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abundance or in bacterial and fungal diversity. No Archaea 
could be detected in the snow. Microbial communities, 
however, differed significantly between sites. Our results 
show that meltwater rearranges soluble ions and microbial 
communities in the snowpack.

Keywords Snow bacteria · Snow fungi · T-RFLP ·  
16S rRNA gene · Snow physics

Introduction

In the European Alps, seasonal climatic shifts are very pro-
nounced. A typical year includes snow-covered winters and 
springs, warm summers and wet, cold autumns. Plant and 
animal communities inhabiting alpine environments are 
adapted to such conditions, by showing, for example, short 
vegetative seasons, and physiological adaptations (Körner 
1999; Lütz 2010). Microbial communities in alpine sys-
tems also display a wide range of physiological flexibil-
ity to changing environmental conditions, such as modi-
fications of the membrane structures and cell metabolism 
(Mayr et al. 1999; Meyer et al. 2004). Moreover, extreme 
cold habitats seem to favour survival strategies such as 
spore and cyst formation or dormancy (Bauer et al. 2002; 
Remias et al. 2010; Harding et al. 2011).

The snow-covered seasons are of particular interest. 
Snow below 0 °C is a two-phase system consisting of ice 
grains and air. At every precipitation event during winter, 
new snow layers pose on the previous ones, producing a 
stratified structure. Each snow layer has unique properties 
(i.e. density, water content and permeability), and under-
goes rapid structural changes due to metamorphism of 
ice grains and settling (Waldner et al. 2004; Pinzer et al. 
2012). During snow accumulation in winter, the forming 

Abstract Snowmelt is a crucial period for alpine soil 
ecosystems, as it is related to inputs of nutrients, particu-
late matter and microorganisms to the underlying soil. 
Although snow-inhabiting microbial communities rep-
resent an important inoculum for soils, they have thus far 
received little attention. The distribution and structure of 
these microorganisms in the snowpack may be linked to 
the physical properties of the snowpack at snowmelt. Snow 
samples were taken from snow profiles at four sites (1930–
2519 m a.s.l.) in the catchment of the Tiefengletscher, Can-
ton Uri, Switzerland. Microbial (Archaea, Bacteria and 
Fungi) communities were investigated through T-RFLP 
profiling of the 16S and 18S rRNA genes, respectively. In 
parallel, we assessed physical and chemical parameters 
relevant to the understanding of melting processes. Along 
the snow profiles, density increased with depth due to com-
paction, while other physico-chemical parameters, such 
as temperature and concentrations of DOC and soluble 
ions, remained in the same range (e.g. <2 mg DOC L−1, 
5–30 μg NH4

+-N L−1) in all samples at all sites. Along the 
snow profiles, no major change was observed either in cell 
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snowpack also includes particles (Meyer and Wania 2008; 
Steltzer et al. 2009). The winter snowpack thus serves as a 
reservoir for ions, organic carbon and pollutants deposited 
from the atmosphere (e.g. organic particles, mineral dust, 
soot; cf. Grannas et al. 2007).

At the timepoint of snowmelt, in late spring, higher 
daily temperatures cause the formation of meltwater. Snow 
therefore changes to a three-phase system with a vari-
able content of liquid water (1–13 %; Waldner et al. 2004; 
Techel et al. 2011). Meltwater may infiltrate to deeper snow 
layers, refreeze at temperatures of <0 °C and produce ice 
lenses (Bowman 1992; Pomeroy and Brun 2001). Strati-
fication may be gradually lost with the increasing flushes 
of meltwater in the melting season. The meltwater will ini-
tially flush through the snowpack along preferential flow 
paths, and will eventually reach the underlying soil surface 
(Pomeroy and Brun 2001).

Physical characteristics of the snowpack (e.g. ice layers; 
Feng et al. 2001; Lee et al. 2008) and the chemical proper-
ties of the deposited compounds, determine their retention 
or release, as soluble compounds are more mobile in snow. 
In terrestrial ecosystems, initial snowmelt plays a crucial 
role in solute transport through the snowpack to the soil, 
as the first meltwater contains high concentrations of solu-
ble species, which are released as a ionic pulse (Bales et al. 
1990; Williams et al. 2009; Björkman et al. 2014).

Snow is a habitat for various types of microorganisms 
ranging from psychrotolerant and psychrophilic bacteria to 
fungi and microeukaryotes (Margesin and Schinner 1994; 
Larose et al. 2013). Most of the taxa found in snow cor-
respond to either microorganisms with specific adaptive 
strategies (i.e. presence of pigments for UV protection, 
spore formation), or to opportunists. For example, Bacte-
roidetes, Firmicutes and Proteobacteria seem to be predom-
inant phyla inhabiting the snowpack (Amato et al. 2007; 
Møller et al. 2013). In particular, the highly versatile class 
Betaproteobacteria (e.g. Variovorax, Janthinobacterium 
and Polaromonas) has been often found in snow (Segawa 
et al. 2005; Liu et al. 2009; Hell et al. 2013). In snow melt-
water from Svalbard, also Sphingobacteria and Flavobacte-
ria were commonly detected (Larose et al. 2010), but dif-
ferent communities were found at different seasons (early 
vs. late snowmelt). The photoautotrophic Cyanobacteria 
were found dominant only on pristine snow in North Pole 
ice floes (Hauptmann et al. 2014).

As snow is a highly dynamic system, data on snow 
microbiology are hard to be interpreted if the snowpack 
properties are not sufficiently investigated. Many studies 
provide solid and valuable data on microbial communities, 
but limited information on snow chemistry, physics and 
transport processes. These factors are essential for an eco-
logical understanding of the snow environment.

Currently, for example, little is known about microbial 
community distribution in the different snowpack layers. 
Furthermore, the fate of microbial cells once deposited 
on the snowpack surface is largely unknown. Some of the 
taxa not adapted to the extreme conditions of the snow 
habitat may die, and only the survivors will be detected in 
the snow. Moreover, with snowmelt and layer compaction, 
the different communities may be homogenised along the 
depth profile, and not represent single deposition events.

In this study, we investigated how cell abundance and 
diversity is distributed in the snowpack at the time of snow-
melt. In addition, we evaluated whether alpine snowpack at 
different altitudes would harbour different microbial com-
munity structures. At snowmelt (May–June 2013), four dif-
ferent depth profiles from the snowpack of an alpine gla-
cier catchment (Tiefengletscher, Canton UR, Switzerland, 
latitude 46°36′N, longitude 8°28′E) were characterized 
in terms of their physical–chemical and microbiological 
properties. Microbial communities were assessed through 
T-RFLP profiling of rRNA genes and flow cytometry.

Materials and methods

Study sites and meteorological data

Four different locations in the catchment of the Tiefen-
gletscher, Canton UR, Switzerland, were selected: Börtli 
(B), Tätsch (T), Älpetli (A) and the forefield of Tiefen-
gletscher (F) (Fig. 1). The locations are situated within 
an area of approximately 5 km2 at different altitudes 
(Table 1). Site A, B, T are alpine meadows, while site F is a 
scarcely vegetated glacier forefield. A and T were at similar 

Fig. 1  Map of sampling locations in Canton Uri, Switzerland. B 
Börtli, T Tätsch, A Älpetli, F Forefield of the Tiefengletscher. In grey, 
the glacier
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altitudes, but A was located in a basin and T on a wind-
exposed ridge.

At the time of sampling, the height of the snowpack 
at the four locations varied between 93 and 123 cm. The 
weather at each sampling date (between May and June 
2013) was sunny and clear except for Börtli where light 
snowfall was observed. Meteorological data was collected 
from a meteostation located close by (Fig. 1). The meteo-
station included a non-heated gauge. In parallel, we per-
formed manual estimations of snowmelt rates in the field.

Sampling of snow

At each location, a 3-m-long trench was dug in the snow-
pack, from the snow surface to the soil surface (defined as 
0 cm height). The trench was divided into 3 adjacent sec-
tions to allow replication of the sampling. As snow layers 
were not clearly distinguishable at all sites, samples were 
taken at regular height intervals of 20 cm. The in situ snow 
temperature was measured with a Testo 925 tempera-
ture sensor (Testo AG, Mönchaltdorf, Switzerland), and 
snow density was estimated gravimetrically, starting from 
a knife-cut snow wedge. Triplicate snow samples were 
taken directly with 50-mL sterile Falcon tube for micro-
bial community analysis (T-RFLP and flow cytometry). 
Additional 50-mL sterile Falcon tubes were used for sam-
pling snow to be used for chemical characterization. At 
the snowpack surface, and at intermediate levels a shovel 
(115 × 5.8 × 24 cm) was used to collect approximately 1 L 
of snow for particulate matter (PM) characterization. The 
snow for PM characterization was melted on the spot and 
syringe-filtered through a 1.6-μm glass fibre filter (VWR, 
Leuven, The Netherlands).

Physical and chemical characterization of snow

For pH, conductivity and chemical properties, the snow 
(triplicates for each location and snow height) was allowed 
to slowly melt and equilibrate at room temperature. pH and 

conductivity were measured with a Multi 340i Multimeter 
(Cole-Palmer, Weilheim, Germany). For DOC measure-
ments, the melted snow was immediately syringe-filtered 
through a 0.45-μm PES filter (VWR). Ten mL of the fil-
trate was acidified with 40 μL of 37 % HCl prior to meas-
urement with a Shimadzu TOC analyser (Shimadzu GmbH, 
Reinach, Switzerland).

Soluble anions (NO3
−, SO4

2−, PO4
3−) were measured 

with a Dionex D-320 Ion Chromatography system and 
Chromeleon package (Dionex, Sunnyvale, CA), while 
NH4

+ was estimated with the colorimetric method of Mul-
vaney (1996).

For PM characterization, the glass fibre filters were 
allowed to dry and stored in boxes at room temperature 
until analysis. The filters were weighed before and after fil-
tering. The difference in weight expressed the amount of 
PM contained in the snow, was recorded. The PM weight 
of each of the filters was corrected according to the original 
snow sample volume.

Microbial cell counts

An aliquot (50 mL) of the snow samples was fixed with 
glutaraldehyde (Sigma-Aldrich, Buchs, Switzerland), and 
used for biomass estimations. Two hundred μL of each 
sample were stained with 2 μL of Sybr Green (Life Tech-
nologies, Zug, Switzerland) and incubated for 10 min at 
37 °C. Cell numbers were subsequently estimated on a 
BD Accuri C6 Flow cytometer (BD Biosciences, San Jose, 
CA).The measurements were performed on all the triplicate 
samples (biological replicates).

Microbial community diversity

For community analyses through terminal restriction frag-
ment length polymorphism (T-RFLP), 100 mL of snow 
from each of the triplicates was allowed to melt under cold 
sterile conditions and then filtered using a sterile Millipore 
0.2 μm filter unit system (Merck Millipore, Darmstadt, 

Table 1  Sampling locations and description

a The forefield of Tiefengletscher has been described by Lazzaro et al. (2009) and Meola et al. (2014)
b Melting rate was measured at each location by placing wooden sticks in the snowpack, and measuring the exposed sections between 11:00 and 
16:00. Values represent average melting rates ± standard deviation (n = 5)

Location name Code N E Altitude (m a.s.l.) Sampling date Height of  
snowpack (cm)

Melting rate (cm/h)b

Forefield of Tiefen-
gletschera

F 46°36′33.8′′ 08°27′08.1′′ 2519 18 June 2013 123 1.15 ± 0.14

Älpetli A 46°36′01.1′′ 08°27′35.4′′ 2269 13 June 2013 105 0.98 ± 0.12

Tätsch T 46°35′19.7′′ 08°28′16.5′′ 2244 12 June 2013 105 0.82 ± 0.11

Börtli B 46°35′19.7′′ 08°29′01.7′′ 1930 21 May 2013 93 0
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Germany). DNA was extracted from the filters using the 
MOBIO PowerWater DNA extraction kit (MOBIO Labo-
ratories Inc., Carlsbad, CA) according to the manufactur-
er’s instructions. A negative control, represented by a clean 
filter, was extracted in parallel. Aliquots of the extracted 
DNA (2–5 ng) were then PCR-amplified with primers 
targeting the Archaeal (primer pair 21F-Uni-b Rev; Rey-
senbach et al. 2000) and bacterial (primer pair 27F-1406 
Rev; Winsley et al. 2012) 16S rRNA gene, and the fungal 
(primer pair 813F-1357 Rev; Borneman and Hardin 2000) 
18S rRNA gene. All of the forward primers used were 
FAM-labelled at the 5′ end. PCR reactions included 1× 
DreamTaq PCR buffer, 0.5 μM of each primer, 0.2 mM 
dNTPs, 2 U DreamTaq polymerase, all in a 25-μL end vol-
ume. All reagents were supplied by Fermentas (Wohlen, 
Switzerland). PCR consisted of a first step of 94 °C for 
2 min followed by 35 cycles of 94 °C for 30 s, 56 °C for 
45 s and 72 °C for 1 min. The reaction was terminated by 
a final elongation step of 72 °C for 4 min. Positive PCR 
products were validated through agar gel electrophoresis 
and GelRed staining (Invitrogen, Life Technologies, Zug, 
Switzerland). The PCR products were then digested with 
equal volumes of the restriction enzyme AluI in 1 % Y+ 
Tango buffer (Fermentas). Finally, 3 μL of digestions were 
mixed with 10 μL of HIDI Formamide (Applied Biosys-
tems ABI, LifeTechnologies) and 0.1 μL of ROX 1000 
standard (Bioventures Inc., Murfreesboro, TN), denatured 
for 2 min at 95 °C and immediately placed on ice.

Terminal restriction patterns were examined by capil-
lary electrophoresis on a ABI 3130XL sequencer (ABI) and 
analysed with Genemapper software version 3.7 (ABI).

Physiological profiles

BIOLOG incubations of surface samples or of bulk snow 
(taken at approximately 40 cm height in the snowpack) 
were performed in triplicates by inoculating 200 μL of 
melted snow samples in each Biolog™ ECOplate well 
(BIOLOG, Hayward, CA) and incubating at 0 °C. Colour 
development was assessed daily by measuring the opti-
cal density (OD) of the samples at 595 nm with a Biotek 
plate reader (Bio-TeK, Winooski, VT). The time point of 
maximum average well colour development (AWCD) was 
defined as lag time (Stelmach et al. 2012) and was observed 
after 30–31 days of incubation. AWCD for each timepoint 
was calculated according to the formula:

where n = 31, corresponding to the number of substrates in 
the plate.

Carbon source utilization by communities was illus-
trated by the ratio:

(1)AWCD = � (Abs sample− Abs water)/n

(2)C source utilisation = (Abs sample− Abs water)/AWCD.

Infiltration experiment

To test the behaviour of microbial cells in a melting snow-
pack, we performed a bacterial infiltration experiment in 
the field at the F location. As cell inoculum, we used a liq-
uid culture of Paenibacillus sabinae. In preliminary experi-
ments, the culture was tested for its resistance at 0 °C and 
in snow for several hours. At the field site, 10 mL of liq-
uid culture (approximately 108 cells) were mixed with 
2 μL 5 mM SYTO®9 green fluorescent nucleic acid stain 
(Molecular Probes, Life Technologies, Zug, Switzerland) 
and diluted in 500 mL of water containing 50 mg L−1 of 
brilliant blue. The resulting solution was immediately 
sprinkled evenly on a surface of 0.45 m2. After allowing the 
solution to percolate for 15 min, we took triplicate samples 
with sterile 50-mL Falcon tubes. Samples were taken at 
three different depths of the snowpack, allowing a lag time 
of 15 min to permit the solution to percolate. The replicates 
were taken at regular distances and included both, prefer-
ential flow paths visualized by brilliant blue, and unstained 
snow. After sampling, the samples were immediately 
spiked with 200 μL of glutaraldehyde to fix the cells.

In the laboratory, the snow was allowed to slowly melt 
under cold conditions. The concentration of brilliant blue 
which was percolating in the snow samples was calculated 
from absorption at 595 nm with a UV–Vis spectrophotom-
eter (Varian Inc., Palo Alto, USA). The concentration of the 
SYTO®9 Paenibacillus cells was measured by flow cytom-
etry as described before. The resulting cell number was 
related to brilliant blue concentrations.

Statistical analysis

Significances of the means of all measured parameters 
were estimated with two-way ANOVA analysis of variance, 
by testing the factors “height” (between all samples and 
within samples from a single site) and “site” (between all 
samples). All analyses were performed with Systat V.12.

Ward’s hierarchical clustering with Euclidean distances 
was applied to each replicate T-RFLP profile in order to 
visualize heterogeneity between samples. In order to obtain 
a representative image of the microbial communities at 
each height, each electropherogram was first analysed 
separately, and then merged with the other two replicates 
to obtain an averaged T-RFLP profile for each sampling 
height at each location. In brief, the individual raw T-RFLP 
electropherograms were converted into relative abundance 
profiles by relating each fluorescence peak height to the 
total fluorescence detected in the profile. Richness, Even-
ness, Simpson, Inverse Simpson, and Shannon Diver-
sity indices were calculated on the basis of the presence/
absence and relative abundance of each peak as described 
before (Blackwood et al. 2007). Bray–Curtis Dissimilarity 
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was estimated pairwise for each combination of two 
T-RFLP profiles and plotted as a heatmap. Finally, the con-
strained ordination method RDA was applied by combining 
the T-RFLP data with major log-transformed environmen-
tal variables (snow parameters). A reduced model with 100 
permutations was performed to visualize significant effects 
of environmental variables. All analyses were performed 
with the “vegan” package R (Oksanen et al. 2005).

Results

Physical and chemical characteristics of the snowpack

The information collected from the WSL meteostation 
on snow height (supplementary Fig. 2) showed a decline 
in snowpack height of approximately 200 cm in 5 weeks 
(melting rate 4 cm day−1), indicating that all sampling 
dates fell at snowmelt. Our own measurements performed 
at the specific sampling dates (Table 1) showed that the 
melting rate on a sunny day could rise up to approximately 
10 cm day−1.

Snow density ranged between 470 and 580 kg m−3 in 
all the depth profiles, and tended to increase with depth 
(Fig. 2a). Both pH and density values showed site-specific 
significant differences (Table S1). pH showed a highly sig-
nificant variability along each transect (Table S1; Fig. 2b). 
The pH values measured were generally slightly acidic. 
The strongest pH variation in relation to depth was meas-
ured in the samples from T, where pH rose from 6 to 7.5 
and then decreased again to approximately 5.5 in the lowest 
levels of the snowpack.

Temperature and conductivity of each snowpack was 
fairly constant at all heights (data not shown). Tempera-
ture was approximately −0.25 ± 0.01 °C and conductivity 
was generally below 0.2 μS cm−1. Staining of the snow-
pack with erioglaucine (“Brilliant Blue”; Schneebeli 1995) 
showed ice lenses in the first decimeters of the snowpack 
(Fig. 3), and preferential flow paths.

Particulate matter on the surface and in the snowpack

The amount of PM trapped in the snowpack ranged 
from 0.1 to 0.6 mg/L in the bulk snow taken at different 
heights of the snowpack (Fig. 4; Table S2). On the surface 
snow, the dry weight was highly variable. For example, 
in the three replicate surface samples from B, the meas-
ured dry masses of PM were 7.8, 21.6 and 43.7 mg L−1. 
On the glass fibre filters from the replicate surface sam-
ples from T and A, the PM (Table S1) dry weight aver-
aged 34.2 ± 7.9 and 25.5 ± 19.9 mg, respectively, while 
the PM in the surface samples from F was slightly lower 
(17.1 ± 6.9 mg).

DOC and soluble nutrients in the snowpack

DOC remained below 2 mg L−1 in all the samples, and 
showed little variability with height within each depth pro-
file (Fig. 5a). SO4

2−–S was below 0.4 mg L−1 in the snow-
pack from B, T and A. It was significantly higher, however, 
in the surface and top layers of the F snowpack (Fig. 5b). 
NH4

+-N was also constantly low through the snow depth 
profiles, with some significant variability at different 
heights of the B depth profile (Table S1; Fig. 5c). NO3

−-N 
tended to increase significantly in the upper layers of the 
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snowpack from A and from F, while it remained constant in 
samples from B and T (Fig. 5d). Site-related variation was 
highly significant (p < 0.01) for all the chemical parameters 
measured.

Microbial biomass

Flow cytometry measured a typical range of 
10–40 cells μL−1 snow in all samples (Fig. 6). Generally, 
a higher number of cells were found in the bottommost 
snowpack layer (adjacent to the soil). At this level (level 

0 cm), recorded cell counts were ~140 cells μL snow−1 in 
the samples from A.

T‑RFLP profiling of bacterial communities

The T-RFLP profiles of bacterial communities indicated 
a high richness and diversity at all heights of each depth 
profiles (Table S3). Richness appeared lower in the B 
snowpack. The highest richness observed was in the 
T-RFLP profiles from A, where OTU numbers were in a 
range between 34 and 81. Evenness followed an opposite 
trend, reaching its highest levels in the snowpack from B 
(0.3–0.4) and its lowest in the surface samples of T (0.1). 
In the samples from F, the highest bacterial richness and 
diversity were detected in the top centimetres (57–60 OTUs 
detected) and at the bottom of the snowpack (51 OTUs 
detected).

The Shannon diversity index showed a tendency 
(p > 0.05) of a higher bacterial community diversity in 
the surface layers B (3.1), A (2.7) and F (2.6). Cluster 
analysis (Fig. S2) and Bray–Curtis dissimilarity (Fig. 7a) 
showed that the bacterial communities from B and F 
clustered apart from those from T and A (Fig. 7a). In 
the heatmap (Fig. 7a), the surface sample from B (B93) 
was distinguished from the rest of the B samples. On the 
contrary, the surface samples from F did not show any 
particular difference from the rest of the F samples. The 
A and T surface samples (A120 and T120) appeared 
to cluster together. RDA analysis (Fig. 8; Table S4) 
explained 23 % of the total variability, and showed a sig-
nificant clustering of the samples from F in relation to 
NO3

−1 concentrations, and a significant clustering of the 
samples from B in relation to NH4

+ concentrations. Also 
pH appeared to be significantly (p < 0.05) related to the 
B samples.

T‑RFLP profiling of fungal and archaeal communities

Fungal richness appeared lower than bacterial richness, 
with a general OTU richness range between 21 and 51 in 
all locations (Table S5). No significant variation of richness 
with height within each snowpack was observed. The Shan-
non index also followed the same pattern. In the samples 
from F, it was not possible to detect any fungal OTU.

Cluster analysis (Fig. S3) and Bray–Curtis dissimi-
larity (Fig. 7b) showed that the fungal T-RFLP profiles 
for a snowpack within each location clustered apart 
from each other (Fig. 7b). No particular separation of 
the surface samples or trend with snow height could be 
noticed.

The constrained proportion of variance explained by 
RDA (Fig. S4) was 29.2 %, and density, pH, SO4

2− and site 
significantly correlated with the T-RFLP profiles.

Ice lenses

Preferen�al 
flow

Fig. 3  Snow profile (picture taken from location T) visualized after 
application of a solution of 0.5 mg L−1 of Brilliant Blue dye (eri-
oglaucine) to the snow surface. The dye was allowed to percolate for 
45 min before taking the picture. Preferential flow paths and exten-
sive ice layers are clearly visible. Black-white bars mark each 10-cm 
interval

Fig. 4  Particulate matter (PM) measured from bulk and surface snow 
at the 4 different locations. No data for bulk snow in B are available
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Archaeal communities could not be analysed with T-RFLP 
profiling as the 16S rRNA gene could not be amplified.

Microbial community physiological profiles

The BIOLOG incubations showed that the physiological 
profiles were similar in all the surface and bulk snow sam-
ples (Table S6). In particular, growth at 0 °C was observed 
on polymers (i.e. Tween 40, Tween 80, α-cyclodextrin and 
glycogen), and on phenolic compounds (2-hydrobenzoic 
acid, 4-hydrobenzoic acid).

Microbial infiltration in the snow

Through the infiltration experiment, we could success-
fully detect the stained cells in the snow through flow 
cytometry. Due to the dilution of the cells in the solution, 
and the sprinkling effect, only a fraction of the inoculated 
cells could be sampled. However, linear regression (Fig. 9) 
showed a correlation (R2 = 0.68) between concentration of 
brilliant blue and detected cells, indicating that a large frac-
tion of cells followed the preferential flow paths.

Fig. 5  Soluble nutrients 
measured in the different 
depth profiles. Values are 
averages ± standard deviation 
(n = 3). For clarity of presenta-
tion, only positive error bars are 
visualized
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Discussion

General characteristics of the snowpack

The sampling at the field sites took place in May and June 
at snowmelt (Fig. 3). Our snow density values are in agree-
ment with published data from this phase (Pomeroy and 
Brun 2001; Waldner et al. 2004). Moreover, we observed 

the presence of several ice layers in the first few decimeters 
of the snowpack (Fig. 3), although the remaining bulk snow 
appeared poorly structured. This suggested that homog-
enisation of the snow profile and release of soluble species 
from the snowpack with the meltwater flow had already 
begun.

Fig. 7  Comparison of microbial T-RFLP profiles. Heatmaps are 
based on pairwise Bray–Curtis dissimilarity (0 = total; 1 = total dis-
similarity similarity between two T-RFLP profiles) calculated from 

averaged T-RFLP profiles (n = 3) derived from each sampling height. 
a Bacterial 16S rRNA gene profiles, b fungal 18S rRNA gene profiles
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Generally, the rate at which chemical compounds are 
released at snowmelt depends on the way a chemical is 
incorporated in the growing snowflake (Pomeroy et al. 
2005). Important microbial nutrients such as NO3

− and 
SO4

2−, for example, are not incorporated into the snow 
grain structure, and are released earlier (Tranter et al. 
1986). Despite the low concentrations measured (e.g. 
<0.2 μg L−1 NO3

−-N in B and T, <0.4 μg L−1 SO4
2−–S 

in B, T, A) suggesting that a large fraction of these com-
pounds already flushed out (Bowman 1992), we could 
trace other relevant ions in the snowpack. For example, the 
higher levels of NH4

+ measured (up to 30 μg L−1 NH4
+-N) 

may be related to a stronger adsorption onto snow.
DOC in the snowpack may also be important to micro-

bial communities since it may serve as a C source. The 
DOC concentrations measured in this study were simi-
lar to those measured in other snow systems in Colorado 
(Mladenov et al. 2012), but they are one order of magni-
tude larger than data collected from systems in the French 
Alps and Greenland (Legrand et al. 2013). It is not possi-
ble to explain the origin of the snow DOC in our samples, 
although it is likely it will be a mixture of atmospheric dep-
osition and in situ transformation of biogenic organic mate-
rial (McNeill et al. 2012; Runa et al. 2014).

The concentrations of soluble species presented in this 
study are expressed in μg or mg L−1 and thus related to 
the total snow volume, without taking into account the 
actual liquid water content. However, if such values would 
be extrapolated to mL liquid water, they would give sig-
nificantly higher amounts (approximately 20 times larger). 
Lautenschlager et al. (2013) showed that concentra-
tions as low as 10 μg L−1 of assimilable organic carbon 
(AOC) are enough to stimulate growth of microorganisms. 
It is therefore likely that at least a fraction of the DOC 
measured could permit the growth of snow-inhabiting 
microorganisms.

Assessment of snow microbial communities

In our samples, we could assess the presence of bacterial 
and fungal communities, but not of Archaea. So far, only 
one study reports the presence of Archaea in early season 
snow (Maccario et al. 2014). Therefore, it is possible that 
either Archaea were below detection limit for T-RFLP anal-
ysis, or that they were flushed down the snowpack with the 
first snowmelt. Further evidence has to be collected in order 
to understand the possible reasons for the lack of archaeal 
detection in the snowpack.

Although with our DNA-based profiling we could 
not assess the viability of the microbial communities, 
our cell number estimations (averaging approximately 
20 cells μL−1) fall in the range of cell numbers detected 
in other snow samples (2 × 104 cells mL−1; Amato et al. 

2007; Bauer et al. 2002; 1 × 107 DNA containing-particles 
L−1; Christner et al. 2008), and show a high diversity in 
fungal and bacterial communities at all heights.

In addition, we could also assess the potential physiolog-
ical properties of microorganisms living in the snowpack. 
As the BIOLOG profiles suggested, the snow system might 
be dominated by psychrophilic microorganisms, poten-
tially able to degrade polymers, phenolic compounds and 
biopolymers as carbon sources. Such microorganisms have 
been reported in cold aquatic systems (Tamaki et al. 2003) 
and in glacier ice (Simon et al. 2009; Stibal et al. 2012). 
In addition, the high affinity that we observed for poly-
meric substrates (i.e. Tween) might be related to the posi-
tive effect on enzymatic activities, as previously reported in 
other systems (Kamande et al. 2000), or to the presence of 
cold-adapted lipolytic bacteria, yeasts and fungi (Lo Giu-
dice et al. 2006; Kim et al. 2010; Joseph et al. 2008).

Physical and chemical differences between the 
snowpack surface and the underlying bulk snow

In our study, considering softness and heterogeneity of the 
snowpack surface, in order to obtain a homogeneous sam-
pling we operationally defined a surface snow layer as the 
first 20 cm from top. Such region of the snowpack might 
hold different characteristics from the underlying bulk 
snow, and thus affect the inhabiting microbial communities.

The surface snow is in direct contact with the surround-
ing environment, and is a sink for deposited particles and 
microorganisms (Xiang et al. 2009; Margesin and Miteva 
2011; Polymenakou 2012). The concentration, chemis-
try and distribution of the deposited particles (particulate, 
hydrophobic and hydrophilic compounds) may depend on 
several different factors such as slope, surface heteroge-
neity, and winds. Along with the transported mineral and 
organic particles, microorganisms may also be deposited 
as free cells or associated with particle material (Burrows 
et al. 2009; Womack et al. 2010). We measured a high vari-
ability in cell numbers in our surface samples, indicating a 
heterogeneous mechanism of deposition.

When associated with PM, hydrophobic substances tend 
to accumulate at the surface of the melting snowpack and are 
released only at the end of the snowmelting phase (Björkman 
et al. 2014). We observed an accumulation of PM in the first 
few centimetres of the snowpack, and no penetration into 
the deeper layers. The measured PM values correspond to 
an average PM deposition between 4.75 (F) and 9.5 kg ha−1 
(T), which is similar to the atmospheric load estimated by 
Brankatschk et al. (2010) at various alpine sites.

The snowpack below the surface layer represents older 
snow, which has been progressively compacted and under-
gone metamorphism. The presence of ice layers in the 
snowpack, for example plays a central role in trapping cells 
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(Jones 2001), and has been related to variability in cell 
numbers and in concentrations of major ions (Björkman 
et al. 2014). We also observed the presence of ice layers at 
our sampling sites. Due to the dynamic properties of snow, 
however, with our experimental setup it was not possible to 
associate defined microstructures in the snowpack to nei-
ther soluble ion concentrations nor to cell numbers.

Redistribution of microbial communities in the 
snowpack

With the infiltration experiment, we could show that micro-
organisms tend to behave as soluble particles, and are 
therefore strongly related to meltwater flushes. In fact, nei-
ther microbial richness nor diversity from our T-RFLP pro-
files appeared to show any peculiar trend in any of the bulk 
snow layers, suggesting that microorganisms were homog-
enised in the snowpack. Horizontal and upward movement 
has been shown to occur in wet snow (Walter et al. 2013). 
In addition, microbial properties such as the presence of 
flagella, might contribute to the distribution of microbial 
cells in the bulk snow (Jones 2001). Our results do not, 
however, reflect those from a recent study by Björkman 
et al. (2014) who showed that in a melting Arctic snowpack 
the elution of microbial cells resembled that of hydropho-
bic substances, and that microbial cells were strongly asso-
ciated with particulate material. Such snowpack, however, 
appeared strongly stratified and rich in ice layers, features 
which influence the retention of cells and their subsequent 
elution. In our study, we have neither evidence of associa-
tion of microbial cells with PM, nor of an evident snow-
pack stratigraphy, and this may have caused the contrasting 
observations.

Finally, depending on the infiltration capacity of the 
snow-covered soil, meltwater can form a slush layer at 
the soil–snow interface at the bottom of the snowpack, 
creating a transit for microbial cells (Horton 1935). A 
thorough comparison of the T-RFLP profiles visualizing 
shared OTUs between surface snow/underlying soil and 
bottom snow/underlying soil (data not shown), however, 
suggested that only <36 % of all bacterial OTUs, and 
<18 % of all fungal OTUs identified is shared between 
snow and soil samples. Therefore, the exchange between 
soil microbial communities and the snow system is 
minimal.

Site‑related differences in snow microbial communities

Chemical composition of snow may show an extreme spa-
tial variability (Tranter et al. 1986), reflecting the presence 
of pollution sources and vegetation-related effects. Our 
T-RFLP profiles highlighted that also the microbiology of 
the snowpack showed a certain medium-scale (hundreds 

of m to km) spatial variability. RDA analysis based on the 
bacterial T-RFLP profiles highlighted in particular the simi-
larities between snow communities at A and T, which are 
geographically very close to each other, in contrast with 
those from F and B. Site, SO4

2− and NO3
− were correlated 

with the F cluster, while NH4
+ was significantly correlated 

with the B cluster. Indeed, both NO3
− and SO4

2− were pre-
sent in larger concentrations all through the F snow profile. 
In B, pH appeared slightly more alkaline than in the other 
locations sampled. Snow pH is highly dependent on parti-
cles (i.e. NH4

+) transported along with precipitation, which 
may in turn vary with different altitudes (Lovett and Kins-
man 1990; Thimonier et al. 2005).

Our results highlight the importance of the N pools in 
snow. Total (dry and wet) deposition of N calculated for the 
year 2010 in our sampling locations (Rhim, personal com-
munication), for example, ranged between 5.9 (B) and 8.7 
(F) kg N ha year−1. Considering an average N content in the 
snowpack ranging from 11.6 (F) to 12.6 (A) μg L−1, and 
estimating an average flush of 50 L m2 day−1 of meltwater 
during 38 days of snowmelt (daily snowmelt data collected 
at the field sites), we can estimate that the snowpack is able 
to provide approximately 2.75–3.73 % of the annual wet 
and dry N deposition to the underlying soil. Such estima-
tion falls in the lower ranges reported in a previous study 
performed on dry alpine meadows in Colorado (Bowman 
1992). Therefore, the snowpack of the Tiefen catchment 
may be considered as a winter N sink and a spring N source 
for plant communities.

Conclusions

A snowpack at snowmelt is characterized by faint stratigra-
phy, and increasing flushes of meltwater. In this study, we 
showed that meltwater flow enhances the vertical transport 
of soluble ions and microbial cells. However, particulate 
matter remains retained at the surface of the snowpack and 
will be released only at the end of snowmelt. As a conse-
quence, snowpack microbial communities tended to be 
homogeneously distributed through the whole depth of the 
snowpack. A comparison of the snowpack communities 
at 4 different altitudes within the same glacier catchment 
showed pronounced site-specific variability, which is prob-
ably due to different atmospheric deposition sources and 
regimes.
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