, 12]. A density value was calculated for each feature from the
Beta-Uniform-Mixture model, which indicated the effect strength of the knock-down. We
then binarized the data set as follows:

Dik =

1 if density value is greater than 1

0 otherwise
(5.1)

We primarily focused on 305 features derived from three segmented objects: Cells, Nuclei
and Perinuclei as the features associated with these objects were well characterized. We
discarded 36 features which did not have a valid value. Further we eliminated all those
features which did not have a defined density value for at least one experiment. Thus, our
final binarized input data set consisted of 201 features and 32 knockdown experiments.

5.3 Network inference using c-NEMs

Given the gene level data and the knockout maps, we learned the network with c-NEMs
using greedy inference algorithm (nem.greedy) and default parameters (αinfer = 0.13 and
βinfer = 0.2) respectively. For NEMs we used the same parameters and method of inference
without the knockout map, treating the biological replicates as technical replicates. We
assessed the performance in terms of AUC (table 5.1) treating the KEGG pathway as ground
truth (Fig. 5.2).

Tab. 5.1: Performance of c-NEMs and NEMs for network inference from B. henselae
infection RNAi screen data: Three different knockout maps derived using three
different thresholds (τ = {0.12, 0.0441, 0}). Performance measured in terms of
area under curve (AUC) for c-NEMs and NEMs

AUC with
τ = 0.12

AUC with
τ = 0.0441

AUC with
τ = 0

c-NEM 0.6061 0.6152 0.6869
NEM 0.597 0.597 0.597
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Fig. 5.2: Inferred 8 gene networks on B. henselae infection data: Network with top
8 genes with maximum off-target hits inferred using RNAi screening data of B.
henselae infected cells. (A) Shows the known network from KEGG. (B) Network
inferred using NEMs and (C) Network inferred using c-NEMs with a knockout
map derived from binarized target relations matrix with threshold = 0.12. (D)
Network inferred using c-NEMs with a knockout map derived from binarized target
relations matrix with threshold = 0.0441. (E) Network inferred using c-NEMs
with a knockout map derived from binarized target relations matrix with threshold
= 0. Note: Despite learning the graphs as transitively closed structures, we have
represented them without the transitively closed edges for better clarity.

Further, to validate the robustness of the learned network, we repeated the inference on
50 bootstrap samples of the original data set setting the bootstrap threshold to 0.8. The
remaining parameters were the same as mentioned above. The validation results are
summarized in table B.4.

In general, we observed that as we reduced the threshold the performance of c-NEMs
increased (see table 5.1). This is attributed to the increase in the off-target hits in the
knockout maps as we reduce the threshold. The product of the knockout map and the
network can be viewed as union of all edges between the nodes inM and Φ. Hence, if the
knockout map has more off-targets, then a sparser Φ is sufficient to describe the data. Thus,
increasing the off-target information in the knockout map results in the removal of spurious
edges and improves the performance of network inference by c-NEMs.

5.3 Network inference using c-NEMs 33



6Discussion

The main aim of this thesis was to understand the effects of combinatorial knockouts and
exploit them for network inference. For this we used an extension of the NEMs called c-NEMs
[8]. c-NEMs use the off-target information encoded in the knockout map to infer the network
structure.

An exhaustive combinatorial simulation study of all possible knockout maps and networks
for three and four signalling genes cast light on the feasibility of network inference using
c-NEMs. The ability of c-NEMs to uniquely and effectively learn transitively closed true
networks from combinatorial knockdown data mainly depended on the architecture of the
network and the corresponding knockout map. A thorough analysis of unfeasible cases
showed that the main cause was equivalence of likelihood for different transitively closed
networks for a given knockout map. The likelihood equivalence was mainly due to the
binarization of the product of the knockout map and network by c-NEMs which resulted in
equivalent models. Hence, such cases can be resolved only with specific siRNAs. We further
proved that each signalling gene should have at least one on-target experiment for c-NEMs
to be identifiable. However, in the cases where c-NEMs exactly inferred networks from
combinatorial knockdown data NEMs performed poorly. This was further corroborated by
the results from the simulation study comparing the performances of NEMs and c-NEMs.

Our results from the simulation studies with simulated networks and knockout maps and
KEGG based networks and siRNA off-target predictions based knockout maps suggested that
while both c-NEMs and NEMs improved in performance with increasing number of features,
c-NEMs showed a consistently improved performance in comparison to NEMs. Similarly,
c-NEMs performed better and consistently with experiments with increasing off-target hits
while NEMs performance deteriorated. This difference in performance was by virtue of the
additional information encoded in the knockout map used by c-NEMs. This was further
endorsed by the results of network inference from pathogen infection RNAi screen data
using c-NEMs and NEMs.

We chose a network of eight signalling genes with corresponding siRNAs exhibiting large
number of off-target effects. Although we did not limit our search to any specific pathways,
it was interesting to see that these genes belonged to the MAPK and JAK-STAT signaling
pathways, both important and established pathways. The performance of network inference
using c-NEMs was better than NEMs by 15.06% and further improved by 13.33% as we
increased the information encoded in the knockout map by using different threshold values
for binarizing the knockout strength.

In general, siRNA off-target effects are omnipresent in all RNAi screens and further confound
the ability to grasp the true biological picture. In this thesis, we have demonstrated that by
utilizing the siRNA off-target information encoded in the knockout maps c-NEMs consistently
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and substantially improves the network inference from both simulated and experimental
data. Further, we have shown that by gradually increasing the off-target perturbations
information we can considerably improve the overall performance of network inference
using c-NEMs. Thus, primarily in the context of network inference from combinatorial
gene knockdown data, accounting for the ancillary siRNA off-target effects using c-NEMs is
beneficial.
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7Conclusion

RNAi screening data is highly biased with regard to off-target effects which is usually
neglected during network inference. However, this could lead to incorrect inference of a
network given the data. In this thesis, we focused on including the off-target effects and
further utilizing combinatorial knockdown information for improved network inference.

We found that, in general the use of auxiliary knockout information improves the overall
inference of the networks. However, there are cases where the additional knockout informa-
tion can impede in recovering the correct edges due to likelihood equivalence. We identified
possible structures of the knockout map that favour the correct inference of three to four
node networks. Further, we quantified the improvement in network inference with the
knockout information on both simulated and real data.

All through this thesis we binarized the knockout strength of different siRNAs using a suitable
threshold. As future work we can extend the model with each entry in the knockout map
modelled as a continuous random variable with an underlying probability distribution. In
such a model all knockdowns would not be treated identically and would be weighted
proportional to their knockdown strength which could help resolve the problem of likelihood
equivalence. Another direction would be to use the acquired knowledge of the conditions
on the structure of the knockout maps to design experiments to infer the correct network.
Given a siRNA library with off-target hits, one could design or identify the appropriate set of
experiments such that we can capture the underlying biological picture more accurately.
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Appendix

A KEGG based networks for simulation study

The 30 different eight node networks used for the simulation study are shown here. Before
sampling, we binarized the target relations matrix using different thresholds τ ∈ {0, 0.0441}
and ranked the pathways using the scoring function. We then sampled the networks using
random walk algorithm from the top scoring pathway.
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Fig. A.1: Sampled networks All 30 sample networks were randomly sampled from the
KEGG pathway - "Pathways in cancer" using random walk along the edges. The
target relations matrix was binarized with τ = 0.0441.
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Fig. A.2: Sample networks All 30 sample networks were randomly sampled from the
KEGG pathway - "Pathways in cancer" using random walk along the edges. The
target relations matrix was binarized with τ = 0.

39



B Robustness of learnt network from pathogen
infection RNAi screen data

We used three different threshold values for binarizing the target relations matrix and
subsequently derived the corresponding knockout maps. To ensure the robustness of the
learnt network, we repeated inference on bootstrap samples of B. henselae infection RNAi
screen data using c-NEMs and NEMs. Here, we report the different knockout maps and
the performances of c-NEMs and NEMs for network inference from bootstrap samples of B.
henselae infection RNAi screen data.

Tab. B.1: Knockout map based on binarized target relations matrix with τ = 0.12: For
the eight genes chosen from KEGG pathway and for the corresponding siRNAs, the
knockout map was derived from binarised target relations matrix with τ = 0.12.

1386 4763 51776 5494 5495 5567 5601 8649

K1.1 1 1
K1.2 1
K1.3 1
K1.4 1
K2.1 1 1
K2.2 1 1
K2.3 1 1 1
K2.4 1
K3.1 1
K3.2 1
K3.3 1
K3.4 1 1 1
K4.1 1 1 1
K4.2 1
K4.3 1
K4.4 1
K5.1 1 1 1 1
K5.2 1 1
K5.3 1 1
K5.4 1
K6.1 1 1 1
K6.2 1 1
K6.3 1
K6.4 1
K7.1 1
K7.2 1 1
K7.3 1 1
K7.4 1 1
K8.1 1
K8.2 1 1
K8.3 1 1 1
K8.4 1
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Tab. B.2: Knockout map based on binarized target relations matrix with τ = 0.0441:
For the eight genes chosen from KEGG pathway and for the corresponding
siRNAs, the knockout map was derived from binarised target relations matrix
with τ = 0.0441.

1386 4763 51776 5494 5495 5567 5601 8649

K1.1 1 1 1
K1.2 1 1 1
K1.3 1
K1.4 1 1
K2.1 1 1 1 1
K2.2 1 1 1 1 1
K2.3 1 1 1
K2.4 1 1 1
K3.1 1 1
K3.2 1 1 1
K3.3 1 1
K3.4 1 1 1
K4.1 1 1 1 1 1
K4.2 1
K4.3 1 1 1
K4.4 1 1
K5.1 1 1 1 1
K5.2 1 1 1
K5.3 1 1 1
K5.4 1 1 1
K6.1 1 1 1 1
K6.2 1 1 1
K6.3 1 1
K6.4 1
K7.1 1
K7.2 1 1
K7.3 1 1 1
K7.4 1 1 1 1 1
K8.1 1 1
K8.2 1 1 1
K8.3 1 1 1 1 1
K8.4 1

41



Tab. B.3: Knockout map based on binarized target relations matrix with τ = 0: For
the eight genes chosen from KEGG pathway and for the corresponding siRNAs,
the knockout map was derived from binarised target relations matrix with τ = 0.

1386 4763 51776 5494 5495 5567 5601 8649

K1.1 1 1 1 1 1
K1.2 1 1 1 1
K1.3 1
K1.4 1 1 1
K2.1 1 1 1 1
K2.2 1 1 1 1 1
K2.3 1 1 1 1
K2.4 1 1 1 1
K3.1 1 1 1
K3.2 1 1 1
K3.3 1 1 1
K3.4 1 1 1
K4.1 1 1 1 1 1 1 1
K4.2 1 1
K4.3 1 1 1
K4.4 1 1
K5.1 1 1 1 1 1
K5.2 1 1 1 1 1 1
K5.3 1 1 1
K5.4 1 1 1 1 1
K6.1 1 1 1 1 1
K6.2 1 1 1 1 1
K6.3 1 1 1 1
K6.4 1
K7.1 1
K7.2 1 1 1
K7.3 1 1 1
K7.4 1 1 1 1 1 1 1
K8.1 1 1 1 1 1
K8.2 1 1 1 1
K8.3 1 1 1 1 1 1
K8.4 1 1

Tab. B.4: Performance of c-NEMs and NEMs for network inference from 50 bootstrap
samples of B. henselae infection RNAi screen data with a threshold of 0.8:
Three different knockout maps derived using three different thresholds (τ =
{0.12, 0.0441, 0}). Performance measured in terms of area under curve (AUC) for
c-NEMs and NEMs

AUC with
τ = 0.12

AUC with
τ = 0.0441

AUC with
τ = 0

c-NEM 0.5051 0.6242 0.6727
NEM 0.3636 0.3636 0.3636
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Fig. B.3: Inferred 8 gene networks from bootstrap samples of B. henselae infection
RNAi screen data: Network with top 8 genes with maximum off-target hits
inferred using RNAi screening data of B. henselae infected cells. All the networks
are inferred on 50 bootstrap samples of the data. (A) Shows the known network
from KEGG. (B) Network inferred using NEMs and (C) Network inferred using
c-NEMs with a knockout map derived from binarized target relations matrix with
threshold = 0.12. (D) Network inferred using c-NEMs with a knockout map
derived from binarized target relations matrix with threshold = 0.0441. (E)
Network inferred using c-NEMs with a knockout map derived from binarized
target relations matrix with threshold = 0. Note: Despite learning the graphs as
transitively closed structures, we have represented them without the transitively
closed edges for better clarity.
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