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Abstract

The present work deals with the secondary bi-global instability of the swept Hiemenz
boundary layer (SHBL) flow. It is the incompressible viscous flow along the attachment
line of a wing that is swept backwards, i.e. not extending perpendicularly from the
fuselage. The critical Reynolds number of classical linear stability theory is Relin,crit =
583.1, and modes with positive growth rates are found by stability calculations at
Re = 300, approaching the experimentally observed value of Re ≈ 250.
The flow stability is analysed by solving stability equations discretized in two dimen-
sions, namely the chordwise x and normal y-direction. The stability equations are
reformulated into a two-dimensional eigenvalue problem which is solved iteratively
with an Arnoldi algorithm. The base flow for the stability equations is composed of
a laminar SHBL and superimposed disturbance velocities. The base flow is extended
from the ansatz introduced by Hiemenz for the classical SHBL analysis to one that
is dependent on both x and y. The disturbances feature a bi-global dependence on
chordwise and normal dimensions and a wave ansatz in the spanwise z direction.
The work first lays down the corresponding fundamentals of secondary stability the-
ory, followed by the description of the numerical methods employed, providing general
information as well as information on improvement of the code and the evaluation
of the data. It then presents a numerical validation of the code (with benchmark
data from literature) in which the numerical differentiation scheme was altered, the
computational speed was increased by changing the implementation of the boundary
conditions and the newly derived equations were incorporated. While the secondary
problem converges smoothly in y, the solution was found to diverge after a certain
optimal resolution in x.
Five distinct discrete modes were identified depending on the boundary conditions.
The solutions are analysed in dependence of physical parameters such as the base flow,
the wave number γ, boundary conditions and the spanwise downstream location. They
are investigated both in the context of the discrete spectrum as well as the individual
velocity components. Additionally, they are presented in a three-dimensional setting
for better visualisation. The solutions are then compared to former findings in a dis-
sertation dealing with the later stages of transition on a swept wing through crossflow
instability.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der sekundären bi-globalen Instabilität
der schiebenden Hiemenz-Grenzschicht (SHGS) Strömung. Es ist die inkompressible,
viskose Strömung entlang der Anlegelinie eines Flügels, welcher nach hinten angestellt
ist (gepfeilt), d.h. sich nicht senkrecht vom Rumpf ausstreckt. Die kritische Reynolds-
Zahl der klassischen linearen Stabilitätstheorie ist Relin,crit = 583.1 und Moden mit
positiven Wachstumsraten werden gefunden bei Re = 300, wodurch der experimentell
beobachtete Wert Re ≈ 250 angenähert wird.
Die Stroömungsstabilität wird analysiert, indem in zwei Raumrichtungen diskretisierte
Stabilitätsgleichungen, nämlich in Flügeltiefen- x und Flügelnormalenrichtung y, gelöst
werden. Die Stabilitätsgleichungen werden in ein zweidimensionales Eigenwertprob-
lem umformuliert, welches iterativ mit einem Arnoldi-Algorithmus gelöst wird. Die
Grundströmung für die Stabilitätsgleichungen besteht aus einer laminaren SHGS und
superponierten Störungsgeschwindigkeiten. Die Grundströmung wird vom Ansatz, der
von Hiemenz eingeführt wurde, erweitert zu einer bi-globalen Abhängigkeit von x und
y. Die Störungen folgen einem bi-globalen Ansatz in Flügeltiefen- und Flügeltnor-
malenrichtung und einem Wellenansatz in Spannweitenrichtung z.
Die Arbeit beschreibt zuerst die entsprechenden Grundlagen der sekundären Stabil-
itätstheorie, gefolgt von der Beschreibung der angewandten numerischen Methoden,
wobei sowohl allgemeine Auskunft als auch Auskunft über die Verbesserung des Codes
und die Auswertung der Daten gegeben wird. Anschliessend präsentiert sie eine nu-
merische Validierung des Codes (mit Referenzdaten aus der Literatur), in welchem
das numerische Differenzenschema geändert, die Rechenzeit verringert wurde und in
welchen die neuen Stabilitägleichungen eingebunden wurden. Während die Lösung des
sekundären Problems in y glatt konvergiert, zeigte sie in x-Richtung divergentes Ver-
halten ab einem bestimmten Optimum.
Fünf verschiedene diskrete Moden wurden je nach Randbedingungen identifiziert. Die
Lösungen werden in Abhängigkeit physikalischer Parameter wie der Grundströmung,
der Wellenzahl γ, Randbedingungen und der Flügeltiefenlage stromabwärts analysiert.
Sie werden sowohl im Zusammenhang mit dem diskreten Spektrum als auch mit den
einzelnen Geschindigkeitskomponenten behandelt. Ausserdem werden sie in einem
dreidimensionalen Umfeld visualisiert. Die Lösungen werden daraufhin mit früheren
Resultaten einer Dissertaion, welche sich mit den Spätstadien der Transition durch
Querströmungsinstabilität auf gepfeilten Flügeln beschäftigte, verglichen.
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Chapter 1. Introduction

1. Introduction

1.1. Motivation

The flow scenario investigated in this work is that of a fluid flowing along the leading-edge of a
swept wing, i.e. a wing that is angled back at the fuselage away from the parallel free stream
as shown in Figure 1.1. Investigations have shown that such wing configurations present a high
affinity to turbulent flow over the wing, unlike wings that are stretched outward perpendicularly
from the fuselage. Even though turbulent flow over a wing may offer desired advantages over a

Figure 1.1.: A swept wing aircraft configuration. From the top the angle of the wings towards the
back is apparent. NASA, [25].

laminar one (e.g. a higher resistance to adverse pressure gradients which results in delayed flow
separation [19]) generally laminar flows are preferred in today’s aeronautical design since the
mentioned swept-wing configuration is most commonly found on commercial airliners. In that
case, laminar flow around a wing offers lower friction drag due to lower rates of shear [24]. For
these daily operating means of transport it is of great interest to improve efficiency.

1.2. Background

Early experimental investigations have found that certain stationary flow features called cross-
flow vortices that were approximately aligned with the streamlines over the wing established
themselves in the wing boundary layer. W. E. Gray [11] described Görtler-vortex-like flow
patterns evolving on the wing only a small distance away from the leading edge. He lists them

1



Chapter 1. Introduction 1.2. Background

in flight tests with wings of different sweep angles and leading-edge radii that all showed similar
characteristics. Their eventual breakdown caused the flow over the wing to be contaminated.
Later, F. W. Boltz [3] analysed the instability on swept wings in an experimental laboratory
setup on untapered, unchambered (symmetrical) profile wings. He varied the sweep angle and
the angle of attack in order to characterize the onset of instabilities. His results showed that
sweep indeed has a significant effect on the flow stability and he claimed that depending on the
AoA the transition could be categorized into one of two transition scenarios. It either was of
viscous type which he called Tollmien-Schlichting type or of inviscid type. Thus, the AoA (as a
function of the sweep angle) was responsible for dividing transition into these two domains. In
different configurations of AoA, the side of the wing that experienced adverse pressure gradients
(since the wing was symmetric) would show sooner formation of vortex-like structures that were
immediately followed by a forward (chordwise) propagation of the transitional loci. Furthermore,
flow visualization techniques showed that these vortices were well aligned with the primary
streamlines of the flow and that they exhibited stationary patterns with spacings that were
proportional to the boundary-layer thickness. Boltz also reported that the vortices all rotate in
the same direction.

Poll [33] carried out experimental investigations at the leading edge of an aerofoil and introduced
disturbances in different ways, e.g. by using trip-wires or a flat plate on which turbulence was
generated. Poll measured the disturbance growth as a function of a similarity variable, the trip
wire diameter and the separation distance between the trip wire and the turbulence detector,
while turbulence would initially turn up as discrete bursts. He was able to find that there
are upper and lower bounds for the detection of such bursts. Lower bounds correspond to
small triggering disturbances and lie at Re= 600 and the upper bounds corresponding to large
triggering disturbances can be found at Re= 245. Later, linear stability theory could confirm
the lower bound of Recrit = 583.1, while still no theoretical explanation exists for the upper
bound of Reglobal ≈ 250.

Simultaneously, effort was put into ways of controlling the onset of instabilities or at least
delaying their formation. A very popular way of achieving this was applying suction through
the skin of the wing thereby removing part of the boundary layer and with it disturbances that
may have developed into potential instabilities. This proved to be a very effective means of
flow control when introduced correctly. Pfenninger [32] for that sake conducted studies that
support the feasibility of flow control wings. He states that according to theory the largest
suction is to be applied in regions of highest absolute pressure gradients, i.e. close to the
attachment line and the trailing edge. He further investigated the effect of suction ducts and
perforations in the wing surface and observed that for badly placed holes, horseshoe-like vortices
shed from the perforations and were responsible for premature transition to turbulence on the
wing. Nonetheless, he was able to show that the critical Reynolds number can be raised by
applying suction. He obtained results of patterns that show co-rotating vortices on the wing as
already seen above and also confirmed the role of the AoA on stability. Initial experiments were
carried out on a 30◦ swept modified NACA 66012 LFC wing and eventually tests were undertaken
on a modified wing of the Northrop X-21A experimental aircraft. Of course, introducing such
perforations goes with the expense of structural integrity of the wing structure, for which he
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Chapter 1. Introduction 1.2. Background

redirects to an investigation carried out by Northrop (also found in [32]). This topic is, however,
not within the scope of this thesis and will not be further elaborated herein.

Gaster on the other hand proposed a component to be mounted to the front of the wing at the
attachment line close to the fuselage. This so-called Gaster-Bump would provide for turbulent
flow (originating from the fuselage) deceleration along the attachment line and thus prevent
transition from occurring or at least raise the critical Reynolds number [9].

There have also been various theoretical and numerical analyses concerning this stability prob-
lem. Mathematical models for a planar stagnation point (or line) flow have been proposed by
Hiemenz [16] and later have been extended to the three-dimensional swept Hiemenz (SH) flow.
By adding sweep to the wing of an airplane there is an added spanwise velocity component
along the leading edge of the wing from the fuselage to the tip. The base flow is an exact
solution to the NSE. Later, Görtler [10] and Hämmerlin [15] suggested an ansatz for superim-
posed disturbances for linear stability theory whose solution is known as the Görtler-Hämmerlin
(GH) eigenmode. The disturbance equations are derived by plugging the complete base flow
with superimposed disturbances into the NSE, removing the base flow solution and linearizing
the remaining equations. The LST poses an eigenvalue problem to the disturbances with ei-
ther temporal (complex frequency) or spatial setting (complex wave number). The temporal
LST for the SHBL has identified a critical Reynolds number of Re = 583.1. The first ones to
numerically solve this problem were Hall et al. [13]. Further, Lin and Malik [26] identified cer-
tain eigenmodes of the LST, also recovering the GH eigenmode. Another contribution of similar
statement was produced by Robitaillié-Montané [35]. Obrist [28] makes use of a spectral method
where he employs Hermite polynomials as an ansatz for the disturbances. He further addresses
the phenomenon of transient disturbance growth and takes up the idea of receptivity of flows
to external disturbances. Using the spectral approach he as well recovers the GH Mode for a
polynomial order of N = 1 [30]. For higher-order modes he distinguishes their behavior outside
the boundary layer in normal direction, he identifies algebraically decaying modes which he
states belong to the continuous spectrum whereas the exponentially decaying modes constitute
the discrete spectrum. Additionally, even and odd modes in the order N are distinguished. A
more general and recent approach to the SHBL LST was conveyed by Theofilis et al. [31], who
solved an extended BiGlobal PDE model to the disturbance equations, recovering results that
confirmed former findings. Their work additionally included the addition of a non-zero angle of
attack which they varied as a parameter.

As the results of linear theory were not in complete agreement with the experimental data,
particularly with respect to the critical Reynolds number, new theoretical models and investiga-
tions arose. Models were extended to include non-linear effects. For that sake DNS were carried
out with some disturbance in the boundary layer flow. The instabilities were usually primarily
triggered by counterrotating vortices that depending on the sign of their amplitude A1 created
low- or high-speed streaks along the attachment line with adjacent high- and low-speed streaks,
respectively. This means of triggering was shown to be the optimal initial condition for linear
disturbance growth [12]. Already earlier, Asai et al. have conducted experimental research on
the breakdown of these boundary layer streaks [2]. Following that, Brandt presented numerical
results on the breakdown of near-wall streaks [5], [4]. As for the spatial formulation of the sta-
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Chapter 1. Introduction 1.3. Thesis Outline

bility problem, Obrist has shown [29] that adding a secondary disturbance of smaller amplitude
A2 on top of the counterrotating vortices leads to subcritical (Re = 300) transition of the SHBL.

At this point it is important to mention that instability of a flow generally can be of two types.
Either it is triggered solely by the flow profile and the corresponding pressure gradients, in which
case it is referred to as being of the inviscid type (corresponding to a Re → ∞, see definition
for Re). Criterions for the classification of inviscid (in-)stability have been derived by Rayleigh,
who states that in order for a flow to be inviscidly unstable there has to be an inflection point
in its velocity profile, i.e. the second derivative of the velocity has to change sign at least once
over a coordinate. Fjørtoft has added a stronger criterion to that of Rayleigh’s, in which he
requires the product of the second derivative of the velocity times the difference of the local
velocity and the inflection point velocity to be less than zero along a coordinate. The latter
basically requires the velocity profile to have an irregularity somewhere. Both criterions present
necessary conditions for inviscid instability [23].
Or, flow instability can be triggered by the viscosity of a fluid [23], i.e. by the shear, in which case
one speaks of viscous instability. In certain cases, however, viscosity may have a stabilizing effect
rather than a destabilizing one. The viscous stability theory has been derived over the years
for many flow scenarios, many of them two-dimensional or reduced to a quasi two-dimensional
model with the consideration of symmetry.

1.3. Thesis Outline

The boundary-layer flow investigated here is the three-dimensional incompressible swept Hiemenz
flow with superimposed vortices as primary disturbances that build up a high-speed streak along
the attachment line. The disturbances are triggered further by secondary disturbances of time-
periodic type vortex amplitude changes. The above mentioned experimentally observed crossflow
instability (crossflow vortices) present on the wing surface is described by the Falkner-Skan-
Cooke boundary layer which is a three-dimensional extension of the two-dimensional Falkner-
Skan boundary layer dealing with flows subject to favorable or adverse pressure gradients. This
type of flow will not be elaborated further in this context, since the flow of interest is that along
the attachment line. Figure 1.2 shows the two different boundary layers present on a swept
wing.

In this thesis effort is put in identifying certain solutions of the bi-global secondary eigenvalue
problem for a range of parameters including different base flows, the wave number γ, the spanwise
downstream location of the flow and different boundary conditions. The experimentally observed
critical Reynolds number of around Re≈ 250 is aimed to be explained or approximated by
secondary instability theory on a flow of Re= 300.

In a first part, the theoretical groundwork is presented and laid out in Chapter 2 so as to offer
a physical insight into the mechanisms present in this particular problem. It first presents the
underlying governing equations in Section 2.1 upon which the specific mathematical background
available for this kind of flow is presented in Section 2.2. The report proceeds with the description

4



Chapter 1. Introduction 1.3. Thesis Outline

Figure 1.2.: The two boundary layer types present on a swept wing. The principal streamlines of
the flow are qualitatively sketched out. [23].

of the base flow in Section 2.3. Chapter 2 then concludes with the bi-global stability theory and
newly derived equations.

In Chapter 3, the utilised numerical code framework1 and extensions made as part of the present
work are elaborated in Section 3.1, followed by a presentation of post-processing algorithms in
Section 3.2.

Chapter 4 demonstrates the validation of the changes made to the original code in Section 4.1
by comparison to benchmark data from literature, monitors the code’s performance in Section
4.2 and analyses numerical convergence of the secondary SHBL eigenvalue problem in Section
4.3.

Eventually, Chapter 5 presents and visualizes the obtained solution to the secondary SHBL
eigenvalue problem. First, Section 5.1 quantifies errors resulting from a modification of the base
flow that is described in Section 2.3.1. Second, in Section 5.2 the results are shown in the context
of the eigenvalue spectrum and the eigenmodes’ characteristics are pointed out. Subsequently,
the solutions are analysed more precisely in Section 5.3 by means of the velocity components.
Section 5.4 then provides a more visual approach of presentation of the solutions in a three-
dimensional setting. In the last Section 5.5 the results of a bi-global investigation of crossflow
instability are briefly brought up for comparison.

1The code was originally written by Prof. Dominik Obrist and tested by Pascal Diggelmann.
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Chapter 6 concludes the thesis by summarizing the main points of the thesis and discussing
possible extensions to the investigation.
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Chapter 2. Mathematical Fundamentals

2. Mathematical Fundamentals

2.1. Governing Equations

This theoretical study deals with the stability of incompressible viscous fluid flow. The governing
equations that describe the evolution of such flows are the incompressible continuity equation

∂ui

∂xi
= 0, (2.1)

the incompressible Navier-Stokes equations

∂ui

∂t
+ uj

∂

∂xj
ui = − ∂p

∂xi
+

1

Re

∂2

∂xj∂xj
ui (2.2a)

or, alternatively, the vorticity equation that is derived by taking the curl of the NS-equations
(2.2a)

∂ωi

∂t
+ uj

∂

∂xj
ωi = ωj

∂

∂xj
ui +

1

Re

∂2

∂xj∂xj
ωi. (2.2b)

The coordinate system spans a cartesian space where






x
y
z




 =






x1

x2

x3




 (2.3)

and the directions are defined as follows:

x=: chordwise, y=: normal, z=: spanwise direction.

2.2. Previous Work1

2.2.1. Plane Stagnation Flow

For the planar case (corresponding to a wing with no sweep), Hiemenz [16] had proposed a
solution to the viscous stagnation point (or line) flow by introducing the function F (y). The

1This section is a summary based on [36], [28], [23], [21] and [7]
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Chapter 2. Mathematical Fundamentals 2.2.2. Three-Dimensional Stagnation Flow

flow field ansatz (

u(x, y)
v(y)

)

=

(

xF ′(y)
−F (y)

)

(2.4)

satisfies the continuity and Navier-Stokes equations exactly. Substituting (2.4) into the Navier-
Stokes equations, results in the third-order ordinary differential equation

νF ′′′ + FF ′′ − F ′2 + a2 = 0, (2.5)

where a = U∞∆ is the strain rate and ν the kinematic viscosity of the fluid. Constructed with
the length scale ∆ based on the strain rate a and kinematic viscosity ν, the parameters a and
ν can be dropped with

η = αy =
y

∆
, (2.6a)

α =
√

a/ν =
1

∆
, (2.6b)

f(η) = F (y)/(να), (2.6c)

that provide the non-dimensional ansatz
(

u(x, η)
v(η)

)

=

(

axf ′(η)
−√

aνf(η)

)

, (2.7)

with which the equation reads
f ′′′ + ff ′′ − f ′2 + 1 = 0. (2.8)

Equation (2.8) constitutes a simple numerical problem with boundary conditions

f(0) = κ, f ′(0) = 0, f ′(η → ∞) = 1

κ =
V0√
νa

(= 0 in case of no suction).

2.2.2. Three-Dimensional Stagnation Flow

When considering flow over a swept wing, the stagnation point becomes an attachment line.
Mathematically, this can be described by adding a constant spanwise velocity component W ∗

∞

to the far field. The ansatz for the boundary-layer flow component is

w(η) = W ∗
∞g(η). (2.9)

Inserting (2.7) and (2.9) into the NSE gives an additional ODE to the already known Equation
(2.8):

g′′ + fg′ = 0 (2.10)

with boundary conditions
g(0) = 0, g(η → ∞) = 1. (2.11)
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Chapter 2. Mathematical Fundamentals 2.2.3. Three-Dimensional Swept Cylinder Flow

Using W ∗
∞ as the reference velocity, together with the reference length scale ∆ (2.6b) leads to

the SHBL Reynolds number

ReSH =
W ∗

∞√
aν

=
W ∗

∞∆

ν
. (2.12)

The three non-dimensional velocity components then are












U

V

W












=












xf ′(η)
ReSH

− f(η)
ReSH

g(η)












. (2.13)

The solution to Equations (2.8) and (2.10) describes the exact laminar base flow of the SHBL.

Once the flow has been non-dimensionalized, the boundary layer thickness can be defined as
either a distance from the wall where the flow reaches a certain percentage of the far-field
value or by definitions stemming from mass and momentum conservation called displacement
and momentum thickness, respectively. The different values are tabulated in Table 2.1. In
subsequent Chapters of this thesis the boundary layer thickness will be considered δ = δ0.9995

to illustrate the upper bound. All other BL thicknesses then lie within that bound.

Table 2.1.: Definitions of boundary layer thickness

99.95% thickness δ0.9995 = 0.9995 · W∞ ≈ 4
99%-thickness δ0.99 = 0.99 · W∞ ≈ 3.05
Momentum-thickness δθ =

∫∞
0 g(1 − g)dη ≈ 0.404

Displacement-tickness δu =
∫∞

0 (1 − w
W∞

)dy ≈ 1.026

2.2.3. Three-Dimensional Swept Cylinder Flow

In order to model the flow around a swept cylinder of radius R∗ in a constant free-stream velocity
V ∗

∞, the outer potential flow has to be considered as shown in Figure 2.1. The flow around
the cylinder consists of an inner and an outer flow region. The components (U, V, W )T from
Equation (2.13) describe the exact non-dimensional swept Hiemenz boundary layer flow inside
the boundary layer and constitute the inner flow. It is valid in the vicinity of the attachment
line.

9



Chapter 2. Mathematical Fundamentals 2.2.3. Three-Dimensional Swept Cylinder Flow

Figure 2.1.: Swept Hiemenz flow over a cylinder with its coordinate system, flow components and
boundary layer. [28].

The inner flow is matched to the outer flow (Figure 2.2), whose components are2:

U∗ = 2V ∗
∞R∗ X∗2(Y ∗ + R∗)

[X∗2 + (Y ∗ + R∗)2]2
(2.14)

V ∗ = −V ∗
∞

{

1 + R∗2 X∗2 − (Y ∗ + R∗)2

[X∗2 + (Y ∗ + R∗)2]2

}

(2.15)

W ∗ = W ∗
∞. (2.16)

The SHBL is a valid model for a three-dimensional swept cylinder flow as one approaches the
attachment line, i.e. X∗ → 0, Y ∗ → 0, with the potential

Φ = aX∗Y ∗ with strain rate a = 2V ∗
∞/R∗ (2.17)

This limit flow is the boundary condition for the inner flow.

Disturbances are superimposed on the base flow (inner flow) and the first ones to suggest an
ansatz for the disturbances were Görtler [10] and Hämmerlin [15]. They proposed the chordwise
disturbance component be linearly dependent on the chordwise coordinate x with no dependence
on x of the normal and spanwise disturbance components:

(u′, v′, w′) = (xu(y), v(y), w(y))eiγ(z−ct) + c.c. (2.18)

Hall [13] was the first to solve this problem with linear stability theory and he showed that
below a Relin,crit = 583.1 the flow remained linearly stable. Later in 1988 Spalart [37] was able
to confirm the solution to the linear stability problem of Görtler and Hämmerlin with DNS
simulations (GH Mode).

2the superscript ∗ marks dimensional values
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Figure 2.2.: Inner and outer flow regions of the swept Hiemenz boundary layer flow. The outer
inviscid potential flow serves as a boundary condition for the inner flow. [28].

2.2.4. Generalized Flat-Plate Boundary-Layer Flows

John et al. [21] were able to merge the flow models of the Hiemenz, Swept Hiemenz and
Asymptotic Suction boundary layers. By introducing a sweep angle ϕ ∈ [0, π/2] and AoA α and
redefining the reference quantities used for non-dimensionalization in order to satisfy both flow
scenarios they were able to extend Equations (2.8) and (2.10) to the following

f ′′′ + ff ′′ − f ′2 + cos2 ϕ sin2 α = 0 (2.19a)

h′′ + fh′ − f ′h = const. (2.19b)

g′′ + fg′ = 0, (2.19c)

with the boundary conditions

f(0) = κ, f ′(0) = 0, f ′(η → ∞) = cos ϕ sin α (2.20a)

g(0) = 0, g(η → ∞) = 1 (2.20b)

h(0) = 0, h′(η → ∞) = cos α. (2.20c)

κ in this case is defined as V0/
√

νγ and h(η) describes the shear flow in x-direction. From this
model one can recover the individual cases of the HBL (ϕ = 0, α = π/2), SHBL (α = π/2) and
ASBL (ϕ = α = π/2).
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Chapter 2. Mathematical Fundamentals 2.3. Base Flow

2.3. Base Flow

The employed code uses two different approaches to solving for the disturbance quantities. The
first approach solely uses the analytical swept Hiemenz BF with a bi-global ansatz for the
disturbances, whereas the second uses extended disturbance equations for a general base flow
that is dependent on both x and y coordinates. The former is used herein for validation of
the implemented grid resolution and difference schemes and the memory study. The latter is
crucial for the solution of the bi-global secondary instability where the base flow is obtained
from IMPACT3.

2.3.1. Primarily Disturbed Base Flow

This base flow is obtained from the IMPACT DNS Simulations where the initial base flow
consists of two counter-rotating vortices inside the swept Hiemenz boundary layer. These two
vortices have a superimposed finite disturbance amplitude A2(τ) which is fluctuating in time.
Such flow configurations have been shown to be optimal sources of streak formation [12]. The so
created high and low speed streaks eventually lead to lift-up of the flow and finally breakdown
to turbulence. However, after the first transient disturbance growth has occured, new modes
start to grow exponentially on top of the stream-wise vortices. It is these exponentially growing
modes that are sought herein. Since the base flow is assumed to be of generally arbitrary shape
of votices with high and low speed streaks of flow, but based on an exact solution and primary
disturbances which fulfill the condition ∂/∂z = 0, it was modelled to be dependent on x and y.






U
V
W




 =






UB(x, y)
VB(x, y)
WB(x, y)




 . (2.21)

However, some minor dependence of U(x, t) on z exists, such that the extraction location

zextr = min
z

∫

y

∫

x

(
∂

∂z
W

)2

dxdy (2.22)

of the base flow plane on the z-axis was determined by searching for local minima in the diver-
gence of the base flow in the region of secondary modal growth between primary transient growth
and turbulent breakdown. Finding the location of minimal span-wise gradient of the span-wise
component W makes sure the base-flow is as close to being divergence-free in the extraction
plane as possible. The so extracted base-flow can then either be used in an unmodified state or
to better conform with the two-dimensional continuity equation it can be ‘relaxed’. Then, the
extracted plane flow is artificially made into a planar potential flow by creating streamfunctions

ΨU =

∫

y
U(x, y)dy + g(x), g(x) = −

∫

x
V (x, y = y0)dx (2.23)

3An in-house DNS code from IFD at ETH for Incompressible Turbulent Flows with Compact differentiation
on Massively Parallel Computers: http://www.ifd.mavt.ethz.ch/research/group_lk/projects/impact
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and

ΨV = −
∫

x
V (x, y)dx + f(y), f(y) =

∫

y
U(x = x0, y)dy (2.24)

from both baseflow components U and V separately and combining these to a common stream-
function Ψ

Ψ = χΨU + (1 − χ)ΨV , χ ∈ [0, 1]. (2.25)

The weight χ is varied to control the contribution of the individual baseflow components to the
streamfunction. The divergence-free base flow components U and V are then retrieved by

U =
∂

∂y
Ψ and V = − ∂

∂x
Ψ. (2.26)

As a last step of pre-processing the BF, it is reduced to the domain where x, y > 0.

2.4. Bi-Global Stability

The total flow (u, v, w)T consists of the base flow quantities (U, V, W )T , which are a solution to
the Navier-Stokes equations, and superimposed disturbance quantities (u′, v′, w′)T

(u, v, w) = (U + u′, V + v′, W + w′). (2.27)

For the biglobal stability problem discussed herein, the disturbance quantities are assumed to
be globally dependent on x and y with a wave ansatz in the spanwise z-direction:

φ′ =






u′

v′

w′




 =






û(x, y)
v̂(x, y)
ŵ(x, y)




 · ei(γz−ωt) + c.c. =






û(x, y)
v̂(x, y)
ŵ(x, y)




 · eiγ(z−ct) + c.c. (2.28)

In Equation (2.28) γ ∈ R represents the spanwise wave number and ω ∈ C is the angular
frequency. Alternatively one can define c = ω

γ ∈ C. Then the real part cr = R{c} denotes the
phase speed of that particular monochromatic wave and the imaginary part ci = I{c} denotes
the growth or decay rate of the particular eigenmode. Summarizing:

cr Phase Speed

ci > 0 ∝ growth rate (temporally unstable eigenmode)

< 0 ∝ decay rate (temporally stable eigenmode).

When inserting (2.27) into the NS-equations, neglecting the resulting nonlinear terms, then sub-
sequently substracting the base flow solution, one ends up with linearized disturbance equations
for all three velocity components. From these three equations the pressure disturbance p′ and
the spanwise velocity component w′ can be eliminated by taking the curl of the linearized dis-
turbance equations and employing the continuity equation. Doing so results in two equations in
u′ and v′ which can be arranged in a way to formulate the eigenvalue problem that is sought to
be solved. Alternatively, the equations can also be derived by directly inserting (2.27) into the
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vorticity equation and proceeding from there. Depending on the applied base flow the resulting
equations differ in terms of derivatives (the Hiemenz base flow only contains total derivatives
with respect to y, whereas the secondary base flow contains partial derivatives in both x and y)
and some additional terms related with the secondary base flow.

For the derivation of the stability equations the span-wise gradient of the base flow (∂/∂z(.))
was neglected due to the assumption of self-similarity. While this holds true for the classical
analytical swept Hiemenz boundary-layer flow, it is not the case for the primarily distrubed
swept Hiemenz boundary-layer flow. Means of accounting for this are shown in Section 2.3.1
and the consequences of this assumption are discussed in Section 5.1.

The previously derived classical equations [30], [35], [7] for bi-global stability with the exact
swept Hiemenz base flow without primary disturbances read

(L + V ′ + iγRec)
[

(∂2
x − γ2)û + ∂x∂y v̂

]

+ (iγReW ′∂x − γ2xV ′′)v̂ = 0 (2.29a)

(L − V ′ + iγRec)
[

(∂2
y − γ2)v̂ + ∂x∂yû

]

− (iγReW ′∂x − xV ′′∂2
x)û

+(iγReW ′′ + xV ′′∂x∂y)v̂ = 0 (2.29b)

where
L ≡ ∂2

x + ∂2
y + xV ′∂x − V ∂y − γ2 − iγReW

and the ‘prime’ denotes the total derivative w.r.t. y.

The equations for bi-global secondary stability derived in the scope of this thesis read

(L + ∂yV + iγc)
[

(∂2
x − γ2)û + ∂x∂y v̂

]

+ (iγ∂2
xW − ∂xV ∂x∂y)û

(∂x∂yW iγ − ∂yW ∂xiγ + ∂xW ∂yiγ − ∂xV ∂2
y + γ2∂yU)v̂ = 0

(L − ∂yV + iγc)
[

(∂2
y − γ2)v̂ + ∂x∂yû

]

+ (iγ∂2
y W − ∂yU∂x∂y)v̂

(∂x∂yW iγ − ∂yW ∂xiγ + ∂xW ∂yiγ − ∂yU∂2
x + γ2∂xV )û = 0

(2.30a)

(2.30b)

where
L ≡ ∆/Re − (U∂x + V ∂y + W iγ), ∆ ≡ ∂2

x + ∂2
y − γ2.

2.4.1. Boundary Conditions

The boundary conditions applied to the equations in the case of validation for the GH eigenmode
in Sections 4.1 and 4.2 in conjunction with Equations (2.29a) and (2.29b) were

at x = 0 : none, (2.31a)

at x → Lx : ∂2
xû = ∂2

xv̂ = 0, (2.31b)

at y = 0 : û = v̂ = ∂y v̂ = 0, (2.31c)

at y → Ly : û = v̂ = ∂y v̂ = 0. (2.31d)
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These boundary conditions have been verified before by Diggelmann [7] and were adopted for
verification here.

The boundary conditions applied to the equations in the case of secondary instability eigenmodes
in conjunction with Equations (2.30a) and (2.30b) were

at x = 0 : ∂2
xû = 0 or û = 0, (2.32a)

at x → Lx : û = v̂ = 0, (2.32b)

at y = 0 : û = v̂ = ∂y v̂ = 0, (2.32c)

at y → Ly : û = v̂ = 0. (2.32d)
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Chapter 3. Methods

3. Methods

3.1. Numerical Code

The following sections describe important parts of the eigenvalue problem solver. The discussed
parts of the code can be found in Appendix D.

3.1.1. Grid

The computational domain is discretized with a structured non-equidistantly meshed grid. The
grid points in both x- and y-directions use a Gauss-Lobatto distribution which are defined in
the interval [−1, 1] as

ξj = cos
j − 1

Nα − 1
, j = 1, . . . , Nα. (3.1)

Since the physical domain considered in the eigenvalue problem makes use of symmetry, the x-
and y-dimensions span a semi-infinite domain. Due to computational limits they nonetheless
have to be restricted to finite size. Hence, the grid points ξj have to be mapped onto the quasi
semi-infinite domain of x ∈ [0, Lx] and y ∈ [0, Ly]. Lx and Ly must be chosen sufficiently large.
The mapping is done with an algebraic mapping of the form

αj = A
1 + ξj

B − ξj
(3.2)

where

B =
Lα

Lα − 2αhalf + ǫ
A = B · αhalf , with α = {x, y}. (3.3)

This way the grid points Nx and Ny are mapped from ξj ∈ [−1, 1] to [0, Lα] in such a way that
one half of the points lie within [0, αhalf ] and the other lie within (αhalf , Lα]. A and B are related
to αhalf and Lα as follows:

Lα =
2A

B − 1
, αhalf =

A

B
. (3.4)

Discretization input parameters of the code are Nx, Ny, Lx, Ly, xhalf and yhalf and they fully
define the computational domain. Alternatively to the Gauss-Lobato distribution of grid points
a uniform distribution can be specified if desired. Three different grid discretizations are shown
in Figure 3.1.
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Figure 3.1.: Three different grid discretizations that can be employed. The variable α takes values
x or y. Typically uniform distribution grids with different xhalf were used in x and
Gauss-Lobatto distribution grids were used in y.

3.1.2. Numerical Schemes

The code uses a finite-difference type scheme with a five-point stencil with values stored at the
grid points (xj , yj) of a collocated grid. Differences at the boundaries are computed through a
one-sided 4th order stencil (forwards or backwards respectively), for coordinates next to bound-
ary coordinates a mixed forward or backward 4th order stencil is used and for all points within
a 4th order central scheme is applied. The code was extended to perform with non-equidistant
grid spacing as well as equidistant arrangements.
The discretization can be expressed in a matrix representation to be

A · Df(x) = f (3.5)

where the RHS of Equation (3.5) f ∈ R
5×1 represents the known local solution around the

coordinate x. Df(x) ∈ R
m×1 defines the wanted local derivations at coordinate x, and it is

multiplied from the left with a local stencil matrix A ∈ R
5×m that defines the local Taylor

series terms. The differential operators of first and second order for the central grid points are
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computed from

Ai,C =
















1 ∆i−1

1!

∆2
i−1

2!

∆3
i−1

3!

∆4
i−1

4!

1 ∆i
1!

∆2
i

2!
∆3

i
3!

∆4
i

4!

0 0 0 0 0

1 ∆i+1

1!

∆2
i+1

2!

∆3
i+1

3!

∆4
i+1

4!

1 ∆i+2

1!

∆2
i+2

2!

∆3
i+2

3!

∆4
i+2

4!
















at i = 3, . . . , (N − 2)

. (3.6)

where ∆i = xi −xi−1. Terms f and Df(x) will only be be presented here for the central scheme,
but can be interpreted for boundary points from the stencil matrices below.

Df(x) :=












f(x)

f ′(x)
...

f (m)(x)












f :=
















f(x − ∆i − ∆i−1)

f(x − ∆i)

f(x)

f(x + ∆i+1)

f(x + ∆i+1 + ∆i+2)
















(3.7)

The other differential operators are created from either

Ai,BP =
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(3.8)

or

Ai,B =


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
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. (3.9)

Since the term of interest is Df(x), for each grid point xi, the above matrix Ai is computed and
then inverted. After doing so, the local differentiation stencils for first and second derivative
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are recovered by storing the second and third rows of A−1 in the differentiation operators Dx1

and Dx2, respectively. Higher differentiations are not needed but could be obtained from for
example the fourth row etc. of A−1 at which point, however, the stencil would optimally have
to be broadened to a stencil across more than five points.

3.1.3. Solution Algorithm

The linear stability equations (2.30) are formulated as a generalized eigenvalue problem for the
complex EV c,

Qφ = cRφ, where φ =

(

û
v̂

)

. (3.10)

More precisely the matrices Q and R are ∈ C
2NxNy×2NxNy and sparse. They have a block

structure of 2 × 2 wherein the submatrices Qαα and Rαα ∈ C
NxNy×NxNy act either on û or v̂:

(

Q11 Q12

Q21 Q22

)(

û
v̂

)

= c

(

R11 R12

R21 R22

)(

û
v̂

)

. (3.11)

The individual submatrices follow from (2.30) as

[

(L + ∂yV )
(

∂2
x − γ2

)

+ iγ∂2
xW − ∂xV ∂x∂y

]

iγQ11

û

+
[

(L + ∂yV ) (∂x∂y) + ∂x∂yW iγ − ∂yW ∂xiγ + ∂xW ∂yiγ − ∂xV ∂2
y + γ2∂yU

]

iγQ12

v̂

= −iγc
[ (

∂2
x − γ2

)

−R11

û + ∂x∂y

−R12

v̂
]

(3.12a)

[

(L − ∂yV ) (∂x∂y) + ∂x∂yW iγ − ∂yW ∂xiγ + ∂xW ∂yiγ − ∂yU∂2
x + γ2∂xV

]

iγQ21

û

+
[

(L − ∂yV )
(

∂2
y − γ2

)

+ iγ∂2
y W − ∂yU∂x∂y

]

iγQ22

v̂

= −iγc
[

∂x∂y

−R21

û +
(

∂2
y − γ2

)

−R22

v̂
]

(3.12b)

After constructing Q and R they are altered to define the boundary conditions as described
below in Section 3.1.5. The routine employs the Arnoldi algorithm to solve the eigenvalue
problem.
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3.1.4. Arnoldi Algorithm1

The MATLAB function eigs uses the ARPACK package code. The Arnoldi algorithm can be
explained based on the following general eigenvalue problem:

Ax = λMx. (3.13)

Two parameters have to be specified when starting the Arnoldi-algorithm. The first parameter
m specifies the number of eigenvalues that are to be resolved and ultimately also is responsible
for the convergence of the algorithm. The second parameter σ is an initial eigenvalue that the
algorithm takes as a seed around which to compute the other eigenvalues. The basic idea of the
Algorithm is to project the matrix A onto the orthonormal basis of the Krylov sub-space Km

that is constructed from an initially random vector v1, thereby creating a Hessenberg matrix Hm

whose eigenvalues (Ritz EV) are the approximate eigenvalues of the original eigenvalue problem
matrix A. The Algorithm first does a shift-and-invert operation which transforms Equation
(3.13) into

Sx = µx, S = (A − σM)−1Ax, µ =
1

λ − σ
. (3.14)

With the reformulated eigenvalue problem the algorithm goes as:

1. Start with an arbitrary vector v1 with ||v1|| ≡ 1.

2. for j = 1, . . . , m do:

hij = (Svi, vj), i = 1, . . . , j

wj = Svj −
j
∑

i=1

hijvi

hj+1,j = ||wj ||
vj+1 = wj/hj+1,j

The resulting m Arnoldi vectors vi span the orthonormal basis Wm of the Krylov sub-space

Km = span
{

v1, Sv1, . . . , Sm−1v1

}

.

The algorithm computes a factorization of type

SWm = WmHm + hm+1,mvm+1e∗
m (3.15)

W∗
mSWm = Hm. (3.16)

The original matrix S, or A respecively, of size Rm×m in in this process reduced to the Hessenberg
matrix Hm of size R

n×n with n < m. The problem is thus reduced in size and the approximate
eigenvalues are regained from the eigenvalues ϑ (Ritz values) of the Hessenberg matrix. The
eigenvectors are obtained through an inverse iteration from the eigenvector s of the Hessenberg

1The information in this section is a summary based on [1], [7] and [39]
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matrix. The respective Ritz eigenvector is obtained through y = Wms. The approximate
eigenvector of the eigenvalue problem (3.13) is recovered as

Sy = WmHms + hm+1,mvm+1
︸ ︷︷ ︸

rm

e∗
ms = yθ + rme∗

ms. (3.17)

3.1.5. Implementation of Boundary Conditions

The boundary conditions are implemented into the eigenvalue Matrices Q and R, which are
both sparse. Element-wise accessing of the elements therefore is very slow, since for every zero-
element that is made non-zero in that occasion or for every non-zero-element that is made zero
the indices of all subsequent non-zero entries have to be shifted to account for the new entry.
This procedure is a significant bottleneck when considering speed.
To overcome this limitation, the boundary conditions were incorporated into the full sub-
matrices. Instead of accessing each element individually, two stencil matrices were assembled,
one for multiplication (essentially creating zero-entries) and one for superposition of non-zero
elements (Figure 3.2). Thanks to the block-wise structure of the operator matrices, the routine
for assembling the stencil matrices only needs two calls in total. This method gave the code
a noticeable speed-up. Ideally, a further speed-up could be realized using pointer arithmetics,
which, however, is not possible in the current MATLAB environment.
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Figure 3.2.: The two stencil matrices used to impose the BCs on Q and R. Two calls are necessary,
one of which constructs stencils for coordinate x and the other for coordinate y.

3.2. Evaluation

3.2.1. Numerical Convergence Criterion

As a first goal, the numerical convergence of the eigenvalue solver was characterized and the
numerical error quantified. As there is no exact solution to which the numerical result can be
compared, the error ε was considered the absolute difference of the complex eigenvalues in the
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spectrum:

ε =

√

|EVi − EVi+1|2
Nx,i · Ny,i

(3.18)

with i indicating a certain resolution and i + 1 the next greater. The reason this criterion was
chosen over comparing the eigenfunctions is the ability to study convergence without the need
of interpolation and thereby potentially altering the convergence behavior.

3.2.2. Mode Filtering

The numerical solver returns the specified number of eigenvalues and their corresponding eigen-
functions. For easier and more efficient post-processing a filter was implemented to help identify
or track eigenvalues throughout the eigenvalue spectra. For analysing the numerical conver-
gence for example it was assumed that EVs of the same mode would stand out in the spectra by
having moved only little. Other modes that may have arisen by numerics only with no physical
relevance would not behave in the same way. In other words, all physically relevant and realistic
Modes would only weakly if at all be dependent on numerical parameters. The same was as-
sumed to be applicable to variations of physical parameters. As an example tracking of a mode
through a sweep over the spanwise wavenumber γ is desirable. Instead of manually extracting
the corresponding solutions from the spectrum at each parameter step, all spectra should be fed
to a processing algorithm and the matching values returned. For the sake of this, two algorithms
were implemented. One of them essentially a ‘deterministic dynamic programming shortest path
algorithm’ and the other an algorithm that searches for local minimal differences.

DP algorithm

This algorithm is fed with the spectra of all parametric steps. Subsequently a cost matrix is
computed. The cost to go from node i to node j at stage k is specified as the absolute value
of the difference between node j at stage k + 1 and node i at stage k. Nodes in this context
describe eigenvalues and the stages are the steps of the parametric sweeps:

cost2gok
ij = |EVk+1

j − EVk
i |. (3.19)

The cost was then calculated as

Jk
i = min

j
{Jk+1

j + cost2gok
ij}. (3.20)

The paths were tracked and sorted with ascending cost.

Local Minumum Algorithm

Two ways of calculating the cost can be chosen, the reason being the different filtered spectra.
For eigenvalues that would follow a path upon undergoing a parametric sweep a static cost
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matrix was precomputed that stored the cost from each eigenvalue at one parameter step to
every eigenvalue at the next parameter step (according to Equation (3.19)). The cost of going
from the last step k = N to step k was in this case always locally complemented with the local
minimal cost-to-go:

Jk
i = Jk+1

j + min
i

{cost2gok
ij}. (3.21)

This algorithm is somewhat simpler but for not very cluttered spectra it is also faster. However,
both Algorithms (3.20) and (3.21) have the disadvantage of equally punishing the drift of an
eigenvalue in any direction. So for eigenvalues that would cluster around a certain value the cost
was implemented to be dynamically computed with respect to a center of mass (CoM), which
again would be recomputed once the next path step was found. This would punish the cost
more if the algorithm would drift far away from the actual eigenvalue, given of course an already
large enough weight of the CoM. At step k = N the CoM is simply an eigenvalue of the N -th
spectrum

CoMN
i = EVN

i . (3.22)

For all other steps the CoM is

CoMk
i = (CoMk+1

j · (N − k − 1) + EVk+1
i )/(N − k) (3.23)

and the cost is computed as

Jk
i = Jk+1

j + min
i

{|CoMk+1
j − EVk

i |}, (3.24)

where
k = N − 1, . . . , 1. (3.25)

Again the paths were tracked in both cases and accordingly sorted with ascending cost.
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4. Validation, Characterization and Convergence

4.1. Grid Discretization

The altered code was tested for correctness by validating it with the Görtler-Hämmerlin mode
from the analytical swept Hiemenz base flow. The reference value that was used can be found in
Lin and Malik [26]. The corrected discretization and differentiation schemes for a non-equidistant
mesh in x and y directions were shown to be valid since the EV of the GH mode now is practically
independent of the resolution in the x direction Nx. Figure 4.1 shows the dependence of cGH

on the grid resolution. The values are also summarized in Table 4.1 together with the reference
cGH from Lin and Malik.

Moreover, it was made certain that the derived equations yielded the correct Results for the GH
eigenmode at the linearly critical stable Reynolds number Relin,crit = 583.1 when supplied with
the corresponding base flow.

4.2. Memory Requirement and CPU Time

In order to gain insight into the computational effort that arises from the solution of the stability
problem the code was run at several grid resolutions where N = Nx = Ny following Pascal
Diggelmanns [7] approach to solving for the GH mode. As a means to control the memory
allocated during runtime, up to eight different reoccurring terms of Equation (3.12) were either
stored as separate variables in memory to reduce runtime or recomputed every time their values
were needed to reduce memory. The code was then run for each resolution first with all variables
locally computed and then the first variable in Table (4.2) globally saved. Step by step variables
were added to the memory while runtime and memory requirement was monitored. The resulting
plot is shown in Figure (4.2).

This analysis was done using the analytical base flow where it was known that square resolution
would yield a physically correct result and the number of eigenvalues computed1 was constantly
kept equal to 10. The information obtained would serve as further resource for estimating the
computational time and memory requirement when running the code on different computation
clusters. As can be seen, memory requirement is proportional to N4 as was expected, since
the eigenvalue problem matrices are ∈ R

2NN×2NN . In fact, memory requirement is effectively
∝ (N4 · {No. of eigenvalues}).

1variable nom
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Figure 4.1.: Dependence of the GH mode on grid resolution. Ny is varied from 40, 60, 80 to 120
(right-to-left). The values were obtained for Re = 800, γ = 0.255, Lx = 120, Ly = 70,
xhalf = 60.8 and yhalf = 0.5.

Table 4.1.: GH eigenvalues for different grid resolutions to eight significant digits. It can be seen
that for a given y-resolution the problem has converged already for 5 x-gridpoints. For
Ny = 120 the phase speed has come within four digits and ci within five digits to the
value of Lin and Malik [26].

Ny 40 60 80 120

Nx cGH cGH cGH cGH

5 0.35939555
+0.00567938i

0.35860279
+0.00581997i

0.35847051
+0.00584266i

0.35842190
+0.00585092i

10 0.35939555
+0.00567938i

0.35860279
+0.00581997i

0.35847051
+0.00584266i

0.35842190
+0.00585092i

15 0.35939555
+0.00567938i

0.35860279
+0.00581997i

0.35847051
+0.00584266i

0.35842190
+0.00585092i

20 0.35939555
+0.00567938i

0.35860279
+0.00581997i

0.35847051
+0.00584266i

0.35842190
+0.00585092i

L&M 0.35840982 + 0.00585325i
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Figure 4.2.: Memory requirement and CPU time

Table 4.2.: Different variable configurations that were utilized for memory and CPU testing of the
eigenvalue solver. For subsequent configurations in this table the globally computed
variables from the previous configurations are adopted and the newly listed variable is
added to the selection.

Configuration Separately Stored Variables

8 local variables –
7 local variables Laplacex

6 local variables Laplacey

5 local variables Lop

4 local variables LopPlusVy

3 local variables LopMinuVy

2 local variables WyD_Dx

1 local variable xVyy/WxD_Dy

Fully Global Dx1Dy1
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4.3. Convergence Study

This section shows the convergence behavior of the eigenvalue solver for the secondary instability
of the swept Hiemenz boundary layer as a function of the number of grid points Nx and Ny of the
x and y coordinate, respectively, and the influence of the domain size parameter Lx. Once the
numerical part is understood, a conclusion is drawn from the presented data regarding optimal
resolution.

The simulations that are presented below were, unless otherwise noted, conducted on a domain
of size Lx = Ly = 15. The grid was chosen to be linear in x and mapped according to Section
3.1.1 in y with a yhalf = Ly/3 = 5. The resolutions Nx and Ny are first treated independently,
and convergence is sought individually in each direction. This analysis is followed by a study
in which the influence of the resolutions’ convergence behavior on each other is examined and
limitations of the grid are discussed. Sections 4.3.1 and 4.3.2 employed a base flow of resolution
Nx,b = 193×Ny,b = 129×Nz,b = 513 for a domain size of Lx,b ∈ [−15, 15]×Ly,b ∈ [0, 20]×Lz,b ∈
[0, 120] without secondary amplitude (A2 = 0), Section 4.3.3 employs a base flow of resolution
Nx,b = 1025 × Ny,b = 129 × Nz,b = 2049 for a domain size of Lx,b ∈ [−150, 150] × Ly,b ∈
[0, 20] × Lz,b ∈ [0, 600] with secondary amplitude (A2 6= 0).

4.3.1. Nx Resolution

Convergence in x-direction was investigated by fixing Ny = 50 and raising Nx from 40 in steps
of 10 to a maximum of 300. Although, the y coordinate is likely to be under-resolved in this
scenario as demonstrated in Section 4.3.2, it was kept at this low value. The convergence was
described according to Equation (3.18) and is shown in Figure 4.3(a). The convergence was
checked for different Reynolds number base flows, each with primary vortices and no secondary
amplitude. In each case the base flow resolution was of Nx,b = 193×Ny,b = 129×Nz,b = 513. The
flow was respectively extracted from the DNS data at the location of minimal ∂WB/∂z. Figure
4.3(a) shows the error of convergence for the same eigenmode shape that was recovered at each
Reynolds number. It corresponds to eigenmode S3 introduced in Section 5.2.1. The eigenvalues’
individual trace in the complex plane for the different resolutions is shown in Figure 4.3(b). It
is apparent that there is a certain optimal Nx above which the solution starts to diverge. In this
case convergence is continuous within 120 < Nx < 200 (marked in grey in Figure 4.3(a)).
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(a) Convergence Error. Nx has an optimum close to Nx = 200.
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Figure 4.3.: Nx Convergence. Simulations for Re = {300, 400, 500, 600} were performed for wave
numbers γ = {0.4, 0.6, 0.7, 0.8}, respectively.
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4.3.2. Ny Resolution

The convergence in y-direction was investigated analogously to that in x-direction (Section
4.3.1). Nx was fixed equal to 80 while Ny was varied from 40 to 250 in steps of 10. Again, x
is assumed to be underresolved, however in this case the limiting factor was available memory.
This issue is addressed later in Section 4.3.3. The base flow extraction locations correspond
to those used in Section 4.3.1. Figure 4.4(a) clearly shows a different behaviour than that in
x-direction. There seems to be no optimum. The solution converges continuously to some fixed
value.

29



Chapter 4. Valid., Charact. & Conv. 4.3.2. Ny Resolution

 

 

Re = 600
Re = 500
Re = 400
Re = 300

ε

Nx · Ny

103 104
10−8

10−7

10−6

10−5

10−4

10−3

(a) Convergence Error. Raising Ny monotonically makes the solution con-
verge.

c i

cr

Re = 300

Re = 400

Re = 500

Re = 600

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

−0.04

−0.02

0

0.02

0.04

0.06

(b) Spectrum. Eigenvalues S3 travel from cyan (low resolution) to magenta
(high resolution)

Figure 4.4.: Ny Convergence. Simulations for Re = {300, 400, 500, 600} were performed for wave
numbers γ = {0.4, 0.6, 0.7, 0.8}, respectively.
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4.3.3. Optimal Resolution and Limitations

Since the studies conducted above always had the issue of one under-resolved dimension another
approach was taken for analysing the influence of resolution on the solution. The goal was
to alternately raise Nx and Ny and thereby acquire an optimal resolution dependent on both
coordinate dimensions that could account for cross-influence of the Resolutions. In order to
do so, the resolution was altered as summarized in Table 4.3. The results were evaluated
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Figure 4.5.: Convergence error resulting from alternatively raising resolutions in x and y as listed in
Table 4.3. Simulations for Re = 300, Re = 400 and Re = 500 were performed for wave
numbers γ = 0.4, γ = 0.6 and γ = 0.7, respectively. The reason being preliminary
findings that suggested maximal growth rates lie around there.

by recording the convergence error (Equation (3.18)), shown in Figure 4.5 and by looking at
the eigenfunctions’ shapes shown in Figure 4.6. Based on these findings, it was decided that a
resolution of Nx = Ny = 150 provided a satisfactory number of grid points. Limitations of the
code are thus related to available memory. Computational time had already been reduced as far
as possible as mentioned in Section 4.2. By extrapolating the data acquired in Figure 4.2 this

Table 4.3.: Different resolutions used to find optimum.

Nx Ny

A 80 50
B 100 150
C 150 150
D 150 170
E 170 170
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Table 4.4.: Performance capacities of clusters on which the code was run. The possible resolutions
with respect to their memory limits are also listed. Resolutions marked green were
chosen for computation.

Cluster VENANT EIGER

Maximum total memory for one
node

64 GB 46 GB

Nx Ny Nx Ny

Possible resolutions

200 100 196 90
182 110 176 100
167 120 160 110
154 130 147 120
143 140 135 130

optimal resolution was estimated to take up between 62-87 GB of peak Memory depending on the
variable configuration (see Table 4.2). Clusters were searched that provided sufficient memory.
The computational clusters VENANT2 and EIGER3 were chosen to run variable configuration ‘5
local variables’ (for trade-off between time and memory) on a resolution of Nx = 154×Ny = 130
and Nx = 147 × Ny = 120, respectively. Their capacities and other possible resolutions are
summarized in Table 4.4.

2VENANT is a Rocks Cluster at IFD with three processor nodes, one of which is reserved for graphical jobs
and features a GPU. Each of the other two contain 16 2.3GHz processors that have access to 64GB of RAM.

3EIGER is a DALCO SUPERMICRO cluster at CSCS. Among others it houses 8 visualization nodes with
NVIDIA GeForce 285 GTX cards with 48GB of memory (46GB available). Source: cscs.ch.
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0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

δ = 4

4.5

5

(b)

 

 

Nx = 170, Ny = 170

Nx = 150, Ny = 170

Nx = 150, Ny = 150

Nx = 100, Ny = 150

Nx = 80, Ny = 50

|v̂
|/

m
a

x
|v̂

|

x
0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

(c)

 

 

Nx = 170, Ny = 170

Nx = 150, Ny = 170

Nx = 150, Ny = 150

Nx = 100, Ny = 150

Nx = 80, Ny = 50

y

|v̂|/max|v̂|
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

δ = 4

4.5

5

(d)

Figure 4.6.: Eigenfunction S3’s shapes for different resolutions at γ = 0.4, Re= 300, Lx = Ly = 15,
xhalf = Lx/2, yhalf = Ly/3.
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4.3.4. Domain Size Lx

The physical domain in the above sections of size Lx = Ly = 15 was extended in x to see the
effect on the physical solutions. The results are shown in Figures 4.7 and 4.8 for all of the
three disturbance velocity components û, v̂ and ŵ. It can be noted that the physical shape of
the modes changes very little with varying Lx. Minor differences can be made out where the
velocities’ gradients are higher, for example where û shows a dip in amplitude around x = 8 or
similarly so for v̂ around x = 6 and ŵ around x = 4. For too large Lx those features seem to be
smoothed out. This is explained by the fact that while the parameter Lx was varied in this study,
the resolution Nx was kept constantly equal to 147. So for larger Lx the ratio Nx

Lx
shrinks to a

point where the local resolution is not sufficient to fully resolve the finest features. On the other
hand, for too small Lx the applied boundary conditions seem to un-physically force the velocities
to zero. In fact, the exponential decay is only really apparent for Lx > 19. The location of the
eigenmodes in the spectrum did not change drastically, either. On the contrary, they seem to
be well converged. Their numerical values are summarized in Table 4.5. The values seem to

Table 4.5.: Eigenvalues for different values of Lx for eight significant digits.

Lx Mode S1 Mode S2

15 0.74955172 + 0.06021929 0.81543129 + 0.05336194
17 0.74930831 + 0.06009775 0.81544776 + 0.05334418
19 0.74926418 + 0.06007544 0.81545401 + 0.05334090
21 0.74925444 + 0.06007146 0.81545847 + 0.05333933
23 0.74925694 + 0.06007052 0.81546520 + 0.05333938
25 0.74925152 + 0.06006935 0.81547161 + 0.05333684

agree for four digits after the decimal point, with the exception of the values at Lx = 15 where
the boundary condition forcing is probably responsible for the higher deviation. Based on these
findings, for further simulations it was decided to employ a domain size of Lx = 20 × Ly = 15
in order to guarantee a more natural decay over x but still not risk to set the ratio Nx

Lx
too low.

This was combined with changing xhalf to Lx/3 in order to provide enough grid points around
the base flow vortex that the eigenmodes lie around.
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Figure 4.7.: Eigenfunctions of mode S1 for different Lx, with Re= 300, γ = 0.4, Ly = 15, Nx = 147,
Ny = 120, xhalf = Lx/2, yhalf = Ly/3, Ψ = ΨU , û(x = 0, y) = 0.
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Figure 4.8.: Eigenfunctions of mode S2 for different Lx, with Re= 300, γ = 0.4, Ly = 15, Nx = 147,
Ny = 120, xhalf = Lx/2, yhalf = Ly/3, Ψ = ΨU , û(x = 0, y) = 0.
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5. Results

In this chapter the obtained results are presented, i.e the eigenmodes of the secondary instability
are depicted. The base flow employed in solving the problem features counterrotating vortices
as primary disturbances that lead to the formation of streamwise streaks with a superimposed
secondary temporally fluctuating amplitude to cause modal disturbance growth.

Figure 5.1.: Flow field obtained from DNS. This figure neatly illustrates the flow evolution from
the primary vortices to streak formation to secondary modal growth and finally to
turbulence breakdown. [22]

For the sake of providing a clear picture, this section is subdivided into five parts. Section
5.1 shows the influence of the base flow modification with the streamfunction Ψ explained in
Section 2.3.1. It qualitatively and quantitatively assesses the errors stemming from that artificial
operation on the base flow. Section 5.2 shows the complex discrete eigenvalue spectrum and
outlines the characteristics of the individual solutions. It summarizes the results from a more
distant, broader view. Section 5.3 reports the eigenmodes more in-depth, detailing their unique
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features and pointing out their main attributes but also the limiting factors of the analysis.
Both Sections 5.2 and 5.3 will lay down the dependencies of the solutions on various physical
quantities, such as

• the streamfunction Ψ,

• the wavenumber γ,

• the BCs for û(x = 0, y),

• the extraction location zextr.

In Section 5.4, the eigenmodes are presented in a three-dimensional illustration. Eventually, in
the last part in Section 5.5 a comparison is presented with the results of a 2002 dissertation by
Wintergerste [39].

5.1. Base Flow Discrepancy

As mentioned in Sections and 2.4, the stability equations (3.12) are derived under the assump-
tion of a self-similar flow along the attachment line independent of the span-wise downstream
coordinate z. However, it is also mentioned in Section 2.3.1 that the base flow obtained from
DNS does not fulfill this assumption. For the solution of the eigenvalue problem (3.10) there
are thus two possibilities of of coping with this conflict:

A) neglect the small dependence of the base flow in z, utilizing the fact that the flow is
extracted at a location with locally minimal dependence on z (according to Equation
(2.22)). This solution thus describes one of a “weakly non-parallel” assumption and is
referred to as being ‘unrelaxed’,

B) modify the base flow according to Equations (2.25) and (2.26) with a weight χ ∈ [0, 1].
This solution with the modified base flow is referred to as being ‘relaxed’.

The resulting divergence according to Equation (2.22) is displayed for case A) and different types
of case B) in Table 5.1. Essentially, it can not be said that either one of these alternatives is the
‘correct’ one. It is shown later, however, that the qualitative results are obtained independent
of the choice of the procedure.

Table 5.1.: Divergence of relaxed and unrelaxed base flow

Streamfunction

Location ΨU ΨUV ΨV unrelaxed

z = 94 2.2732e-15 2.2834e-15 2.2312e-15 3.2779e-05
z = 159 2.2763e-15 2.2693e-15 2.3057e-15 2.9660e-05

From the results that are presented in the subsequent sections, it can be said that there is usually
nonetheless a small visible effect on the solutions of the eigenvalue problem when the base flow
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is relaxed so as to conform to the two-dimensional continuity equation. It is also apparent,
however, that there sometimes is a noticeable discrepancy in the respective results and that the
unrelaxed solution best agrees with the solution of a relaxation weight of χ = 1 (Ψ = ΨU). This
Section thus tries to shed some light into why there is such disagreement between the individual
outcomes. For this purpose, the relative local errors of the base flow components U and V (W
remains unchanged) were calculated. Obviously, errors are greatest when a velocity is derived
from the streamfunction of its counterpart, i.e. U from ΨV or V from ΨU . These errors are
graphically illustrated in logarithmic contour plots in Figure 5.2. For a better comparison of

Table 5.2.: Quantitative local error integrals that result from forcing the base flow to satisfy the
two-dimensional continuity equation. The values are obtained by integrating the local
relative errors over x and y.

Streamfunction

Velocity component ΨU ΨUV ΨV unrelaxed

(Uunrel − Urel)/Uunrel 6.793112e-04 2.926029e02 5.852064e02 —
(Vunrel − Vrel)/Vunrel 4.055024e-01 2.024120e-01 2.593498e-03 —

the created errors, the relative local errors were integrated over the x − y-plane and tabulated
in Table 5.2. It was noticed that U is affected much stronger by a derivation from ΨV than V
is from ΨU . In fact, the error is around 1500 times greater. This fact combined with the actual
locations of the highest absolute values of the errors (the top plot in Figure 5.2 shows that there
is a significant error concentration right along the boundary layer edge and within the boundary
layer itself) most probably is the reason for the inconsistency.
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Figure 5.2.: Relative local errors in the base flow at zextr = 94 resulting from making the 3D base
flow divergence-free in two dimensions. Here the two largest errors are shown. The
top shows the local error relative to a non-relaxed BF for the component U when it
is relaxed with the streamfunction ΨV of the component V . The bottom shows the
local error relative to a non-relaxed BF for the component V when it is relaxed with
the streamfunction ΨU of the component U . The plot is logarithmically presented and
the color bars feature orders of magnitude.
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5.2. The Discrete Spectrum

5.2.1. The Influence of the Streamfunction Ψ

From the solution of the eigenvalue problem with boundary condition û(x = 0, y) four distinct
symmetric discrete eigenmodes were found. They are labeled with the prefix S and numbered
starting with the highest imaginary part of their eigenvalue. The modes are presented in Figure
5.3 for different base flows.
Mode S1 is the most unstable and the fastest of the symmetric modes. Its phase speed is rather
constant at around cr = 0.86. Mode S2 shows about half the growth rate of Mode S1 with a
growing phase speed for increasing γ. It is the second fastest of the symmetric modes. Modes
S3 and S4 both are stable at different phase speeds with S3 being the slower of the two. By
changing the base flow, both growth rates and phase speeds are altered.
It is observed that mode S3 and mode S4 are intertwined in the spectrum and that, especially
for the base flow ΨV , their branches show a relatively large leap where they meet. The question
arises whether these two modes might actually constitute one single mode.
Growth rates rise without exception the more the streamfunction Ψ contains ΨV (corresponding
to a weight χ = 0). Phase speeds are affected very individually, i.e. mode S1 and mode S4

show very little difference in cr and mode S2 loses whereas mode S3 gains in speed.
The locations of the modes around the base flow vortex are shown in contour plots in Figures 5.4-
5.7. Both unstable modes lie on the outer upper flank of the vortex, mode S1 being slightly atop
mode S2. The stable modes lie on the outer lower flank of the vortex, while mode S3 extends
further underneath the vortex. Generally, it can be followed that for increasing phase speed the
modes wander from underneath the vortex to its outer flank along its spinning direction up to
its top.
The influence of the base flow streamfunction Ψ (or the weight χ) seems to be least when the
flow is relaxed with weigth χ = 1. The more component ΨV is added the more the base flow
and thus the eigenmodes become distorted. Thus, ΨU creates the smallest deviation from the
unrelaxed base flow solution. It was shown in Section 5.1 that this is indeed the case.
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Figure 5.3.: Eigenspectrum for a baseflow of Re= 300 extracted at zextr = 94 for parameters
Lx = 20, Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4)
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Figure 5.4.: Shapes of eigenmode S1 for various Ψ at zextr = 94 for Re = 300, γ = 0.6, Lx = 20,
Ly = 15, Nx = 147, Ny = 120, xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
Top: ΨU , Second Row: ΨU+V , Third Row: ΨV , Bottom: unrelaxed. White equals 0
and red equals 1.

43



Chapter 5. Results 5.2.1. The Influence of the Streamfunction Ψ

xxx

y
y

y
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Figure 5.5.: Shapes of eigenmode S2 for various Ψ at zextr = 94 for Re = 300, γ = 0.6, Lx = 20,
Ly = 15, Nx = 147, Ny = 120, xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
Top: ΨU , Second Row: ΨU+V , Third Row: ΨV , Bottom: unrelaxed. White equals 0
and red equals 1.
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Figure 5.6.: Shapes of eigenmode S3 for various Ψ at zextr = 94 for Re = 300, γ = 0.6, Lx = 20,
Ly = 15, Nx = 154, Ny = 130, xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
Top: ΨU , Second Row: ΨU+V , Third Row: ΨV , Bottom: unrelaxed. White equals 0
and red equals 1.
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Figure 5.7.: Shapes of eigenmode S4 for various Ψ at zextr = 94 for Re = 300, γ = 0.6, Lx = 20,
Ly = 15, Nx = 154, Ny = 130, xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
Top: ΨU , Second Row: ΨU+V , Third Row: ΨV , Bottom: unrelaxed. White equals 0
and red equals 1.
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5.2.2. The Influence of the Wave Number γ

The branches of the eigenmodes in the spectrum were already shown in Figure 5.3. Here they
are presented in the γ − ci plane. Figure 5.8(a) shows the branches of the unstable symmetric
eigenmodes S1 and S2 and Figure 5.8(b) those of the damped symmetric eigenmodes S3 and
S4. Unfortunately, the branches become somewhat frayed below γ = 0.3 as marked in grey.
This is mainly due to the solution domain being too small. This issue is addressed below in
Section 5.3.2. However, for γ > 0.3 in agreement with the findings above, especially for the
damped modes, the relaxed solution which best follows the unrelaxed one is that with weight
χ = 1. Moreover, mode S1 shows an exceptionally little dependence on the weight χ and it is
unstable for a broader range of wavenumbers γ than mode S2. Due to the fraying, the peak
of mode S1 unfortunately could not be recovered but if the ΨU branch can be considered as
a hint it should come to lie around γ = 0.1. Further, it can be stated that modes S2 and S3

peak at a similar wavenumber of γ ≈ 0.3. Mode S4 show its peak at a higher value, namely for
0.8 < γ < 1. As will be shown in Section 5.3.2, S4 also is affected by the limited domain size
Lx for a certain wavelength. It holds true also with this mode that for longer wavelengths the
boundary forcing plays a non-negligible role. The only mode in this case not affected by it is
mode S3. Due to its location underneath the vortex, the remaining distance to the quasi-infinite
boundary is great enough for a ‘natural’ decay.

47



Chapter 5. Results 5.2.2. The Influence of the Wave Number γ

c i

γ

S2

S1

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(a)

 

 

c i

γ

S4

S3

0 0.2 0.4 0.6 0.8 1 1.2
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

(b)

Figure 5.8.: Recovered eigenmodes’ growth rates vs. γ for Re = 300 at zextr = 94 for parameters
Lx = 20, Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4)
and xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0. The colors represent: —ΨU ,
—ΨU+V , —ΨV , —unrelaxed.

48



Chapter 5. Results 5.2.3. The Influence of the BCs for û(x = 0, y)

5.2.3. The Influence of the BCs for û(x = 0, y)

The BCs 2.32 were changed from û(x = 0, y) = 0 (Dirichlet) to ∂2/∂x2û(x = 0, y) = 0 in order
to allow more degrees of freedom to the solution and allow for antisymmetric modes as for odd
forcing. Indeed, there was a new mode that appeared. Subsequently, it will be labeled A1, the
prefix signifying ‘antisymmetric’. This mode has a non-zero û component at x = 0, allowing for
a chord-wise ‘gust’. Its contours are presented in Figure 5.11. The phase speed becomes negative
for large wavelengths. An explanation for this is the fact that the wavenumber vector is of an
arbitrary oblique direction, whose projection upon the z-direction becomes negative when the
spanwise wavenumber γ reduces. The symmetric modes S1-S4 were again recovered with very
good agreement to the original BC solutions. There is no apparent difference in their qualitative
shapes as they remain like the ones shown in Figures 5.4-5.7 (see Appendix C). Their position
in the spectrum remains unchanged as well. The spectrum is presented in Figure 5.9 and their
branches along γ in Figure 5.10. A1 has the highest growth rate, thus showing the highest
affinity to instability with its peak at γ ≈ 0.5. Again, the variation of the base flow (different
Ψ) has a minor effect on the solution.
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Figure 5.9.: Eigenspectrum for a baseflow of Re= 300 extracted at zextr = 94 for parameters
Lx = 20, Ly = 15, Nx = 147, Ny = 120 (S1, S2, A1), Nx = 154, Ny = 130 (S3, S4)
and xhalf = Lx/3, yhalf = Ly/3 and BC ∂2/∂x2û(x = 0, y) = 0. The branches are
a result of varying the wavenumber γ. The colors represent: —ΨU , —ΨU+V , —ΨV ,
—unrelaxed.
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Figure 5.10.: Recovered eigenmodes’ growth rates vs. γ for Re = 300 at zextr = 94 for parameters
Lx = 20, Ly = 15, Nx = 147, Ny = 120 (S1, S2, A1), Nx = 154, Ny = 130
(S3, S4) and xhalf = Lx/3, yhalf = Ly/3 and BC ∂2/∂x2û(x = 0, y) = 0. The colors
represent: —ΨU , —ΨU+V , —ΨV , —unrelaxed.
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Figure 5.11.: Shapes of eigenmode A1 for various Ψ at zextr = 94 for Re = 300, γ = 0.6, Lx = 20,
Ly = 15, Nx = 147, Ny = 120, xhalf = Lx/3, yhalf = Ly/3 and BC ∂2/∂x2û(x =
0, y) = 0. Top: ΨU , Second Row: ΨU+V , Third Row: ΨV , Bottom: unrelaxed.
White equals 0 and red equals 1.
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5.2.4. The Influence of the Extraction Location zextr

The absolute minimum of Wb,z lies at z ≈ 159. While good for physical correctness of the
equations, the location lies in the midst of modal growth and the vortices have moved further
apart. However, if discrete modes were actually identifiable at the upstream location then
eigenmodes of similar shape ought to be observable also further downstream. With that in
mind, simulations were run at a downstream location of zextr = 159 compared to the above of
zextr = 94.
Indeed, at the new location the modes were qualitatively recovered, however, their growth rates
differ. At this downstream location the vortices have moved further apart and the IMPACT
base flow features a noticeable secondary modal growth when looking at a spectral energy
decomposition like the one in Figure B.5, Appendix B. Only modes S1-S4 were recovered because
the boundary condition was not altered from û(x = 0, y) = 0. While the modes still have about
the same phase speeds, mode S2 here presents higher growth rates than mode S1, in contrast to
the above as can be seen in Figure 5.12 and Figure 5.17. Mode S4 seems to become unstable for
a wavenumber of γ ≈ 0.25 when computed with a weight of χ = 0 (ΨV ), shifting its maximum
growth rate to lower γ. The shapes of all modes are well recognizable in Figures 5.13-5.16. For
the same wavelength, though, modes S1 and S2 have moved closer to the top of the vortex.
Again, numerical convergence was obtained only for γ > 0.3, while the quantitative resolution
for lower values was limited by the issue of the too close quasi-infinite boundary at x = Lx. The
region of interest is again marked in grey in 5.17(a).
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Figure 5.12.: Eigenspectrum for a baseflow of Re= 300 extracted at zextr = 159 for parameters
Lx = 20, Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4)
and xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0. The branches are a
result of varying the wavenumber γ. The colors represent: —ΨU , —ΨU+V , —ΨV ,
—unrelaxed.
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Figure 5.13.: Shapes of eigenmode S1 for various Ψ at zextr = 159 for Re = 300, γ = 0.6, Lx = 20,
Ly = 15, Nx = 147, Ny = 120, xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
Top: ΨU , Second Row: ΨU+V , Third Row: ΨV , Bottom: unrelaxed. White equals 0
and red equals 1.
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Figure 5.14.: Shapes of eigenmode S2 for various Ψ at zextr = 159 for Re = 300, γ = 0.6, Lx = 20,
Ly = 15, Nx = 147, Ny = 120, xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
Top: ΨU , Second Row: ΨU+V , Third Row: ΨV , Bottom: unrelaxed. White equals 0
and red equals 1.
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Figure 5.15.: Shapes of eigenmode S3 for various Ψ at zextr = 159 for Re = 300, γ = 0.6, Lx = 20,
Ly = 15, Nx = 154, Ny = 130, xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
Top: ΨU , Second Row: ΨU+V , Third Row: ΨV , Bottom: unrelaxed. White equals 0
and red equals 1.
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y

0 100 100 10
0

δ

0

δ

0

δ

0

δ

Figure 5.16.: Shapes of eigenmode S4 for various Ψ at zextr = 159 for Re = 300, γ = 0.6, Lx = 20,
Ly = 15, Nx = 154, Ny = 130, xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
Top: ΨU , Second Row: ΨU+V , Third Row: ΨV , Bottom: unrelaxed. White equals 0
and red equals 1.
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Figure 5.17.: Recovered eigenmodes’ growth rates vs. γ for Re = 300 at zextr = 159 for parameters
Lx = 20, Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4)
and xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0. The colors represent: —ΨU ,
—ΨU+V , —ΨV , —unrelaxed.
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5.3. The Discrete Eigenfunctions

5.3.1. The Influence of the Streamfunction Ψ

Figure 5.18 shows the four symmetric eigenmodes recovered for boundary conditions û(x =
0, y) = 0. For each mode the four distinct solutions that emerge from the different base
flow relaxations are presented. The data is taken at the same wave number γ = 0.6 for
all modes and the figures show all velocity components for a certain Ψ. The eigenfunctions
|û|, |v̂| and |ŵ| are normalized with respect to the maximum of a local vector norm φ =
max||(|û(x, y)|, |v̂(x, y)|, |ŵ(x, y)|)T || and plotted through their respective maximum to yield a
relative comparison between them. The x coordinate of the maximum of each component is
annotated in the plots.
It is apparent that the most prominent velocity component is the spanwise |ŵ| followed by |û|
and |v̂| in that order. The influence of the streamfunction Ψ shows that for decreasing weight
χ (increasing amount of ΨV ) all modes’ but S4’s maxima move up towards the boundary layer
edge. Simultaneously, for the same trend of χ the maxima tend to shift to lower x. Some of the
solutions feature outliers in terms of their maximum location, where the base flow was altered
in the extent to where that location would shift. These outliers are max|v̂(x, y)| of mode S1 for
ΨU or max|û(x, y)| of mode S4 for ΨV or max|v̂(x, y)| of mode S4 for the unrelaxed case. These
nuances can also be looked up in Figures 5.4-5.7 which are presented for the same parameters.
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|û|,|v̂|,|ŵ|
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(d) Mode S4

Figure 5.18.: Symmetric eigenmodes’ velocity profiles over y for different Ψ. The velocities are
normalized with φ = max||(û, v̂, ŵ)|| and plotted through their respective maxima.
Parameters hereof are Re = 300, γ = 0.6 at zextr = 94, Lx = 20, Ly = 15, Nx =
147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4) and xhalf = Lx/3, yhalf =
Ly/3 and BC û(x = 0, y) = 0.The colors represent: —ΨU , —ΨU+V , —ΨV , —
unrelaxed. Solid line: |û|, dashed-dotted line: |v̂|, dashed line: |ŵ|.
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5.3.2. The Influence of the Wave Number γ

Figure 5.19 illustrates how the symmetric eigenfunctions’ velocities S1-S4 shift in dependence
of γ. The plots feature data from three different wave numbers in equal steps. Modes S1-S3

are shown for γ = {0.4, 0.6, 0.8} and mode S4 for γ = {0.6, 0.8, 1.0} the modes are again plotted
through their respective maxima and normalized with the same maximum vector norm φ. Mode
S1 travels towards the edge of the boundary layer for increasing wavenumbers. At the same
time, component |ŵ| loses in amplitude while |û| and |v̂| gain somewhat. |v̂| develops a second
peak below its original maximum that eventually also replaces the latter. |ŵ| also develops a
new feature in form of a little peak just above the boundary layer edge. Mode S2 has the
same tendency of travelling to the boundary layer edge for increasing γ, however its qualitative
shape remains the same. The velocity components show the same behaviour, shifting amplitude
from |ŵ| to the components |û| and |v̂|. Mode S3 moves its maxima closer to the boundary
as γ increases, manifesting an opposite behavior to the two unstable symmetric modes. Very
prominent is the fact, that |û| has a strong increase in amplitude, about doubling its value
and showing a very distinct peak close to the boundary for higher γ. Mode S4 shows similar
behavior to that of mode S3. The above descriptions while only presented for Ψ = ΨU hold for
all χ and can be looked up in Appendix C for the other scenarios. The qualitative tracks of the
|ŵ|-maxima under a γ variation with respect to the base flow can be examined in Figure 5.20 for
all relaxation scenarios. The arrows follow the streamlines of the base flow vortex which has its
center at around (x ≈ 3, y ≈ 2.5). It can be generally remarked that the unstable modes S1 and
S2 show greater variation of their maximum loci by travelling a longer distance upwards. The
stable modes on the other hand seem more stationary with the tendency of moving downward.
In any case, the agreement of the solution for different relaxations is very good.

At this point a remark on the numerical convergence for γ ≤ 0.3 is in order. A limiting factor
for the solution of the eigenvalue problem for small γ was the location of the quasi-infinite
boundary x = Lx. For the modes lying on the outer flank of the vortex the value of Lx proved
to be too small and hence the boundary forcing influenced the solution inside the domain by
a considerable amount. To illustrate this, modes’ S1 and S2 |û| component is averaged over y
inside the boundary layer and logarithmically plotted in Figure 5.21. Clearly it is visible that
for wave numbers γ . 0.3 the solution bulges out close to the boundary x = Lx. For the lowest
γ the influence is noticeable even further inside the boundary. Mode S4 is affected by this
problem as well. As one can see in Figure 5.22, there is alarge change in the exponential decay
rate between γ = 0.8 and γ = 0.7. While this may be of physical nature, the fact that reducing γ
further to the value of 0.6 leads to irregularities inside the domain, most likely signals a domain
that is too small. Figures 5.21 and 5.22 show an average of |û| divided by max|û| derived with
a relaxation with ΨU , it is however representative for all Ψ since these effects held true.
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Figure 5.19.: Symmetric eigenmodes’ velocity profiles over y for varying γ and a relaxation with
ΨU (χ = 1). The velocities are normalized with φ = max||(û, v̂, ŵ)|| and plotted
through their respective maxima. Parameters hereof are Re = 300 at zextr = 94,
Lx = 20, Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4)
and xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0. Top: S1, second row: S2,
third row: S3, bottom: S4.
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Figure 5.20.: Tracks of the maximum values of |ŵ| of the symmetric eigenmodes under varying γ
for different relaxations. Parameters were set to Re = 300 at zextr = 94, Lx = 20,
Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4) and
xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0. The colors represent: —ΨU ,
—ΨU+V , —ΨV , —unrelaxed.
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(a) Mode S1 averaged over 0 ≤ y ≤ 3.5
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(b) Mode S2 averaged over 0 ≤ y ≤ 3.5

Figure 5.21.: The unstable modes’ S1 and S2 decay along x is influenced at the far-field boundary
as γ approaches smaller values. There is a noticeable overshoot at the domain edge
for γ . 0.3. These simulations were run for parameters Re = 300 at zextr = 94,
Ψ = ΨU (χ = 1), Lx = 20, Ly = 15, Nx = 147, Ny = 120 and xhalf = Lx/3,
yhalf = Ly/3 and BC û(x = 0, y) = 0.
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Figure 5.22.: Mode S4 averaged over y ∈ [0, 3.5]. The stable mode S4’s decay along x is influenced
at the far-field boundary as γ approaches smaller values. There is a noticeable over-
shoot at the domain edge for γ . 0.7. These simulations were run for parameters
Re = 300 at zextr = 94, Ψ = ΨU (χ = 1), Lx = 20, Ly = 15, Nx = 154, Ny = 130
and xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
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5.3.3. The Influence of the BCs for û(x = 0, y)

By changing the boundary condition at x = 0 from û(x = 0, y) = 0 to ∂2û/∂x2(x = 0, y) = 0
a new antisymmetric mode was recovered that is herein referred to as A1. The symmetric
modes from Section 5.3.1 have also been analysed under these new boundary conditions and
their response to the various parameters did not differ significantly from the already presented
results. The plots for them are attached in Appendix C.
The shapes of the A1 eigenfunctions |û|, |v̂| and |ŵ| are shown in Figure 5.23. They are again
normalized by the maximum vector norm φ so that relative proportions are visible. Unlike with
the symmetric eigenmodes, where the most prominent velocity component was the spanwise |ŵ|,
eigenmode A1 exhibits a stronger |û| component. However, both |û| and |ŵ| lie in a comparable
order of magnitude, only |v̂| shows a much smaller amplitude. Out of all recovered modes, A1’s
|û| and |ŵ| clearly peak at the lowest y values. The velocity component |v̂| seems to reach its
maximum right around the boundary layer edge. In fact, all velocity components peak in the
symmetry plane right in front of the attachment line at x = 0. In Figure 5.24 the profiles for
different γ are portrayed. All velocity components are plotted for parameter γ = {0.6, 0.8, 1.0}.
The components û and ŵ both have their peaks lifted from the wall as γ increases. û additionally
develops its second peak to a higher magnitude. The normal component has a tendency to
lose some of its energy to the other two components. Those get more concentrated inside the
boundary layer with decreasing wavelength. Although there is some movement of the velocities’
peaks when altering γ it is bounded relatively well as can be observed in Figure 5.25. Here, the
influence of the different base flows is exceptionally small.

To complete the picture of the eigenmodes’ characteristics they are presented in a logarithmic
plot in Figure 5.26 as a function of x and y. The illustration shows the exponentially decaying
nature of the individual modes, which was one of the criterions for identifying a discrete mode.
It further highlights the good agreement between the two boundary conditions. Irrespective
of the boundary conditions the modes feature the same decay rates and characteristics. Only
do they deviate at the location of the boundary where the boundary condition was altered
(x = 0). One solution is forced to zero, while the other accepts an arbitrary constant value. It
is important to point out that there is a small exception where eigenmode S3 displays a slightly
different decay rate in y for the different boundary conditions above y ≈ 5. This phenomenon
has been observed for certain parameter configurations with the remaining modes, too. It is
thus not justified to say that changing the boundary condition at x = 0 for û(x = 0, y) would
leave the solution completely unaltered. Still, qualitatively the two configurations preserve the
characteristic features of the solutions. Regardless of the BCs at x = 0, symmetric modes with
almost identical shapes, phase speeds and growth rates could be observed.
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Figure 5.23.: Antisymmetric eigenmode’s velocity profiles over y for different Ψ. The velocities are
normalized with φ = max||(û, v̂, ŵ)|| and plotted through their respective maxima.
Parameters hereof are Re = 300, γ = 0.6 at zextr = 94, Lx = 20, Ly = 15, Nx =
147, Ny = 120 and xhalf = Lx/3, yhalf = Ly/3 and BC ∂2/∂x2û(x = 0, y) = 0.The
colors represent: —ΨU , —ΨU+V , —ΨV , —unrelaxed. Solid line: |û|, dashed-dotted
line: |v̂|, dashed line: |ŵ|.
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|û|

y γ

γγ

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1
0

δ

5

Figure 5.24.: Antisymmetric eigenmode’s velocity profiles over y for varying γ and a relaxation
with ΨU (χ = 1). The velocities are normalized with φ = max||(û, v̂, ŵ)|| and plotted
through their respective maxima. Parameters hereof are Re = 300 at zextr = 94,
Lx = 20, Ly = 15, Nx = 147, Ny = 120 and xhalf = Lx/3, yhalf = Ly/3 and BC
∂2/∂x2û(x = 0, y) = 0.
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Figure 5.25.: Tracks of the maximum values of |ŵ| of the antisymmetric eigenmode under varying
γ for different relaxations. Parameters were set to Re = 300 at zextr = 94, Lx = 20,
Ly = 15, Nx = 147, Ny = 120 and xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) =
0. The colors represent: —ΨU , —ΨU+V , —ΨV , —unrelaxed.
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Figure 5.26.: Logarithmic Plots showing the exponential decay of all modes at zextr = 94 for two
different boundary conditions and γ = 0.8. The modes generally agree very well
whether û is forced to zero or not.
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5.3.4. The Influence of the Extraction Location zextr

As mentioned above, the symmetric eigenmodes S1-S4 were recovered further downstream at
zextr = 159. Looking at their velocity components in Figure 5.27 the differences to the upstream
location zextr = 94 become evident. Mode S1 has moved to greater y and now peaks just around
δ. The same can be stated about mode S2 that now has its peak just below the boundary layer
edge. The stable modes stay at comparable locations but still have a slight tendency of having
moved to higher y compared to the upstream location. Comparable conclusions can also be
drawn by looking at the maxima loci in Figure 5.30. Eigenmode S3’s |û| has moreover developed
quite a prominent peak feature closer to the wall.
The results for the upstream location (see Section 5.3.1) regarding the base flow still remain
valid. As χ decreases (ΨU → ΨV ), the maximas tend towards lower x and higher y, except, like
above, those of S4.
In a general comparison between locations zextr = 94 and zextr = 159, it seems as though the
normal components amplitude slightly rises in expense of the span-wise component’s as can be
read from Figure 5.28. The dependence on γ seems only to coincide with the upstream location’s
results for Modes S2 and S3. Although slightly different in shape, their behavior remains
practically unchanged. Modes S1 and S4, however, show different tendencies as depicted in
Figure 5.29. The former’s maximum now seems to drift very little, with the most movement
noticeabel in |û| and the latter, whereas before it was moving closer to the wall with increasing
γ, it now shifts the opposite way, i.e. to higher y values.
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(b) Mode S2
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(c) Mode S3
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|û|,|v̂|,|ŵ|
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(d) Mode S4

Figure 5.27.: Symmetric eigenmodes’ velocity profiles over y for different Ψ. The velocities are
normalized with φ = max||(û, v̂, ŵ)|| and plotted through their respective maxima.
Parameters hereof are Re = 300, γ = 0.6 at zextr = 159, Lx = 20, Ly = 15,
Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4) and xhalf = Lx/3,
yhalf = Ly/3 and BC û(x = 0, y) = 0.The colors represent: —ΨU , —ΨU+V , —ΨV ,
—unrelaxed. Solid line: |û|, dashed-dotted line: |v̂|, dashed line: |ŵ|.
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y

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1
0

δ

5

0

δ

5

0

δ

5

0

δ

5

Figure 5.28.: Symmetric eigenmodes’ velocity profiles for different zextr. The dark profile repre-
sents the location zextr = 94, the light profile is further downstream at zextr = 159.
The velocities are normalized with φ = max||(û, v̂, ŵ)|| and plotted through their
respective maxima. Parameters hereof are Re = 300, ΨU , γ = 0.6, Lx = 20, Ly = 15,
Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4) and xhalf = Lx/3,
yhalf = Ly/3 and BC û(x = 0, y) = 0.
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Figure 5.29.: Symmetric eigenmodes’ velocity profiles over y for varying γ and a relaxation with
ΨU (χ = 1). The velocities are normalized with φ = max||(û, v̂, ŵ)|| and plotted
through their respective maxima. Parameters hereof are Re = 300 at zextr = 159,
Lx = 20, Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4)
and xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
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Figure 5.30.: Tracks of the maximum values of the w component of the symmetric eigenmodes
under varying γ for different relaxations. Parameters were set to Re = 300 at zextr =
159, Lx = 20, Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130
(S3, S4) and xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0. The colors
represent: —ΨU , —ΨU+V , —ΨV , —unrelaxed.
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5.4. Three-Dimensional Illustrations and λ2 Isosurfaces

For better visualization of the eigenmodes they are shown in a three-dimensional illustration in
this section. Each mode is presented in Figures 5.31-5.35 where its velocity components’ real
parts are displayed over two periods alongside the base flow vortex core which is identified with
the λ2-eigenvalues of the flow (see Appendix A). Additionally there are figures for each mode
that display the λ2 eigenvalue isosurfaces of the base flow with the superimposed respective
mode. The λ2 eigenvalues were computed according to Appendix A. The eigenvalue isosurfaces
are colored with the local velocity field. For the unstable modes A1, S1 and S2 three different
amounts of disturbance A are shown. The smallest amount lies in the range in which the
disturbance shows itself in the DNS. The two greater values are attached to provide an idea of
the disturbance growth over time. The two unstable symmetric modes (Figures 5.37 and 5.38)
eventually develop vortices that close on top of the base flow vortex, which itself has broken
up. The unstable antisymmetric mode in Figure 5.36 also breaks up the base flow vortex but
develops vortices on the outer flank of that original vortex. It also features alternating patched
of fast and slow fluid in the symmetry plane above the attachment line. The illustrations of
high amplitude A = 25 are per se not physically correct because under usual circumstances non-
linear effect would have started affecting the flow, creating a different image. They are simply
presented to give an idea of what the disturbances themselves look like. Modes S3 (Figure 5.39)
and S4 (Figure 5.40) since they are of damped nature are only presented here superimposed on
the base flow with A = 0.01. Blue always corresponds to the respective minimum velocity and
red to the respective maximum. In case of the unstable modes these colors do not relate the
velocity field over the different amplitude isosurfaces. In fact, the minimum normalized velocity
for both A = 0.01 and A = 0.1 lies around zero, whereas for A = 25 it lies near −1. The
coloring was chosen this way because the difference in velocity magnitude is in fact three orders
of magnitude which does not allow for fine enough gradients at low amplitudes A.
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Figure 5.31.: Three-dimensional illustration of the asymmetric mode’s A1 velocity components for a wavenumber of γ = 0.6. They
are individually normalized and isosurface of {0.25, 0.35, 0.45, 0.55, 0.65} are shown. The baseflow vortex λ2 = −0.001
isosurface is shown in blue. Parameters are Re = 300 at zextr = 94, Lx = 20, Ly = 15, Nx = 147, Ny = 120 and
xhalf = Lx/3, yhalf = Ly/3 and BC ∂2/∂x2û(x = 0, y) = 0.
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Figure 5.32.: Three-dimensional illustration of the symmetric mode’s S1 velocity components for a wavenumber of γ = 0.6. They
are individually normalized and isosurface of {0.25, 0.35, 0.45, 0.55, 0.65} are shown. The baseflow vortex λ2 = −0.001
isosurface is shown in blue. Parameters are Re = 300 at zextr = 94, Lx = 20, Ly = 15, Nx = 147, Ny = 120 and
xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
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Figure 5.33.: Three-dimensional illustration of the symmetric mode’s S2 velocity components for a wavenumber of γ = 0.6. They
are individually normalized and isosurface of {0.25, 0.35, 0.45, 0.55, 0.65} are shown. The baseflow vortex λ2 = −0.001
isosurface is shown in blue. Parameters are Re = 300 at zextr = 94, Lx = 20, Ly = 15, Nx = 147, Ny = 120 and
xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
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Figure 5.34.: Three-dimensional illustration of the symmetric mode’s S3 velocity components for a wavenumber of γ = 0.6. They
are individually normalized and isosurface of {0.25, 0.35, 0.45, 0.55, 0.65} are shown. The baseflow vortex λ2 = −0.001
isosurface is shown in blue. Parameters are Re = 300 at zextr = 94, Lx = 20, Ly = 15, Nx = 147, Ny = 120 and
xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
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Figure 5.35.: Three-dimensional illustration of the symmetric mode’s S4 velocity components for a wavenumber of γ = 0.6. They
are individually normalized and isosurface of {0.25, 0.35, 0.45, 0.55, 0.65} are shown. The baseflow vortex λ2 = −0.001
isosurface is shown in blue. Parameters are Re = 300 at zextr = 94, Lx = 20, Ly = 15, Nx = 147, Ny = 120 and
xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
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Figure 5.36.: λ2 = −0.0002 eigenvalue isosurfaces of the base flow with superimposed disturbance A1 for different amounts A
of disturbance over a total of six periods. Parameters are γ = 0.6, Re = 300 at zextr = 94, Lx = 20, Ly = 15,
Nx = 147, Ny = 120 and xhalf = Lx/3, yhalf = Ly/3 and BC ∂2/∂x2û(x = 0, y) = 0.
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Figure 5.37.: λ2 = −0.0002 eigenvalue isosurfaces of the base flow with superimposed disturbance S1 for different amounts A
of disturbance over a total of six periods. Parameters are γ = 0.6, Re = 300 at zextr = 94, Lx = 20, Ly = 15,
Nx = 147, Ny = 120 and xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
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Figure 5.38.: λ2 = −0.0002 eigenvalue isosurfaces of the base flow with superimposed disturbance S2 for different amounts A
of disturbance over a total of six periods. Parameters are γ = 0.6, Re = 300 at zextr = 94, Lx = 20, Ly = 15,
Nx = 147, Ny = 120 and xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
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Figure 5.39.: λ2 = −0.0002 eigenvalue isosurfaces of the base flow with superimposed disturbance
S3 (A = 0.01) over two periods. Parameters are γ = 0.6, Re = 300 at zextr = 94,
Lx = 20, Ly = 15, Nx = 147, Ny = 120 and xhalf = Lx/3, yhalf = Ly/3 and BC
û(x = 0, y) = 0.
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Figure 5.40.: λ2 = −0.0002 eigenvalue isosurfaces of the base flow with superimposed disturbance
S4 (A = 0.01) over two periods. Parameters are γ = 0.6, Re = 300 at zextr = 94,
Lx = 20, Ly = 15, Nx = 147, Ny = 120 and xhalf = Lx/3, yhalf = Ly/3 and BC
û(x = 0, y) = 0.
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5.5. Comparison with Wintergerste [39]

This chapter compares the results of this thesis by results previously acquired in literature. In
particular, it gives a comparison to the eigenmodes derived in the dissertation by T. Wintergerste
[39].

In his work he solved a bi-global stability problem for the late states of transition of a three-
dimensional boundary layer. His base flow consisted of co-rotating crossflow vortices with a
small disturbance. In his results he identified three distinct unstable modes, which he could
track in the spectrum. He more thoroughly described the two most unstable ones shown in
Figure 5.41, which were labeled Mode I and Mode II. While his initial problem is not the same
as the one dealt with in this present thesis, it is still apparent that the two solution show
some similarities. Wintergerste’s Mode I shows a qualitatively similar shape as does Mode S1

herein. Moreover, Wintergerste’s Mode II shows an even closer resemblance to damped Mode
S3. Evidently, the circumstances of the two sources are not in any way directly comparable as
none of the parameters agree and neither do the coordinate system orientations. However, it
would be interesting to qualitatively compare the two results, since the flow in any case originates
in front of the attachment line from where it travels along the streamlines onto the wing surface.
Given a small enough disturbance at the attachment line, the flow might stay laminar or in
transition until it reaches that downstream location and perhaps preserve its modal growth.
Such a detailed analysis will not be conducted here, since it would exceed the scope of the
thesis, rather this chapter should serve as a motivation for further investigation.
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(a) Mode I

(b) Mode II

Figure 5.41.: Modes identified by Wintergerste, 2002 [39] from a bi-global stability problem of the
crossflow region on a wing.
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6. Conclusion and Outlook

6.1. Summary and Discussion

In this thesis the attachment line (in-)stability of the swept Hiemenz boundary-layer on swept
wings was analyzed at a Reynolds number of Re = 300, which exhibits breakdown to turbulence
through modal growth in DNS. The boundary layer is known to be linearly critically stable at
Relin,crit = 583.1 and it has been shown to break down for Re ≈ 250 in experiments.

From the DNS a base flow U = U(x, y) was extracted. The SHBL, classically independent of
the span-wise coordinate z, is superimposed with primary counter-rotating vortices upon which
secondary modal growth occurs, invalidating that independence. New stability equations were
derived under the assumption of span-wise independence for the new DNS base flow which has
a new global dependence on x. Treatment of the base flow was done in two ways. Its span-
wise gradient was either neglected in a “weakly non-parallel” assumption or it was eliminated
by modifying (relaxing) the base flow. The stability equations were then reformulated into a
secondary two-dimensional eigenvalue problem and implemented into the already existing code
framework.

The code was optimized in terms of a new differentiation scheme which now is compatible
with non-equidistant grids. The implementation of the boundary conditions into the eigenvalue
problem matrices was changed from element-wise accessing to a multiplication by and addition
of stencils. The code benefited from these changes with a speed-up of 30 percent. Additionally,
eight recurring variables in the stability equations can be either globally stored in memory or
locally recomputed, depending on the desired performance of the code.

The secondary eigenvalue problem’s convergence with respect to the numerical parameters Nx,
Ny and Lx showed that while it converges monotonically in y it exhibits an optimal number of
grid points in x above which the solution diverges. The optimal resolution for a domain size
of Lx = 15 × Ly = 15 was found to be Nx = 150 × Ny = 150. The solution’s dependence
on the domain size Lx showed very little variance in terms of the eigenvalues, which for values
of Lx ∈ [15, 25] agreed up to four decimal points. Also, the velocity profiles showed good
agreement for the different Lx. Only where the gradients were high, was the effect of the ratio
Nx/Lx visible. A final Lx = 20 was chosen to prevent a forcing of the boundary condition
upon the velocities and allow for a natural decay. The eigenvalue problem was found to be a
memory-limited problem and thus the resolutions had to be set to Nx = 154 × Ny = 130 on a
64GB cluster (VENANT) and to Nx = 147 × Ny = 120 on a 46GB cluster (EIGER) for a final
domain size of Lx = 20 × Ly = 15.

The solution of the secondary EVP identified five distinct discrete modes. Four of those modes
are of symmetric and one is of anti-symmetric type. All of the modes feature exponential decay
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of the velocities in both x and y. The recovered modes are qualitatively independent of the
base flow treatment (parameter Ψ). Whether the employed base flow was previously relaxed or
unprocessed, the same modes were able to be identified. Generally, the solutions obtained from
a base flow derived from ΨU agrees best with the unrelaxed base flow.
The symmetric modes showed no dependence of the boundary conditions at x = 0, while the
anti-symmetric mode A1 was only retrieved for BCs ∂2û/∂x2(x = 0, y).
The symmetric modes were also recovered at two locations, one location at z = 94 and one
downstream at z = 159. The modes showed a tendency of being located at higher x and y
at the downstream location. While upstream mode S1 showed the highest growth rates of the
symmetric modes, at the downstream location S2 now features the highest growth rates for
certain parameter configurations.
In the range of γ ∈ [0.1, 1.2] at least one of the modes S1, S2 and A1 shows unstable behavior
(positive growth rates). A1 shows the highest growth rate of all at around γ = 0.5. While
modes S3, S4 and A1 do not change location much for different γ, modes S1 and S2 travel a
significant distance from the outer flank of the base flow vortex to its top. This behavior was
also responsible for the bad numerical convergence of the solution for γ ≤ 0.3 for which the
domain size Lx = 20 proved to be too small.
The complete dependence on physical parameters of the modes is also summarized in Table
6.1.

The modes were then compared to modes found in the later stages of crossflow instability on
the swept wing by Wintergerste [39], who identified two modes I and II which share similar
characteristics with the symmetric modes derive in this thesis.

The goal of explaining the breakdown of the streaks in the SHBL at Re= 300 as seen in DNS
was thus reached. By finding three solutions that provide proof of unstable modal growth within
the flow also the experimental critical Reynolds number Reexp,crit ≈ 250 has been significantly
approached.
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Table 6.1.: Summary of the results. The dependence of the solutions on the various physical parameters is summarized.

Mode Ψ (χ) γ BCs û(x = 0, y) zextr

Spectrum

S1 cr ≈ constant, ci ↓ as χ ↑ cr constant for γ > 0.3,
soln. diverges below γ ≈
0.3

not significantly affected
in converged part

cr comparable (slighty
less), ci ↓ as z ↑

S2 cr ↑ as χ ↑, ci ↓ as χ ↑ cr ↑ as γ ↑, ci peaks at
γ ≈ 0.35, soln. diverges
below γ ≈ 0.3

not significantly affected
in converged part

cr comparable (slightly
less), ci ↑ as z ↑

S3 cr ↓ as χ ↑, ci ↓ as χ ↑ cr ↑ as γ ↑, ci peaks at
γ ≈ 0.35

not significantly affected
in converged part

no significant changes

S4 cr ≈ constant, ci ↓ as χ ↑ cr ↑ as γ ↑, ci peaks at
γ ∈ [0.8, 1.0] (dep. on Ψ),
soln. diverges below γ ≈
0.6

not significantly affected
in converged part

shifts peak ci to lower γ
for χ = 0

A1 cr and ci match for all Ψ
for γ > 0.5, all Ψ deviate
from unrel. BF

cr ↑ as γ ↑, ci peaks at
γ ≈ 0.5, cr < 0 for γ <
0.4

only present for
∂2/∂x2û(x = 0, y)

N/A

Eigenfunctions

S1 maxima move towards BL
edge and symmetry plane
as χ ↓

|ŵ| ↓ and |û| ↑, |v̂| ↑ as
γ ↑, travels towards BL
edge and to lower x as γ ↑

not significantly affected
in converged part

peaks shift to higher y as
z ↑, almost constant y loc.
for diff. γ and |ŵ| ↓ and
|û| ↑, |v̂| ↑ as z ↑

S2 maxima move towards BL
edge and symmetry plane
as χ ↓

|ŵ| ↓ and |û| ↑, |v̂| ↑ as
γ ↑, travels towards BL
edge and to lower x as γ ↑

not significantly affected
in converged part

peaks shift to higher y and
|û| ↑, |v̂| ↑ as z ↑

S3 maxima move towards BL
edge and symmetry plane
as χ ↓

|ŵ| ↓ and |û| ↑, |v̂| ↑ as
γ ↑, travels towards wall
and to lower x as γ ↑

not significantly affected
in converged part

comparable with ten-
dency to peak at higher y
and |û| ↑, |v̂| ↑ as z ↑, |û|
peak closer at wall

S4 maxima move towards
wall and symmetry plane
as χ ↓

|ŵ| ↓ and |û| ↑, |v̂| ↑ as
γ ↑, travels towards wall
and to lower x as γ ↑

not significantly affected
in converged part

comparable with ten-
dency to peak at higher
y as z ↑ and almost
constant y loc. for diff. γ
and |û| ↑, |v̂| ↑ as z ↑

A1 maxima always at x = 0
no significant dependence
on Ψ

more concentrated inside
BL as γ ↑, maxima shift
towards BL edge as γ ↑

only present for
∂2/∂x2û(x = 0, y)

N/A
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6.2. Outlook and Future Work

With the obtained results a foundation was laid for the characterization of bi-global secondary
stability theory. However, there remain some improvements that need closer attention. For
example, the limited domain size distorted some of the results for low wavenumbers γ. For
completing the results in that parameter range simulations would need re-running on an adequate
domain with adequate discretization in consideration, of course, of memory.

The work can be extended to include a broader parameter study that includes additional values
such as a range of Reynolds numbers above and below the value of Re= 300 in this thesis. This
would provide the possibility of constructing a bi-global stability map for secondary instability
of the SHBL. Another extension, that was only briefly touched herein, provides itself through a
possible application of wall-normal suction described by the parameter κ that would alter the
breakdown process.

Despite careful investigation there remains the question of additional solutions which have not
been uncovered over the span of the present work. Undiscovered solutions in the present flow may
potentially show a prevailing role in the secondary (in)stability of the swept Hiemenz boundary
layer for other parameters (e.g. higher Re numbers) as they emerge from the spectrum.

Short reference was made to [39] in Section 5.5 in which the idea was brought up of comparing
those solutions to the present ones. Possible analysis that can be conducted is the transforma-
tion of the coordinate systems and comparison of the reference values to be able to perform a
comparative transformation of the two results. This provides an additional way to proceed with
the evaluation of the obtained data.

Finally, the obtained results should be fed back into DNS to see whether similar results to the
initial DNS data can be derived.
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Appendix A. λ2 Vortex Identification

A. λ2 Vortex Identification

This section is to shortly summarize the method employed in Section 5.4 to identify a vortex.
Jeong and Hussain [20] have proposed a criterion for vortex identification which has become
a sort of standard procedure. They start out by taking the divergence (“gradient”) of the
Navier-Stokes equations (2.2a) and deriving an expression for the acceleration gradient

ai,j = −1

ρ
p,ij + νui,jkk. (A.1)

Then the left-hand-side of (A.1) can be decomposed into a symmetric and anti-symmetric part,

ai,j =

[
DSij

Dt
+ ΩikΩkj + SikSkj

]

︸ ︷︷ ︸

symmetric

+

[
DΩij

Dt
+ ΩikSkj + SikΩkj

]

︸ ︷︷ ︸

antisymmetric

, (A.2)

where the antisymmetric part is the vorticity equation and the symmetric part:

DSij

Dt
− νSij,kk + ΩikΩkj + SikSkj = −1

ρ
p,ij. (A.3)

S and Ω represent the symmetric and antisymmetric components of the gradient ∇u, respec-
tively:

Sij =
1

2
(ui,j + uj,i) (A.4)

Ωij =
1

2
(ui,j − uj,i). (A.5)

In order for the right-hand-side of Equation (A.3) to have a minimum it needs to have two
negative eigenvalues. They neglect irrotational strain and viscous effects by dropping the first
two terms on the left of Equation (A.3). Thus they find the eigenvalues of S2 +Ω2. The negative
real eigenvalue λ2 of smaller absolute value then defines the vortex core.

Within this report, the λ2 eigenvalue isosurfaces were computed by superimposing eigenmodes
onto the base flow. The eigenvalues were normalized with

φ = max||(|û|, |v̂|, |ŵ|)T || (A.6)

and added to the base flow with a fraction A:

u = U +
A

φ
u′ (A.7)

v = V +
A

φ
v′ (A.8)

w = W +
A

φ
w′. (A.9)
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Figure B.1.: Top: Streak amplitude of the base flows without secondary amplitude A2. Bottom:
∂

∂z
Wb of the same base flows. In both figures the extraction locations are marked.
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Figure B.2.: Base flow profiles of the different base flows without secondary amplitude A2 at the
extraction locations.
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Figure B.4.: Base flow profiles of the base flow with secondary amplitude A2 at the extraction
locations zextr = 94 (left) and zextr = 159 (right). Top: Unrelaxed base flow profiles.
Bottom: Errors resulting from relaxation.
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Figure C.1.: Eigenmodes’ phase speeds vs. γ at zextr = 94 for parameters Lx = 20, Ly = 15,
Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4) and xhalf = Lx/3,
yhalf = Ly/3 and BC û(x = 0, y) = 0. The colors represent: —ΨU , —ΨU+V , —ΨV ,
—unrelaxed.
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Figure C.2.: Eigenmodes’ phase speeds vs. γ at zextr = 94 for parameters Lx = 20, Ly = 15,
Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4) and xhalf = Lx/3,
yhalf = Ly/3 and BC ∂2/∂x2û(x = 0, y) = 0. The colors represent: —ΨU , —ΨU+V ,
—ΨV , —unrelaxed.
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Figure C.3.: Eigenmodes’ phase speeds vs. γ at zextr = 159 for parameters Lx = 20, Ly = 15,
Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4) and xhalf = Lx/3,
yhalf = Ly/3 and BC û(x = 0, y) = 0. The colors represent: —ΨU , —ΨU+V , —ΨV ,
—unrelaxed.
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Figure C.4.: Shapes of eigenmode S1 for various Ψ at zextr = 94 for Re = 300, γ = 0.6, Lx = 20,
Ly = 15, Nx = 147, Ny = 120, xhalf = Lx/3, yhalf = Ly/3 and BC ∂2/∂x2û(x =
0, y) = 0. Top: ΨU , Second Row: ΨU+V , Third Row: ΨV , Bottom: unrelaxed. White
equals 0 and red equals 1.
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|ŵ||v̂||û|
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Figure C.5.: Shapes of eigenmode S2 for various Ψ at zextr = 94 for Re = 300, γ = 0.6, Lx = 20,
Ly = 15, Nx = 147, Ny = 120, xhalf = Lx/3, yhalf = Ly/3 and BC ∂2/∂x2û(x =
0, y) = 0. Top: ΨU , Second Row: ΨU+V , Third Row: ΨV , Bottom: unrelaxed. White
equals 0 and red equals 1.
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Figure C.6.: Shapes of eigenmode S3 for various Ψ at zextr = 94 for Re = 300, γ = 0.6, Lx = 20,
Ly = 15, Nx = 154, Ny = 130, xhalf = Lx/3, yhalf = Ly/3 and BC ∂2/∂x2û(x =
0, y) = 0. Top: ΨU , Second Row: ΨU+V , Third Row: ΨV , Bottom: unrelaxed. White
equals 0 and red equals 1.
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Figure C.7.: Shapes of eigenmode S4 for various Ψ at zextr = 94 for Re = 300, γ = 0.6, Lx = 20,
Ly = 15, Nx = 154, Ny = 130, xhalf = Lx/3, yhalf = Ly/3 and BC ∂2/∂x2û(x =
0, y) = 0. Top: ΨU , Second Row: ΨU+V , Third Row: ΨV , Bottom: unrelaxed. White
equals 0 and red equals 1.
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|ŵ|/φ|v̂|/φ

y
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Figure C.8.: Symmetric eigenmodes’ velocity profiles over y for varying γ and a relaxation with
ΨUV (χ = 0.5). The velocities are normalized with φ = max||(û, v̂, ŵ)|| and plotted
through their respective maxima. Parameters hereof are Re = 300 at zextr = 94,
Lx = 20, Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4)
and xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0. Top: S1, second row: S2,
third row: S3, bottom: S4.
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Figure C.9.: Symmetric eigenmodes’ velocity profiles over y for varying γ and a relaxation with
ΨV (χ = 0). The velocities are normalized with φ = max||(û, v̂, ŵ)|| and plotted
through their respective maxima. Parameters hereof are Re = 300 at zextr = 94,
Lx = 20, Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4)
and xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0. Top: S1, second row: S2,
third row: S3, bottom: S4.
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Figure C.10.: Symmetric eigenmodes’ velocity profiles over y for varying γ and no relaxation.
The velocities are normalized with φ = max||(û, v̂, ŵ)|| and plotted through their
respective maxima. Parameters hereof are Re = 300 at zextr = 94, Lx = 20, Ly = 15,
Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4) and xhalf = Lx/3,
yhalf = Ly/3 and BC û(x = 0, y) = 0. Top: S1, second row: S2, third row: S3,
bottom: S4.
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φ

xmax,u = 5.9556

xmax,w = 6.5455

xmax,v = 6.6667

ΨU

y
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|û|,|v̂|,|ŵ|
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|û|, |v̂|, |ŵ|
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(d) Mode S4

Figure C.11.: Symmetric eigenmodes’ velocity profiles over y for different Ψ. The velocities are
normalized with φ = max||(û, v̂, ŵ)|| and plotted through their respective maxima.
Parameters hereof are Re = 300, γ = 0.6 at zextr = 94, Lx = 20, Ly = 15, Nx =
147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4) and xhalf = Lx/3, yhalf =
Ly/3 and BC ∂2/∂x2û(x = 0, y) = 0.The colors represent: —ΨU , —ΨU+V , —ΨV ,
—unrelaxed. Solid line: |û|, dashed-dotted line: |v̂|, dashed line: |ŵ|.
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Figure C.12.: Antisymmetric eigenmode’s velocity profiles over y for varying γ and different re-
laxations. The velocities are normalized with φ = max||(û, v̂, ŵ)|| and plotted
through their respective maxima. Parameters hereof are Re = 300 at zextr = 94,
Lx = 20, Ly = 15, Nx = 147, Ny = 120 and xhalf = Lx/3, yhalf = Ly/3 and BC
∂2/∂x2û(x = 0, y) = 0.

114



Appendix C. Eigenmodes
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Figure C.13.: Symmetric eigenmodes’ velocity profiles for different zextr. The dark profile repre-
sents the location zextr = 94, the light profile is further downstream at zextr = 159.
The velocities are normalized with φ = max||(û, v̂, ŵ)|| and plotted through their re-
spective maxima. Parameters hereof are Re = 300, ΨUV , γ = 0.6, Lx = 20, Ly = 15,
Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4) and xhalf = Lx/3,
yhalf = Ly/3 and BC û(x = 0, y) = 0.
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Figure C.14.: Symmetric eigenmodes’ velocity profiles for different zextr. The dark profile repre-
sents the location zextr = 94, the light profile is further downstream at zextr = 159.
The velocities are normalized with φ = max||(û, v̂, ŵ)|| and plotted through their re-
spective maxima. Parameters hereof are Re = 300, ΨV , γ = 0.6, Lx = 20, Ly = 15,
Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4) and xhalf = Lx/3,
yhalf = Ly/3 and BC û(x = 0, y) = 0.
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Figure C.15.: Symmetric eigenmodes’ velocity profiles for different zextr. The dark profile repre-
sents the location zextr = 94, the light profile is further downstream at zextr = 159.
The velocities are normalized with φ = max||(û, v̂, ŵ)|| and plotted through their
respective maxima. Parameters hereof are Re = 300, unrelaxed, γ = 0.6, Lx = 20,
Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4) and
xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
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Figure C.16.: Symmetric eigenmodes’ velocity profiles over y for varying γ and a relaxation with
ΨUV (χ = 0.5). The velocities are normalized with φ = max||(û, v̂, ŵ)|| and plotted
through their respective maxima. Parameters hereof are Re = 300 at zextr = 159,
Lx = 20, Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4)
and xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0. Top: S1, second row: S2,
third row: S3, bottom: S4.
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Figure C.17.: Symmetric eigenmodes’ velocity profiles over y for varying γ and a relaxation with
ΨV (χ = 0). The velocities are normalized with φ = max||(û, v̂, ŵ)|| and plotted
through their respective maxima. Parameters hereof are Re = 300 at zextr = 159,
Lx = 20, Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4)
and xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0. Top: S1, second row: S2,
third row: S3, bottom: S4.
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Figure C.18.: Symmetric eigenmodes’ velocity profiles over y for varying γ and no relaxation.
The velocities are normalized with φ = max||(û, v̂, ŵ)|| and plotted through their
respective maxima. Parameters hereof are Re = 300 at zextr = 159, Lx = 20,
Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4) and
xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0. Top: S1, second row: S2, third
row: S3, bottom: S4.
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Figure C.19.: Tracks of the maximum values of |ŵ| of the symmetric eigenmodes under varying γ
for different relaxations. Parameters were set to Re = 300 at zextr = 94, Lx = 20,
Ly = 15, Nx = 147, Ny = 120 (S1, S2), Nx = 154, Ny = 130 (S3, S4) and
xhalf = Lx/3, yhalf = Ly/3 and BC ∂2/∂x2û(x = 0, y) = 0. The colors represent:
—ΨU , —ΨU+V , —ΨV , —unrelaxed.
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(a) Mode S1 averaged over 0 ≤ y ≤ 3.5
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(b) Mode S2 averaged over 0 ≤ y ≤ 3.5

Figure C.20.: The unstable modes’ S1 and S2 decay along x is influenced at the far-field boundary
as γ approaches smaller values. There is a noticeable overshoot at the domain edge
for γ . 0.3. These simulations were run for parameters Re = 300 at zextr = 94,
Ψ = ΨUV (χ = 0.5), Lx = 20, Ly = 15, Nx = 147, Ny = 120 and xhalf = Lx/3,
yhalf = Ly/3 and BC û(x = 0, y) = 0.
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(a) Mode S1 averaged over 0 ≤ y ≤ 3.5
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(b) Mode S2 averaged over 0 ≤ y ≤ 3.5

Figure C.21.: The unstable modes’ S1 and S2 decay along x is influenced at the far-field boundary
as γ approaches smaller values. There is a noticeable overshoot at the domain edge
for γ . 0.3. These simulations were run for parameters Re = 300 at zextr = 94,
Ψ = ΨV (χ = 0.0), Lx = 20, Ly = 15, Nx = 147, Ny = 120 and xhalf = Lx/3,
yhalf = Ly/3 and BC û(x = 0, y) = 0.
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(a) ΨUV

 

 

γ = 0.6
γ = 0.7
γ = 0.8

|u
|

x
0 2 4 6 8 10 12 14 16 18 20

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

(b) ΨV

Figure C.22.: Mode S4 averaged over y ∈ [0, 3.5]. The stable mode S4’s decay along x is influenced
at the far-field boundary as γ approaches smaller values. There is a noticeable
overshoot at the domain edge for γ . 0.7. These simulations were run for parameters
Re = 300 at zextr = 94, Lx = 20, Ly = 15, Nx = 154, Ny = 130 and xhalf = Lx/3,
yhalf = Ly/3 and BC û(x = 0, y) = 0.
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(b) ΨUV
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(c) ΨV

Figure C.23.: Mode S1 averaged over y ∈ [0, 3.5]. The unstable mode S1’s decay along x is
influenced at the far-field boundary as γ approaches smaller values. There is a
noticeable overshoot at the domain edge for γ . 0.3. These simulations were run for
parameters Re = 300 at zextr = 159, Lx = 20, Ly = 15, Nx = 147, Ny = 120 and
xhalf = Lx/3, yhalf = Ly/3 and BC û(x = 0, y) = 0.
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(b) ΨUV

 

 

γ = 0.15
γ = 0.23
γ = 0.31

|u
|

x
0 2 4 6 8 10 12 14 16 18 20

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

(c) ΨV

Figure C.24.: Mode S2 averaged over y ∈ [0, 3.5]. The stable mode S2’s decay along x is influenced
at the far-field boundary as γ approaches smaller values. There is a noticeable
overshoot at the domain edge for γ . 0.3. These simulations were run for parameters
Re = 300 at zextr = 159, Lx = 20, Ly = 15, Nx = 147, Ny = 120 and xhalf = Lx/3,
yhalf = Ly/3 and BC û(x = 0, y) = 0.
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D. Code

D.1. Creating the Differentiation Matrices

1 function [D,DD] = mod_getDiffMatrix(x)

2

3 % compute first derivative of 4th order

4 % compute second derivative of 4th order

5

6

7 N = size(x,1);

8 D = zeros(N);

9 DD = zeros(N);

10

11 A = zeros(5,5);

12

13 for j = 3:N−2

14

15 % compute local differentiation matrix A at x = x_j

16 for n = 1:5

17 Delta = x(j+n−3)−x(j);

18 for m = 1:5

19 A(n,m) = Delta.^(m−1)/factorial((m−1));

20 end

21 end

22

23

24 % invert A and store local differentiation stencil for

25 % first and second derivative

26 A = inv(A);

27 D(j,(j−3)+1:(j−3)+5) = A(2,1:5);

28 DD(j,(j−3)+1:(j−3)+5) = A(3,1:5);

29

30 end

31 clear A;

32 A = zeros(5,5);

33

34

35 % compute local differentiation matrix for border points

36 for n = 1:5

37 Delta = x(n)−x(1);

38 for m = 1:5

39 A(n,m) = Delta.^(m−1)/factorial((m−1));

40 end

41 end

42
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43 A = inv(A);

44 D(1,1:5) = A(2,1:5);

45 DD(1,1:5) = A(3,1:5);

46

47 clear A;

48 A = zeros(5,5);

49

50 for n = 1:5

51 Delta = x(N−5+n) − x(N);

52 for m = 1:5

53 A(n,m) = Delta.^(m−1)/factorial((m−1));

54 end

55 end

56 A = inv(A);

57 D(N,(N−5+1):N) = A(2,1:5);

58 DD(N,(N−5+1):N) = A(3,1:5);

59

60 clear A;

61 A = zeros(5,5);

62

63 % compute local differentiation matrix for one point away from border

64 for n = 1:5

65 Delta = x(n)−x(2);

66 for m = 1:5

67 A(n,m) = Delta.^(m−1)/factorial((m−1));

68 end

69 end

70 A = inv(A);

71 D(2,1:5) = A(2,1:5);

72 DD(2,1:5) = A(3,1:5);

73

74 clear A;

75 A = zeros(5,5);

76

77 for n = 1:5

78 Delta = x(N−5+n)−x(N−1);

79 for m = 1:5

80 A(n,m) = Delta.^(m−1)/factorial((m−1));

81 end

82 end

83 A = inv(A);

84 D(N−1,(N−5+1):N) = A(2,1:5);

85 DD(N−1,(N−5+1):N) = A(3,1:5);

86

87

88 end
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D.2. Implementation of Boundary Conditions

1 function [BCmult, BCadd] = mod_createBCmatrix(Nx, Ny, BCx0y, BCxLy,...

2 BCxy0, BCxyL, Dx1, Dx2, Dy1, Dy2)

3

4 % creates two matrices for BCs specified in strings chordBCs and

5 % normBCs, one of which serves as a element−wise multiplicator stencil

6 % matrix and the other for superimposing non−zero elements. BCs are

7 % formulated for L_aa and R_aa matrices (a equal u or v).

8 % structure of eigenfunction u^(x,y) in workspace

9 %

10 % size(u^) = {Nx*Ny , 1}

11 %

12 % / 1 \

13 % | 2 |

14 % | ... |

15 % | Nx |

16 % | −−−−−−−−−−−−−−−−−−−|

17 % | Nx+1 |

18 % u^(x,y) = | Nx+2 |

19 % | ... |

20 % | 2*Nx |

21 % | −−−−−−−−−−−−−−−−−−−|

22 % | 2*Nx+1 |

23 % | 2*Nx+2 |

24 % | ... |

25 % | −−−−−−−−−−−−−−−−−−−|

26 % | ... |

27 % \ (Ny−1)*Nx + (Nx−1) /

28 %

29 % === PARTICULAR LINES ===

30 % x = 0 ([1:Ny]−1)*Nx + [ 1 ]

31 % x = Lx ([1:Ny]−1)*Nx + [ Nx ]

32 % y = 0 ( [0] )*Nx + [1:Nx]

33 % y = Ly ( [Ny−1] )*Nx + [1:Nx]

34 NN = Nx*Ny;

35 BCmult = double(ones(NN));

36 BCadd = double(zeros(NN,2*NN));

37

38 x0 = ((1:Ny)−1)*Nx + ( 1 );

39 xL = ((1:Ny)−1)*Nx + ( Nx );

40 y0 = ( (0) )*Nx + (1:Nx);

41 yL = ( (Ny−1) )*Nx + (1:Nx);

42

43 for l = 1:length(BCx0y)

44 switch char(BCx0y(l))

45 case 'Dirichlet'

46 for i = x0

47 % BCs for a(x=0,y) =0

48 BCmult(i,:) = 0.;

49 BCadd(i,i) = 1.;

50 end
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51

52

53

54 case 'Neumann'

55

56 % BCs for da/dx(x=0,y)=0

57 BCmult(x0,:) = 0.;

58 BCadd(x0,1:NN) = Dx1(x0,:);

59

60

61 case 'SecDeriv'

62

63 % BCs for d2a/dx2(x=0, y)=0

64 BCmult(x0,:) = 0.;

65 BCadd(x0,1:NN) = Dx2(x0,:);

66

67

68 case 'Conti'

69 % BCs for du/dx(x=0,y) + dv/dy(x=0) = 0

70 BCmult((x0+1),:) = 0.;

71 BCadd((x0+1),1:NN) = Dx1(x0,:);

72 BCadd((x0+1),(NN+1):end) = Dy1(x0,:);

73

74 otherwise

75 varname=@(x) inputname(1);

76 disp(['WARNING: No Boundary Conditions at '...

77 varname(BCx0y) ' set for either u or v!'...

78 'Please check BCs if not correct.']);

79

80 end

81 end

82

83 for l = 1:length(BCxLy)

84 switch char(BCxLy(l))

85 case 'Dirichlet'

86 for i = xL

87 % BCs for a(x=Nx,y)=0

88 BCmult(i,:) = 0.;

89 BCadd(i,i) = 1.;

90 end

91

92 case 'Neumann'

93 % BCs for da/dx(x=Nx,y)=0

94 BCmult((xL−1),:) = 0.;

95 BCadd((xL−1),1:NN) = Dx1(xL,:);

96

97 BCmult((xL−2),:) = 0.;

98 BCadd((xL−2),1:NN) = Dx1((xL−1),:);

99

100

101 case 'SecDeriv'

102 % BCs for d2a/dx2(x=Nx,y)=0

103 BCmult((xL−1),:) = 0.;

104 BCadd((xL−1),1:NN) = Dx2(xL,:);
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105

106 otherwise

107 varname=@(x) inputname(1);

108 disp(['WARNING: No Boundary Conditions at '...

109 varname(BCxLy) ' set for either u or v!'...

110 'Please check BCs if not correct.']);

111

112

113 end

114 end

115

116 for l = 1:length(BCxy0)

117 switch char(BCxy0(l))

118 case 'Dirichlet'

119 for i = y0

120 % BCs for a(x,y=0)=0

121 BCmult(i,:) = 0.;

122 BCadd(i,i) = 1.;

123 end

124

125

126 case 'Neumann'

127 % BCs for da/dy(x,y=0)=0

128 BCmult((y0+Nx),:) = 0.;

129 BCadd((y0+Nx),1:NN) = Dy1(y0,:);

130

131

132 case 'SecDeriv'

133 % BCs for d2a/dy2(x,y=0)=0

134 disp('Not yet implemented');

135

136

137 otherwise

138 varname=@(x) inputname(1);

139 disp(['WARNING: No Boundary Conditions at '...

140 varname(BCxy0) ' set for either u or v!'...

141 'Please check BCs if not correct.']);

142

143

144 end

145 end

146

147 for l = 1:length(BCxyL)

148 switch char(BCxyL(l))

149 case 'Dirichlet'

150 for i = yL

151 % BCs for a(x,y=Ny)=0

152 BCmult(i,:) = 0.;

153 BCadd(i,i) = 1.;

154 end

155

156

157 case 'Neumann'

158 % BCs for da/dy(x,y=Ny)=0
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159 BCmult((yL−Nx),:) = 0.;

160 BCadd((yL−Nx),1:NN) = Dy1(yL,:);

161

162

163 case 'SecDer'

164 % BCs for d2a/dy2(x,y=Ny)=0

165 disp('Not yet implemented');

166

167 otherwise

168 varname=@(x) inputname(1);

169 disp(['WARNING: No Boundary Conditions at '...

170 varname(BCxyL) ' set for either u or v!'...

171 'Please check BCs if not correct.']);

172

173 end

174 end

175 end
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D.3. Creating the Eigenvalue Matrices

1 function [L,R] = mod_getbiLEBLoperator(x,y,Rey,gamma, U,Uy,V,Vx,Vy,Vyy,...

2 W,Wx,Wy,Wxx,Wxy,Wyy, sing, BCs, baseFlowType)

3

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 % define the operators L and R for problem %

6 % %

7 % [Luu Luv] [u] [Ruu Ruv] [u] %

8 % [ ] [ ] = c [ ] [ ] %

9 % [Lvu Lvv] [v] [Rvu Rvv] [v] %

10 % %

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12 %

13 % INPUT

14 % BCs: type of boundary conditions to be set

15 % baseFlowType: type of baseflow (U_b(y), i.e. line vector,

16 % vs. U_b(x,y), i.e. 2D x−dependent matrix)

17 %

18

19 % definitions

20 im = sqrt(−1);

21 Nx = size(x,1);

22 Ny = size(y,1);

23 NN = Nx*Ny;

24 Idx = eye(Nx);

25 Idy = eye(Ny);

26 Id = eye(NN);

27

28 %%% KEEP IN MIND: DX1 AND DX2 ONLY APPLY TO DISTURBANCE QUANTITIES, NOT

29 %%% TO BASE FLOW!!

30 % compute 4th order first and second derivative, the x direction

31 [Dx1,Dx2] = mod_getDiffMatrix(x);

32 Dx1 = kron(Idy,Dx1);

33 Dx2 = kron(Idy,Dx2);

34

35 % compute 4th order first and second derivative, the x direction

36 [Dy1,Dy2] = mod_getDiffMatrix(y);

37 Dy1 = kron(Dy1,Idx);

38 Dy2 = kron(Dy2,Idx);

39

40

41 % auxiliary operators

42 Laplacex = Dx2 − gamma^2*Id; %partial Laplacian: dx^2 − gamma^2

43 Laplacey = Dy2 − gamma^2*Id; %partial Laplacian: dy^2 − gamma^2

44 norm = sing*im*gamma;

45

46 if(strcmp(baseFlowType,'cylinder') || strcmp(baseFlowType,'hiemenz'))

47 baseFlowType = 'hiemenz';

48 norm = sing*im*gamma*Rey;

49 end

50
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51 switch baseFlowType

52

53 case 'hiemenz';

54

55 Lop = ( Dx2 + Dy2 + kron(diag(Vy),diag(x))*Dx1 − ...

56 kron(diag(V),Idx)*Dy1...

57 − gamma^2*Id − im*gamma*Rey*kron(diag(W),Idx) );

58

59

60 % ================== L ==================================

61 % dummy matrices (speedup only)

62 % LopPlusVy = Lop + kron(diag(Vy),Idx);

63 % LopMinuVy = Lop − kron(diag(Vy),Idx);

64 % WyD_Dx = im*gamma*Rey*kron(diag(Wy),Idx)*Dx1;

65 % xVyy = kron(diag(Vyy),diag(x));

66 % Dx1Dy1 = Dx1*Dy1;

67

68

69

70

71 % obtain BC matrices and set BCs for u

72 [BCmult, BCadd] = mod_createBCmatrix(Nx, Ny, BCs.uBCx0y,...

73 BCs.uBCxLy, BCs.uBCxy0, BCs.uBCxyL, Dx1, Dx2, Dy1, Dy2);

74

75 Luu = sparse( (Lop + kron(diag(Vy),Idx))*Laplacex...

76 .*BCmult + norm*BCadd(:,1:NN) );

77 Ruu = sparse( −Laplacex...

78 .*BCmult + BCadd(:,1:NN) );

79 Luv = sparse( ((Lop + kron(diag(Vy),Idx))*Dx1*Dy1...

80 + im*gamma*Rey*kron(diag(Wy),Idx)*Dx1...

81 − gamma^2*kron(diag(Vyy),diag(x)))...

82 .*BCmult + norm*BCadd(:,(NN+1):end) );

83 Ruv = sparse( −Dx1*Dy1...

84 .*BCmult + BCadd(:,(NN+1):end) );

85

86 % obtain BC matrices and set BCs for v

87 [BCmult, BCadd] = mod_createBCmatrix(Nx, Ny, BCs.vBCx0y,...

88 BCs.vBCxLy, BCs.vBCxy0, BCs.vBCxyL, Dx1, Dx2, Dy1, Dy2);

89

90 Lvu = sparse( ((Lop − kron(diag(Vy),Idx))*Dx1*Dy1...

91 − im*gamma*Rey*kron(diag(Wy),Idx)*Dx1...

92 + kron(diag(Vyy),diag(x))*Dx2)...

93 .*BCmult );

94 Rvu = sparse( −Dx1*Dy1...

95 .*BCmult );

96 Lvv = sparse( ((Lop − kron(diag(Vy),Idx))*Laplacey...

97 + im*gamma*Rey*kron(diag(Wyy),Idx)...

98 + kron(diag(Vyy),diag(x))*Dx1*Dy1)...

99 .*BCmult + norm*BCadd(:,1:NN) );

100 Rvv = sparse( −Laplacey...

101 .*BCmult + BCadd(:,1:NN) );

102

103 clear BCmult BCadd;

104
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105

106 case 'impact'

107

108 % create large operator

109 Lop = (Dx2 + Dy2 − gamma^2*Id)/Rey − (diag(U(1:end))*Dx1...

110 + diag(V(1:end))*Dy1 + diag(W(1:end))*im*gamma);

111

112 % obtain BC matrices and set BCs for u

113 [BCmult, BCadd] = mod_createBCmatrix(Nx, Ny, BCs.uBCx0y,...

114 BCs.uBCxLy, BCs.uBCxy0, BCs.uBCxyL, Dx1, Dx2, Dy1, Dy2);

115

116 Luu = sparse(( ( Lop+diag(Vy(1:end)) )*Laplacex + im*gamma*diag(Wxx(1:end))...

117 −diag(Vx(1:end))*Dx1*Dy1)...

118 .*BCmult + norm*BCadd(:,1:NN) );

119 Ruu = sparse( −Laplacex...

120 .*BCmult + BCadd(:,1:NN) );

121 Luv = sparse( (( Lop+diag(Vy(1:end)) )*Dx1*Dy1...

122 + im*gamma*diag(Wy(1:end))*Dx1 − diag(Vx(1:end))*Dy2...

123 −im*gamma*diag(Wx(1:end))*Dy1...

124 + gamma^2*diag(Uy(1:end)) + im*gamma*diag(Wxy(1:end)))...

125 .*BCmult + norm*BCadd(:,(NN+1):end));

126 Ruv = sparse( −Dx1*Dy1...

127 .*BCmult + BCadd(:,(NN+1):end) );

128

129 % obtain BC matrices and set BCs for v

130 [BCmult, BCadd] = mod_createBCmatrix(Nx, Ny, BCs.vBCx0y,...

131 BCs.vBCxLy, BCs.vBCxy0, BCs.vBCxyL, Dx1, Dx2, Dy1, Dy2);

132

133 Lvu = sparse( (( Lop−diag(Vy(1:end)) )*Dx1*Dy1...

134 + im*gamma*diag(Wx(1:end))*Dy1 − diag(Uy(1:end))*Dx2...

135 − im*gamma*diag(Wy(1:end))*Dx1...

136 + gamma^2*diag(Vx(1:end))+im*gamma*diag(Wxy(1:end)))...

137 .*BCmult);

138 Rvu = sparse( −Dx1*Dy1...

139 .*BCmult );

140 Lvv = sparse( (( Lop−diag(Vy(1:end)) )*Laplacey...

141 + im*gamma*diag(Wyy(1:end)) −diag(Uy(1:end))*Dx1*Dy1)...

142 .*BCmult + norm*BCadd(:,1:NN));

143 Rvv = sparse( −Laplacey...

144 .*BCmult + BCadd(:,1:NN) );

145

146 clear BCmult BCadd;

147

148 end

149

150 % build L

151 if(~strcmp(baseFlowType,'impact'))

152 L = [Luu Luv ; Lvu Lvv]/(im*gamma*Rey);

153 else

154 L = [Luu Luv ; Lvu Lvv]/(im*gamma);

155 end

156 clear Luu Luv Lvu Lvv;

157 clear LopPlusVy LopMinuVy WyD_Dx xVyy;

158
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159 % build R

160 R = [Ruu Ruv ; Rvu Rvv];

161 clear Ruu Ruv Rvu Rvv;

162

163 end
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