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Abstract While recent advances in metabolomic mea-

surement technologies have been dramatic, extracting

biological insight from complex metabolite profiles

remains a challenge. We present an analytical strategy that

uses data obtained from high resolution liquid chroma-

tography–mass spectrometry and a bioinformatics toolset

for detecting actively changing metabolic pathways upon

external perturbation. We begin with untargeted metabolite

profiling to nominate altered metabolites and identify

pathway candidates, followed by validation of those path-

ways with transcriptomics. Using the model organisms

Rhodospirillum rubrum and Bacillus subtilis, our results

reveal metabolic pathways that are interconnected with

methionine salvage. The rubrum-type methionine salvage

pathway is interconnected with the active methyl cycle in

which re-methylation, a key reaction for recycling

methionine from homocysteine, is unexpectedly sup-

pressed; instead, homocysteine is catabolized by the trans-

sulfuration pathway. Notably, the non-mevalonate pathway

is repressed, whereas the rubrum-type methionine salvage

pathway contributes to isoprenoid biosynthesis upon 50-
methylthioadenosine feeding. In this process, glutathione

functions as a coenzyme in vivo when 1-methylthio-D-

xylulose 5-phosphate (MTXu 5-P) methylsulfurylase cat-

alyzes dethiomethylation of MTXu 5-P. These results

clearly show that our analytical approach enables unex-

pected metabolic pathways to be uncovered.

Keywords Active pathway detection � Isoprenoid
biosynthesis � Liquid chromatography–mass spectrometry �
Metabolomics �Methionine salvage � Quantitative real time

polymerase chain reaction � Transcriptomics

Abbreviations

AMC Active methyl cycle

CBS Cystathionine b-synthase
CGL Cystathionine c-lyase
DXP 1-Deoxy-D-xylulose 5-phosphate

FT Fourier transform

GSEA Gene set enrichment analysis

HRPP Hit ratio per peak

KEGG Kyoto Encyclopedia of Gene and Genomes

LC Liquid chromatography

MS Mass spectrometry

MSEA Metabolite set enrichment analysis

MTA 50-methylthioadenosine

MTHFR 5,10-methylenetetrahydrofolate reductase

MTXu 5-P 1-methylthio-D-xylulose 5-phosphate

qRT-PCR Quantitative real time polymerase chain

reaction

RNAseq RNA sequencing
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SAH S-Adenosyl-L-homocysteine

SAM S-Adenosyl-L-methionine

1 Introduction

We have developed a systems biology approach that

combines an automated liquid chromatography (LC)–mass

spectrometry (MS)-based metabolomics pipeline (Raams-

donk et al. 2001) with transcriptomics and use it to con-

struct a holistic picture of the methionine salvage

metabolism in several model organisms. The methionine

salvage pathway is universal and present in many organ-

isms, from unicellular bacteria to plants and animals, with

some variations (Albers 2009; Wray and Abeles 1995;

Trackman and Abeles 1983). Two alternative methionine

salvage pathways are known that convert 50-methylthioa-

denosine (MTA), a by-product of S-adenosyl-L-methionine

(SAM)-dependent polyamine biosynthesis, to methionine.

The classical pathway, as determined in Bacillus subtilis

(B. subtilis), is an eight-step pathway in which the carbon

and sulfur skeleton of methionine is completely synthe-

sized from the methylthioribose moiety of MTA (Ashida

et al. 2003). The second pathway, recently reported by our

group (Erb et al. 2012), was discovered in Rhodospirillum

rubrum (R. rubrum) and involves a bifurcation of the

methylthioribose molecule between methionine and iso-

prenoid biosynthesis. In R. rubrum, the pathway interme-

diate, methylthioxylulose-5-phosphate, is cleaved into

methanethiol and the non-mevalonate isoprenoid precursor,

1-deoxy-D-xylulose 5-phosphate (DXP), in a novel enzy-

matic reaction that is dependent on 1-methylthio-D-xylu-

lose 5-phosphate (MTXu 5-P) methylsulfurylase (Warlick

et al. 2012). Whereas methanethiol can be further con-

verted to methionine by the action of an O-acetyl-L-

homoserine sulfhydrylase, the remaining carbon skeleton

of MTA is channeled into isoprenoid biosynthesis.

In recent years, using metabolite profiling as a means to

reveal novel aspects of cellular metabolism has gained

popularity because it provides insight into complex regu-

latory processes as well as direct functional information on

metabolic phenotypes (Fiehn et al. 2000; Zhao et al. 2013).

Integration of metabolite profiles with transcriptomics data

(Kresnowati et al. 2006; Bradley et al. 2009; Lei et al.

2011) or metabolic networks (Cakir et al. 2006) has

advanced our understanding of biological systems to the

next level. LC coupled to high resolution, accurate mass

spectrometric platforms enables the detection of many

thousands of features, but requires high throughput data

handling methods to convert the raw data into biological

discovery (Wei et al. 2011; Eliasson et al. 2012).

Multivariate statistical methods are routinely used to

analyze complex data to discover biological patterns

(Fernie et al. 2004). However, converting this wealth of

information into an understanding of biological function

remains challenging. Even though pathway-level analysis

has been applied to gene expression data (Tavazoie et al.

1999; Curtis et al. 2005), only recently have tools for

analyzing metabolite profiles in the context of predefined

biological metabolite sets been reported (Xia and Wishart

2010, 2011; Chagoyen and Pazos 2011; Kankainen et al.

2011). These approaches have been predominately applied

to study human and mammalian metabolomics because

many biological sets and their constituent metabolites are

well defined for these species (Sreekumar et al. 2009; Deo

et al. 2010; Putluri et al. 2011a, b). However, the appli-

cation of these approaches to pathway discovery in bacteria

is hampered by the following issues: (i) there is no refer-

ence metabolome that can be measured by a specific ana-

lytical platform; (ii) time-consuming data pre-processing is

required to reduce false positives and false negatives in the

peak detection process; (iii) detected peaks should be

annotated in advance with high confidence before applying

metabolite set enrichment analysis (MSEA), a counterpart

of gene set enrichment analysis (GSEA) (Mootha et al.

2003; Subramanian et al. 2005); and (iv) it is not always

obvious which metabolite sets (i.e., pathways) should be

tested, especially when a goal is to discover the unexpected

pathways in vivo.

Here, we integrated untargeted metabolomics with

transcriptomics [quantitative real time polymerase chain

reaction (qRT-PCR) and RNA sequencing (RNAseq)] to

correlate specific changes in bacterial growth conditions

and a genetic knockout with changes in the activities of

metabolic pathways. We used the concept of seed metab-

olites, which we define as the metabolites showing higher

abundance changes upon perturbation, unambiguous for-

mula determination and search hits in a database. These

seed metabolites and a dynamic build-up of metabolite sets

were used for the detection of actively changing metabolic

pathways observed in the raw LC–MS data. In this process,

we used the refined mass spectral features from the LC–MS

data, regardless of the metabolite annotations, as a refer-

ence metabolome for our enrichment analysis, which is

based on the same procedure used in GSEA. Putative

metabolite annotation of the seed metabolites was carried

out with high confidence and high coverage, and with a low

number of false positives. Metabolite annotation was fol-

lowed by a dynamic build-up of metabolite sets based on

the pathway information extracted from the seed metabo-

lites. Detected active pathways were then validated with

transcriptomics. We applied this analytical strategy to

unravel metabolic pathways linked to methionine salvage

in R. rubrum and B. subtilis. Our approach revealed elab-

orate metabolic strategies used by microbes to cope with

stressful environments (e.g., MTA feeding) through the
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coordinated regulation of several expected and unexpected

metabolic pathways.

2 Materials and methods

2.1 Bacterial strains and growth conditions

Bacillus subtilis 168 (a gift from the laboratory of G. Or-

dal) was grown aerobically in either Luria-Bertani broth

(Albers 2009) or minimal medium at 37 �C as previously

described (Sekowska and Danchin 2002). R. rubrum (DSM

467, ATCC 11170, American Type Culture Collection,

Manassas, VA, USA) and its MTXu 5-P methylsulfurylase

mutant (a gift from R. Tabita and Jaya Singh) were grown

aerobically in the dark at 30 �C on 20–2,000 mL minimal

medium with sulfate or MTA as the sole sulfur sources, as

previously described (Erb et al. 2012). See the Supple-

mentary methods for details.

2.2 LC–Fourier transform (FT) MS metabolomics

Cell suspensions (OD600 = 6 for B. subtilis, OD578 = 6

for R. rubrum) were incubated at optimum growth tem-

perature (temperature = 30 �C) in minimal media without

a sulfur source (control samples) or with 1 mM MTA

(feeding experiments). Sampling was carried out at various

time points (B. subtilis: 0, 2, 5 and 15 min; R. rubrum: 0,

10 and 20 min) according to the strains. Then cells were

pelleted and immediately frozen in liquid nitrogen.

Metabolites were extracted from the frozen cell pellets by

resuspending with 0.375 mL 10 mM ammonium bicar-

bonate buffer (pH 9.2) containing 90 % acetonitrile. LC–

FTMS analysis was carried out using an 11T LTQ-FT Ultra

mass spectrometer (Thermo-Fisher Scientific, Waltham,

MA, USA) equipped with an Agilent 1200 HPLC system in

negative mode (Agilent Technologies, Santa Clara, CA,

USA) (Evans et al. 2011). See the Supplementary methods

for details.

2.3 LC–FTMS data analysis

Data analysis was carried out with the analytical platform

as described in the Supplementary methods. This discovery

platform consists of various functional modules to cope

with rising issues in untargeted metabolomics, including:

data pre-processing, isotope pattern analysis, molecular

formula determination, database searching and pathway

activity profiling. Peaks were detected using XCMS (http://

metlin.scripps.edu/xcms/). Peak lists were filtered to

remove adducts and isotopic peaks. Molecular formulas

were determined by comparing experimental isotopic pat-

terns with theoretically predicted isotopic patterns modeled

with Bayesian statistics. Seed metabolites were automati-

cally detected based on raw LC–MS data. Both monoiso-

topic masses and the top three predicted molecular

formulas were searched against the Kyoto Encyclopedia of

Gene and Genomes (KEGG) (Kanehisa et al. 2012) data-

base to putatively annotate peaks and to build-up metabo-

lite sets using pathway information. Constructed metabolite

sets (i.e., implicated pathways) were evaluated using the

MSEA approach with a Kolmogorov–Smirnov running

sum statistic (Mootha et al. 2003). Highly perturbed but

not annotated peaks were listed for further identification

experiments. See Supplementary methods for details.

2.4 Quantitative real time polymerase chain reaction

(qRT-PCR)

qRT-PCR was performed as previously described (Pfaffl

2001). Cells were harvested at OD = 0.6, and RNA was

extracted using an RNeasy protect kit (Qiagen, Gaithers-

burg, MD, USA) according to the manufacturer’s recom-

mendations. Total RNA was resuspended in PCR-grade

nuclease-free water, and RNA quality and concentration

were estimated by optical density measurement using a

Nanodrop 2000 spectrophotometer (Fisher Scientific,

Pittsburgh, PA, USA). Each sample of 500 ng total RNA

was reverse transcribed using a First Strand cDNA Syn-

thesis Kit (Fermentas, Pittsburgh, PA, USA). Real-time

PCR reactions were carried out on a LightCycler 480

(Roche, Indianapolis, IN, USA) using the SYBR Green

detection format. Changes in the expression were calculated

relative to the expression of 16SrRNA. After each PCR run,

a melting curve analysis was carried out to control for

production of primer dimers and/or non-specific PCR pro-

ducts. Expression levels of mRNA were estimated using

external standard curves with serially diluted plasmids/PCR

products with known concentrations for each target gene.

Fold changes in mRNA expression during treatment were

calculated using the crossing point (Cp) for each sample and

the efficiency (Eff) of each transcript using the formula

(Efftarget gene)
DCp/(Effhousekeeping gene)

DCp. The fold chan-

ges were estimated relative to 16SrRNA.

2.5 RNAseq and analysis

Subtraction of ribosomal RNAs from a 10 lg total RNA

sample using an Ambion MICROBExpress Kit (Applied

Biosystems, Foster City, CA, USA), as well as subsequent

sequencing of the enriched mRNA fraction (Illumina, San

Diego, CA, USA, 100 bp single end, directional RNAseq

method) were performed at the W.M. Keck Center for

Comparative and Functional Genomics (University of

Illinois at Urbana-Champaign) using in-house protocols.

The reads were on average between 70 and 80 nt, at a total
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of about 22 million reads for the RNA preparation from

sulfate-grown cells and about 20 million reads for the RNA

preparation from MTA-grown cells. RNAseq data were

aligned against the R. rubrum genome (Accession number

NC_007643) and analyzed using the CLC genomics

workbench software, version 3.7 (CLC bio, Cambridge,

MA, USA) according to the user’s manual. Briefly, short

reads were aligned against the fully sequenced genome of

R. rubrum to determine unique and total gene reads.

3 Results

3.1 Analytical strategy

Although there has been great progress in LC–MS-based

metabolomics that enables one to extract biological insight

from metabolite profiles, more remains to be done. Building

upon existing technologies, we developed a bioinformatics

platform that includes various functional modules: data pre-

processing (including chromatographic feature detection,

deconvolution and filtering), automatic mass spectral peak

grouping (peaks with isotopic patterns versus peaks without

isotopic patterns), molecular formula determination, database

searching and pathway activity evaluation based on MSEA

(see Supplementary Material, Source Codes.zip). This novel

approach enabled a streamlined process for the detection of

actively changingmetabolic pathways from raw LC–MS data

(see Supplementary Material Fig. S1, for system design).

Mass spectral features refined by the data pre-processing

module were classified into three groups. The primary group

contained features with visible isotope peaks and with a

[20 % abundance change between the experiment and con-

trol. The secondary group contained features with visible

isotope peaks, but whose abundance change between groups

was\20 %. The tertiary peak group had features with no

visible isotopic pattern. Molecular formulas were determined

for peaks in the primary and secondary groups using well-

known round-robin and recursive backtracking algorithms

(Bocker et al. 2008, 2009; Bocker and Liptak 2007). During

this process, non-biological molecular formulas were further

filtered using previously published heuristics (i.e., the seven

golden rules) (Kind and Fiehn 2007). Theoretical isotopic

patterns for predicted molecular formulas were modeled by

the first-order Markov process and the forward trellis algo-

rithm (Snider 2007). Next, these simulated isotopic patterns

were compared to experimental isotopic patterns based on

Bayesian statistics. Only the top three candidates identified by

this process were searched against the KEGG metabolite

database with 5 ppm mass tolerance. Hits in KEGG were

considered as ‘‘seed metabolites’’, a major concept of this

strategy. Thus, seed metabolites are defined as metabolites

that show significant abundance changes ([20 %), clear

isotopic patterns, and returned search hits in a database; these

provided the basis (‘‘seeds’’) for the annotation of mass

spectral peaks that were not otherwise annotated with high

confidence. Among search hits using mass alone against the

KEGGdatabase, only hits in the samepathways as those of the

seed metabolites were considered as putative candidates for

annotation. These candidates were clustered into their impli-

cated pathways and then used as MSEA. Peaks that were

highly perturbed ([20 % abundance changes) without search

hits in public databases (due to coverage issues) (Tautenhahn

et al. 2012) were queued for more elaborate annotation

experiments. The details of the analytical flow are depicted in

Fig. 1. Detected active pathways were further validated by

transcriptomics.

3.2 Data pre-processing

Abasic andmandatory step inmetabolite profiling is to reduce

data complexity caused by adducts, isotopologues, multimers

and signals arising from chemical and electronic noise. Cur-

rently, this feature refinement is carried out through either a

manual or semi-automated process that mostly deals with the

features of biological interest and not the complete set of

detected features (Dunn 2008). While there are several pub-

licly available LC–MS based bioinformatics tools for peak

detection and alignment, includingXCMS (Smith et al. 2006)

and MZmine (Katajamaa and Oresic 2005), there are few

public tools for this error-prone and time-consuming raw data

refinement process (Alonso et al. 2011).

In this study, a mass difference matrix was constructed

through an all-by-all mass comparison among detected peaks

to filter the redundant data and to recognize isotopic patterns.

For each peak, possible adducts and multimers were elimi-

nated by comparing their masses with the entire mass differ-

ences in thematrix. Isotopic patterns (13C, 15N, 18O, 34S) were

also analyzed based on mass difference and retention time

(RT) with tolerances (e.g., mass tolerance = 2 ppm and RT

tolerance = 60 s) and storedas a list ofmatrices formolecular

formula determination. Then, isotopologues (except mono-

isotopes) were removed from the peak list. We took notice of

the limited usage of elements in the biological molecular

formula in a previous study, conceptualized as the seven

golden rules (Kind and Fiehn 2007). This narrow elemental

composition constraint has an effect that is observable in the

accurate mass, the mass defect, which is defined as the dif-

ference between the nominal and exact (Zhang et al. 2009).

This prior knowledge inspired us to investigate whether there

is a biased distribution between the integral part and the

fractional part of the masses of biological molecules. We

examined the mass distribution of all masses in the KEGG

database (May 16, 2011 version) and noticed that there was a

clear region that was not occupied by metabolites due to the

limited elemental compositions, as shown inFig. 2. This trend
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was also observable in the PubChem compound database

(June 12, 2012 version), in which many synthetic compounds

were included (Supplementary Fig. S2). Even in PubChem,

only\0.3 % of data were in this limited region, andmost data

were in the high-density region. Consequently, this mass

distribution was used as a non-biological signal filter in our

analysis at the pre-processing step, eliminating up to 18 % of

the initially detected features (Table 1). After deconvoluting

the peaks (e.g., isotopologues, adducts, multimers and non-

biological signals), wewere able to greatly reduce the number

of features from the raw LC–MS data. Greater than 50 % of

the initiallydetected features in bothorganismswere excluded

from further analysis. The distribution of features according to

the data pre-processing is shown in Table 1. Notably, features

with determined elemental compositions occupy only a small

portion of the detected features (9–12 % of R. rubrum and

5–6 % of B. subtilis), suggesting further technical improve-

ments are needed to detect isotopologues in untargeted

metabolomics.

3.3 Seed metabolites and dynamic build-up

of metabolite sets

A challenge in metabolite profiling is the effort to automate

the annotation of the detected peaks with high confidence,

high coverage and low false positives in order to identify

active pathways and extract biological insights. A simple

search against publicly available databases with only

nominal mass information produces many false positives.

As an alternative, accurate mass and elemental composi-

tion constraints are used together to define metabolites by

determining their molecular formulas (Bocker et al. 2008,

2009; Rogers et al. 2009; Brown et al. 2011). However,

only a small portion of the LC–MS data contains this useful

information, so the problem of limited coverage remains to

be solved. Furthermore, since metabolite profiling is a

snapshot of metabolism at a specific time point, not all of

the possible metabolites are detected, and slightly different

subsets of metabolites of a metabolic pathway can be

observed even under the same experimental conditions. To

apply enrichment analysis to detect unexpectedly inter-

woven pathways, biologically meaningful metabolite sets

should be constructed exhaustively.

To cope with these challenges, we used seed metabolites

and the dynamic build-up of metabolite sets (see Fig. 1).

Also, we integrated several analytical processes to reduce

the total number of metabolite sets to be evaluated. The

peaks in the primary group were searched against the

KEGG database using molecular formulas and monoiso-

topic masses. Search hits provided our initial seed

Fig. 1 An overview of our analytical strategy. Specific changes in

bacterial growth conditions and genetic knockout yield high resolu-

tion LC–MS data from which active pathways are detected by

computational analysis and experimental validation, employing

metabolite profiling, nominating altered metabolites, modeling

molecular formulas, evaluating pathway activities and validating

detected active pathways with qRT-PCR and RNAseq. Black, blue

and red arrows indicate chronology of events in the workflow
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metabolites and their pathway information was extracted.

The extracted pathways were used to assign peaks for the

secondary group and the tertiary group by searching

against the KEGG database. For the secondary group,

molecular formulas were used together with pathway

information. Search hits from this round were also added to

the existing pathway clusters. In this way, metabolite sets

for the implicated pathways were dynamically built-up and

evaluated by the enrichment analysis based on the MSEA

procedure. To calculate the performance (e.g., confidence

and coverage) of these putative annotations before valida-

tion, a simple measure called the hit ratio per peak (HRPP)

was introduced to compare the performance indirectly. The

HRPP is the ratio of the number of total hits in the database

divided by the number of peaks having at least one hit in

the database. Performance is inversely related to the HRPP.

As shown in Fig. 3, simple searches based only on accurate

mass produced relatively large numbers of search hits, but

also increased the HRPP (e.g., HRPP = 2.98 at 20 min,

R. rubrum; and HRPP = 2.57 at 2 min, B. subtilis, using a

5 ppm mass tolerance). Isotopic abundance patterns are

known to be useful in reducing the number of potential

elemental compositions and providing high confidence to

the search hits (Kind and Fiehn 2006). Although elemental

composition was used for filtering the database searches,

and search hits were further reduced by eliminating false

Fig. 2 Mass distribution (integral part vs. fractional part) to eliminate

non-biological signals in the KEGG database. a Scatter plot of mass

distribution in KEGG. b Contour map of mass distribution in KEGG.

The mass distribution between the integral parts and fractional parts

of the monoisotopic masses was contrasted against KEGG. Inorganic

metal salts and polyhalogenated molecules were eliminated manually.

The distribution clearly shows that biological molecules mainly

occupy two specific regions in the distribution space, as the contour

map shows that only a small portion of molecules (\0.3 %) appeared

outside of these regions

Table 1 Distribution of putatively annotated peaks according to the time points (negative mode, 100–1,000 m/z)

Feature summary R. rubrum (min) B. subtilis (min)

10 20 2 5 15

No. of features 2,294 4,205 4,963 4,416 4,322

Invalid RT (e.g. 120 s B RT B 2,030 s) 646 1,565 1,035 989 1,047

No. of artifact features (e.g., adducts and multimers) 82 126 207 168 154

No. of non-biological signals (i.e., mass distribution

filter)

145 (6.3 %)a 347 (8.3 %)a 704 (14.2 %)a 672 (15.2 %)a 620 (14.3 %)a

No. of isotopes 339 434 455 387 368

Total no. of eliminated features 1,212 2,472 2,401 2,216 2,189

No. of refined features for further analysis 1,082

(47.1 %)a
1,733

(41.2 %)a
2,562

(48.4 %)a
2,200

(49.8 %)a
2,133

(49.4 %)a

No. of predicted molecular formulas 270 (11.8 %)a 366 (8.7 %)a 252 (5.1 %)a 240 (5.4 %)a 225 (5.2 %)a

a The figures are expressed as a percentage of all initially detected features
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positives, the HRPPs fluctuated in our experiment (e.g.,

HRPP = 2.47 at 20 min, R. rubrum; and HRPP = 2.82 at

2 min, B. subtilis, using a 5 ppm mass tolerance). This was

somewhat unexpected, because higher confidence is

expected at the expense of coverage when combining mass

and molecular formula information. However, the

unavoidable incompleteness of available databases, and

variable quality of the LC–MS data, may have affected the

HRPP. In contrast, our approach consistently showed

higher confidence and coverage, supporting the usefulness

of the seed metabolite approach (e.g., HRPP = 2.05 at

20 min, R. rubrum; and HRPP = 1.89 at 2 min, B. subtilis,

using a 5 ppm mass tolerance). Details are shown in Fig. 3,

and Supplementary Material Tables S1 and S2.

3.4 Actively changing metabolic pathways detected

by the enrichment analysis

Dynamically constructed metabolite sets (i.e., implicated

pathways) were further curated into subcategories manu-

ally and evaluated by the enrichment analysis process to

detect interconnected pathways upon metabolic perturba-

tion with MTA, a key metabolite in bacterial methionine

salvage pathways.

In B. subtilis, a total of 26 implicated pathways were

generated based on the concept of seed metabolites and the

dynamic build-up process. Among them, only the purine

salvage pathway (p-value = 3.58 9 10-5 at 2 min) and

the classical, subtilis-type methionine salvage pathway

Fig. 3 Performance evaluation of putative peak annotation of

a R. rubrum at 20 min, b B. subtilis at 2 min. The performance of

the putative peak annotation was indirectly evaluated by introducing a

search HRPP, calculated by dividing the total number of hits in the

KEGG database by the total number of input peaks. The black bars

represent the total number of unique input peaks, and the blue bars

represent the total number of search hits. The red line represents the

performance as evaluated by HRPP. Two mass tolerances (2 and

5 ppm) were used for the simple search (bars on the left of the black

line), and for others, a 5 ppm mass tolerance was used (bars on the

left of the black line)
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(p-value = 2.00 9 10-4 at 2 min) were characterized as

active pathways using the enrichment analysis approach

(Fig. 4a). Fold changes and corresponding p-values are

detailed in Supplementary Table 3. Adenine and hypo-

xanthine were clearly up-regulated upon MTA perturba-

tion. The activation of the purine salvage pathway is in line

with the cleavage of adenine from MTA. However,

metabolites in the de novo purine biosynthesis pathway

were not significantly affected. Xanthine and xanthosine-

50-phosphate were down-regulated, but the levels of

adenosine-50-monophosphate and 50-phosphoribosyl-5-
amino-4-imidazolecarboxamide were not changed. Similar

to the purine salvage pathway, the subtilis-type methionine

salvage pathway was also determined to be active, even

though some metabolites were not accumulated according

to the time points (e.g., 2,3-diketo-5-methyl-thiopentenyl-

1-phosphate, 2-hydroxy-3-keto-5-methylthiopentenyl-1-

phosphate and 4-methylthio-2-oxobutanoate) or detected

accordingly in our experimental setup (e.g., 1,2-dihydroxy-

3-keto-5-methyl-thiopentene and 3-methylthiopropionate).

In R. rubrum, a total of 53 implicated pathways were

dynamically constructed. Among them, eight were considered

as active pathways using the enrichment analysis approach

(Fig. 4b). As expected, the purine salvage pathway

(p-value = 1.35 9 10-4 at 20 min), the rubrum-type methio-

nine salvage pathway (p-value = 6.05 9 10-5 at 20 min), and

the non-mevalonate isoprenoid pathway (p-value = 1.68 9

10-3 at 20 min) were clearly affected by MTA feeding. Thus,

the unexpected link of MTA metabolism with the isoprenoid

pathway inR. rubrum, as recently published by our group (Erb

et al. 2012), was re-confirmed by this analysis, establishing the

MTA-isoprenoid shunt as an essential part of the novel MTA

recycling strategy in R. rubrum. Note that isoprenoid biosyn-

thesis is not affected inB. subtilis uponMTA feeding, which is

in line with the classical methionine pathway in this organism.

The fold changes and p-values of detected metabolites in the

isoprenoid biosynthesis of R. rubrum were compared with

those of B. subtilis, with results shown in Supplementary

Material Table S4.

In R. rubrum, the rubrum-type methionine salvage path-

waywasalso strongly intertwinedwith the activemethyl cycle

(AMC) (p-value = 1.23 9 10-2), as evidenced by the strong

up-regulation of S-adenosyl-L-homocysteine (SAH) (fold

change = ?702, p-value = 4.72 9 10-14) and SAM (fold

Fig. 4 Actively changing metabolic pathways detected from impli-

cated pathways via untargeted metabolomics. Actively changing

metabolic pathways in a B. subtilis and b R. rubrum detected by

untargeted metabolomics. In B. subtilis, the subtilis-type methionine

salvage pathway and the purine salvage pathway were detected as

active pathways upon MTA feeding. In R. rubrum, eight total

metabolic pathways were detected as active pathways upon MTA

feeding, including the rubrum-type methionine salvage pathway, the

AMC, the sulfur metabolism, the isoprenoid pathway, the purine

metabolism, the TCA cycle, the glutathione metabolism and the

butanoate metabolism. Rectangles implicated pathways; triangles

metabolites detected by LC-FTMS. Green up-regulation of the

corresponding metabolites in the pathways. Red down-regulation of

the metabolites. Gray pathways that are not much affected upon MTA

perturbation. Line style indicates the fold change of the metabolites
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change = ?148, p-value = 6.22 9 10-7) at 10 min.

However, metabolites of the AMC were down-regulated at

20 min. Similar to the AMC, glutathionemetabolismwas also

up-regulated (p-value = 3.61 9 10-3) at 10 min and down-

regulated at 20 min at the level of metabolites. Notably, we

observed that a glutathione-methylthiol adduct (m/z =

352.0636, RT = 22.3 min) was highly and consistently up-

regulated by adding MTA to wild-type R. rubrum (fold

change = ?914, p-value = 1.35 9 10-11 at 10 min; fold

change = ?1,573, p-value = 1.05 9 10-4 at 20 min).

However, this compound was not observed in the MTXu 5-P

methylsulfurylase mutant (see Fig. 5). Additional in vitro and

in vivo feeding experiments confirmed the identity of gluta-

thione–methylthiol adduct (Supplementary Figs. S3, S4). This

glutathione–methylthiol adduct is strong evidence that gluta-

thione functions as a coenzyme in vivo in MTXu 5-P

methylsulfurylase-catalyzed dethiomethylation. Glutathione

itself was found to be unstable during our sample preparation

and analysis; therefore, we do not report changes in this

metabolite here. Finally, the tricarboxylic acid (TCA) cycle

showed a similar pattern to the AMC and glutathione metab-

olism upon MTA feeding (p-value = 2.85 9 10-2), with an

up-regulation at 10 min and a down-regulation at 20 min.

Malate (fold change = ?11; p-value = 2.20 9 10-10),

2-oxoglutarate (fold change = ?270; p-value = 1.91 9

10-12) and fumarate (fold change = ?8; p-value = 4.59 9

10-12) were highly up-regulated with statistical significances

at 10 min. Butanoate metabolism, which involves these

metabolites and downstream metabolites of the TCA cycle,

was also up-regulated at 10 min (p-value = 2.32 9 10-3),

and sulfur metabolism was down-regulated at 20 min

(p-value = 0.048). The fold changes and p-values of their

constituent metabolites in these active pathways are listed in

Supplementary Material Table S5.

3.5 Validation by qRT-PCR

Subsets of genes detected in each active pathway have been

manually validated upon MTA perturbation. Selected

genes and primers are listed in Supplementary Material

Table S6. After feeding MTA, gene expression levels were

monitored at selected time points by qRT-PCR. In

B. subtilis, genes of the classical, subtilis-type methionine

and purine salvage pathways were investigated based on

their activation observed upon MTA perturbation (Sup-

plementary Material Table S7). In line with the meta-

bolomics results, genes in the subtilis-type methionine

salvage pathway were highly up-regulated by MTA

Fig. 5 Abundance changes of glutathione-related compounds in

metabolomics. Glutathione-related peaks in metabolomics at 10 min

(R. rubrum) are shown. Notably, the glutathione–methylthiol adduct

(m/z: 352.0636, RT: 22.3 min) is highly induced by MTA feeding in

the wild-type organism but is not induced in the MTXu 5-P

methylsulfurylase mutant. This adduct provides strong in vivo

evidence that glutathione functions as a coenzyme in MTXu 5-P

methylsulfurylase-catalyzed dethiomethylation, a novel route to

connect rubrum-type methionine salvage to the isoprenoid pathway.

WT wild type, Mut MTXu-5P methylsulfurylase mutant
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perturbation (BSU27270 = ?5.9, BSU13560 = ?4.4,

BSU13550 = ?9.5 and BSU13620 = ?5.4). However,

genes in the purine salvage pathway were not induced by

MTA feeding, even though RNAs were detected under the

growth conditions, suggesting that accumulation of

metabolites in these pathways in vivo is not related to up-

regulation of transcription.

As listed in Supplementary Material Table S8, in R. ru-

brum, genes in the rubrum-type methionine salvage pathway

(e.g., Rru_A0361, Rru_A0360, Rru_A1998, Rru_A2000,

Rru_A0774 and Rru_A0784) and in the isoprenoid pathway

(e.g., Rru_A1592 and Rru_A0263), were highly up-regulated

upon MTA feeding. Up-regulation of the MTXu 5-P meth-

ylsulfurylase gene (Rru_A2000, fold change = ?3.1 at

20 min) confirms its critical role in the novelMTA isoprenoid

shunt. Similarly, the gene encoding the methylthioribulose-1-

phosphate isomerase, a RuBisCO-like protein that provides

the substrate for the MTXu 5-P methylsulfurylase, was also

highly affected (Rru_A1998, fold change = ?4.3 at 20 min)

upon MTA perturbation. Notably, 1-deoxy-D-xylulose-5-

phosphate synthase (dxs, Rru_A2619, fold change = -8.8 at

20 min), which converts D-glyceraldehyde-3-phosphate into

DXP, was suppressed by MTA-feeding. Since this gene was

expressed prior to MTA perturbation, the qRT-PCR results

suggest that the non-mevalonate pathway is themajor route to

isoprenoid biosynthesis under physiological conditions.

However, uponMTAperturbation, cells suppressed the use of

the non-mevalonate pathway and instead activated the ru-

brum-typemethionine salvage pathway to channel the carbon

skeleton of methylthioxylulose-5-phosphate into DXP, indi-

cating that the MTA-isoprenoid shunt is able to contribute

significantly to DXP synthesis in R. rubrum. Expression

levels of genes were stabilized to approximately basal levels

after 60 min. Although the isoprenoid pathway intermediates

were not affected in B. subtilis upon MTA perturbation, two

genes of the non-mevalonate isoprenoid pathway were ana-

lyzed in their expression pattern to rule out the possibility that

isoprenoid genes are induced in B. subtilis. Expression of the

two marker genes was not induced, in line with the idea that

methionine salvage and isoprenoid biosynthesis are indeed

unlinked in B. subtilis (BSU24270 = ?1.4, BSU16550 =

-2.9) (see Supplementary Material Table S7).

In contrast to the genes involved in methionine salvage

and isoprenoid biosynthesis in R. rubrum, genes of the

purine salvage pathway (Rru_A2483, Rru_A0149 and

Rru_A0607) and de novo purine biosynthesis (Rru_A2168,

Rru_A1963, Rru_A0299 and Rru_A3655) were expressed

constitutively. As observed for B. subtilis, these genes are

apparently expressed under physiological conditions and

are not affected by MTA perturbation.

Our qRT-PCR data show that the active pathways

detected using our metabolomics analysis platform are

reliable, whether they are accompanied by a change of

gene expression upon MTA feeding, or by consistent

expression of genes under growth conditions before MTA

is added (e.g., de novo purine biosynthesis). qRT-PCR

allows sensitive and specific assays for targeted genes, but

it covers only a limited number of genes in the whole

genome. We also felt it was important to clarify both the

role of the trans-sulfuration pathway and the sources and

sinks of glutathione in the context of R. rubrum MTA

feeding; this required that the expression patterns of many

more genes be checked. Hence, an RNAseq experiment

was conducted for R. rubrum.

3.6 Assembling missing pieces of the puzzle

by RNAseq

The RNAseq (Supplementary Material Table S9) clearly

reconfirmed our qRT-PCR results for R. rubrum, even

though there were sensitivity differences between the two

techniques. In addition, RNAseq provided some clues for

the role of trans-sulfuration and for the multiple fates of

methanethiol liberated during rubrum-type MTA salvage.

RNAseq showed that glutathione metabolism was per-

turbed by MTA feeding, as evidenced by NADPH-gluta-

thione reductase (Rru_A0682, fold change = ?2.4) and

glutathione S-transferase (Rru_A0332, fold

change = ?3.7). In line with the metabolomics data from

this study (i.e., glutathione–methylthiol adduct), these gene

expression patterns describe well the biochemistry of glu-

tathione. Cysteine can also be metabolized to hydrogen

sulfide and pyruvate by cystathionine b-synthase (CBS)

and cystathionine c-lyase (CGL) (Singh et al. 2009).

Although metabolites in pyruvate metabolism were not

detected via our LC–MS based metabolomics, there were

several up-regulated genes in this pathway, including

hydroxyacylglutathione hydrolase (Rru_A2371, fold

change = ?2.74), acetate kinase (Rru_A2998, fold

change = ?2.51), aldehyde dehydrogenase (Rru_A0931,

fold change = ?1.69), acetyl-CoA acetyltransferase

(Rru_A0274, fold change = ? 1.65) and formate acetyl-

transferase (Rru_A3000, fold change = ?1.84).

4 Discussion

We describe an analytical strategy that combines untargeted

metabolomics and transcriptomics (i.e., a combination of

targeted qRT-PCR and RNAseq) to decipher intertwined

metabolic pathways of universal application. The LC–MS

platform we developed facilitates the data analysis and

includes several critical functional modules: data process-

ing, isotope pattern analysis, molecular formula determi-

nation, database searching and pathway activity profiling.

Together with the concepts of seed metabolites and the
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Fig. 6 A coordinated response of metabolic pathways upon MTA

perturbation. Actively changing metabolic pathways upon MTA pertur-

bation in a B. subtilis and b R. rubrum. Genes are represented by the

prefixes, BSU (B. subtilis) and Rru (R. rubrum). Rectangles genes;

Circles metabolites. The numbers in the circles correspond to the

following metabolites: 1 MTA, 2 5-Methylthio-D-ribose, 3 S-Methyl-5-

thio-D-ribose 1-phosphate, 4 S-Methyl-5-thio-D-ribulose 1-phosphate, 5

2,3-Diketo-5-methyl-thiopentyl-1-phosphate, 6 2-Hydroxy-3-keto-5-

methylthiopentenyl-1-phosphate,71,2-Dihydroxy-3-keto-5-methylthio-

pentene, 8 4-Methylthio-2-oxobutanoate, 9 Methionine, 10 SAM, 11

3-Methylthiopropionate, 12 Adenine, 13 Hypoxanthine, 14 Deoxyino-

sine, 15 Deoxyadenosine, 16 Deoxyadenosine monophosphate, 17

Adenosine, 18 5-Amino-1-(5-phospho-D-ribosyl) imidazole-4-carbox-

amide, 19 Inosine monophosphate, 20Adenosine 50-monophosphate, 21

Xanthosine 50-phosphate, 22 Xanthosine, 23 Glyceraldehyde 3-phos-

phate, 24 DXP, 25 2-C-Methyl-D-erythritol 4-phosphate, 26 2-Phospho-

4-(cytidine 5-diphopho)-2-C-methyl-D-erythritol, 27 2-C-Methyl-D-

erythritol 2,4-cyclodiphosphate, 28 Methanethiol, 29 S-Adenosyl-L-

homocysteine, 30 Homocysteine, 31 Cystathionine, 32 Cysteine, 33 a-
Ketobutyrate, 34 Glutathione, 35 Glutathione disulfide, 36 Methylthio-

lated glutathione, 37 Glutathionylcysteine, 38 L-Aspartate, 39 L-Homo-

serine, 40 O-Acetyl-L-homoserine, 41 Sulfate, 42 Phosphoadenosine

phosphate, 43 L-Serine, 44O-Acetyl-L-serine, 45Adenosine diphosphate

ribose, 46 50-Phosphoribosyl-N-formylglycinamide, 47 Adenosine 50-
diphosphate, 48Guanosine monophosphate, 49Guanosine diphosphate,

50 20-Deoxyadenosine 50-diphosphate). Three colors are used to

represent the genes. Green up-regulation; Red down-regulation and

Black genes showing no big changes in their expression levels. Four

colors are used to represent the metabolites. Blue up-regulation; Brown

down-regulation; Black no change; Gray metabolites that were not

detected using LC–FTMS. As compared to B. subtilis, R. rubrum has an

elaborate metabolic strategy to cope with a stressful environment (e.g.,

utilization of MTA as the sole sulfur source) through the coordinated

regulation of metabolic pathways. See text for detailed discussion
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dynamic build-up of metabolite sets, this platform enables a

streamlined process for detecting interconnected metabolic

pathways from raw LC–MS data. Implicated pathways and

their constituent metabolites are automatically annotated

with high confidence and coverage by integrating different

sources of information. Statistical evaluation using MSEA

confers high confidence to the annotations of perturbed

metabolites and their respective pathways.

We applied this analytical strategy to unravel metabolic

pathways linked to methionine salvage in R. rubrum and

B. subtilis by combining changes in bacterial growth con-

ditions (e.g., MTA as a sole sulfur source) and a genetic

knockout. Our results revealed the coordinated regulation

of several expected and unexpected metabolic pathways

when MTA was provided to either organism (Fig. 6). As

expected, the classical, subtilis-type methionine salvage

pathway and the purine salvage pathway were active in

B. subtilis in response to MTA feeding (Fig. 6a). In con-

trast, R. rubrum showed a more complicated response to

MTA perturbation (Fig. 6b). Similar to B. subtilis, the

purine salvage pathway following cleavage of the adenine

moiety from MTA was also active. In addition, based on

our observations, rubrum-type methionine salvage is linked

to de novo purine biosynthesis, evidenced by an increase in

the abundance of constituent metabolites observed after

MTA feeding. In contrast to B. subtilis, the rubrum-type

methionine salvage pathway is intertwined with isoprenoid

biosynthesis (Erb et al. 2012). Notably, MTA feeding

caused severe down-regulation of 1-deoxy-D-xylulose-5-

phosphate synthase (Rru_A2619), the key enzyme of the

non-mevalonate pathway that converts D-glyceraldehyde-3-

phosphate into DXP (Eisenreich et al. 2004). Since this

gene (Rru_A2619) was constitutively expressed regardless

of sulfur sources (sulfate or MTA), both pathways (the

rubrum-type methionine salvage and the non-mevalonate

pathways) contributed to isoprenoid biosynthesis. How-

ever, upon MTA feeding, cells suppressed the influx from

D-glyceraldehyde-3-phosphate (the non-mevalonate path-

way), and activated the flux into DXP through the rubrum-

type methionine salvage pathway in which glutathione

plays a critical role as a coenzyme in vivo when 1 MTXu

5-P methylsulfurylase catalyzes dethiomethylation of

MTXu 5-P. The rubrum-type methionine salvage pathway

is also interconnected with the AMC (Hardie and Heurlier

2008; Doherty et al. 2010), in which re-methylation, a key

reaction for recycling methionine from homocysteine, is

unexpectedly suppressed. Since most bacteria synthesize

methionine from homocysteine through re-methylation

(Steegborn et al. 1999), and the trans-sulfuration pathway

appears restricted to fungi and mammalian systems (Reveal

and Paietta 2012), the repression of the re-methylation

process in R. rubrum observed in our study was not

anticipated. In contrast, genes in the purine salvage

pathway, de novo purine biosynthesis and classical sulfur

metabolism were not affected by MTA perturbation. This

caused changes in the abundance of constituent metabolites

without transcriptional regulation.

In Fig. 6b, we emphasize an unusual branch point in

these coordinated pathways in which SAM is metabolized

to SAH but not MTA. As accumulation of SAH can inhibit

SAM-dependent methyltransferases; continuous depletion

of SAH to homocysteine and adenosine is essential for

maintaining normal methylation of DNA, RNA, proteins

and other small molecules (Hoffman et al. 1980; James

et al. 2002). In addition, it is known that up-regulated SAH

can in turn up-regulate CBS and/or c-cystathionase, and
down-regulate 5,10-methylenetetrahydrofolate reductase

(MTHFR). These regulatory functions can act in concert to

reduce methionine re-methylation and expedite homocys-

teine removal in an attempt to normalize one-carbon flow

(i.e., methyl group transfer). Homocysteine is catabolized

to cysteine through cystathionine, and further metabolized

into other important biological compounds such as pyru-

vate or glutathione, the latter being a reducing agent that

protects the cell from oxidative stress. Since reducing

equivalents in the form of reduced sulfur is necessary for

the MTXu 5-P methylsulfurylase catalyzed dethiomethy-

lation of MTXu 5-P, glutathione might be activated

in vivo. Indeed, we detected the glutathione-methylthiol

adduct via metabolomics, indicating that glutathione

functions as a coenzyme in vivo in this process. In line

with the metabolomics results, transcriptomics suggested

that glutathione is tightly regulated to act in the metabolism

of methylthiol released from MTXu 5-P. Glutathione is

provided dynamically by NADPH-glutathione reductase

from oxidized glutathione, and glutathione–methylthiol

formation can be catalyzed by glutathione S-transferase

(Rru_A0332). This adduct can be metabolized through the

detoxification process by c-glutamyl transpeptidase

(Rru_A0385) and leucyl aminopeptidase (Rru_A0454),

which were not induced but constitutively expressed in our

RNAseq experiment. Also, cysteine from the trans-sulfu-

ration can be catabolized into pyruvate metabolism and the

TCA cycle, as evidenced by the RNAseq and metabolo-

mics data.

To further investigate the actively changing metabolic

pathways affected by glutathione and MTXu 5-P methyl-

sulfurylase in R. rubrum, metabolite profiles of glutathi-

one-related compounds in the wild-type organism were

compared with those of an MTXu 5-P methylsulfurylase

mutant (Rru_A2000, Fig. 5). Specifically, MTXu 5-P

cleaved the pathway intermediate, methylthioxylulose-5-

phosphate, into DXP and the methanethiol–glutathione

adduct under the function of MTXu 5-P methylsulfurylase.

In line with the critical function of MTXu 5-P methylsul-

furylase, analysis of the MTXu 5-P methylsulfurylase
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mutant showed that only the purine salvage pathway was

active, whereas other pathways in the mutant organism that

are active in the wild type did not change relative to the

control upon MTA-perturbation.

Interconnections identified using our approaches were

also supported by metabolite–metabolite correlation anal-

yses. Pearson correlation coefficients of percentage chan-

ges in metabolite abundances were clustered by

agglomerative hierarchical clustering, clearly showing a

high correlation between metabolites in each active path-

way in R. rubrum (Supplementary Material Fig. S5). In

addition, a strong correlation between interconnected

active pathways could be observed; the rubrum-type

methionine salvage pathway was strongly intertwined with

the purine salvage pathway, de novo purine biosynthesis

pathway, glutathione pathway, TCA cycle and the AMC.

Also, there was a moderate correlation between the iso-

prenoid pathway and other active pathways (e.g., the

methionine salvage, de novo purine biosynthesis, purine

salvage, glutathione metabolism, butanoate metabolism,

TCA cycle and the AMC). Metabolites in sulfur metabo-

lism showed an anti-correlation with the other active

pathways. When MTA was used as the sole sulfur source,

no sulfate source could be provided through conventional

sulfur metabolism; hence, the down-regulation of metab-

olites in that pathway was expected and mirrored the effect

from transcriptomics. In B. subtilis, although metabolites

in each pathway showed a strong correlation, there was

only a weak correlation between the classical methionine

salvage pathway and purine salvage pathway (Supple-

mentary Material Fig. S6).

In addition, our analyses showed that there are two types

of regulation, metabolic (i.e., changes in the metabolite lev-

els) and hierarchical (i.e., transcription, translation and post-

translational modification) (ter Kuile and Westerhoff 2001),

that are induced by feeding MTA in R. rubrum. In R. rubrum

the rubrum-type methionine salvage pathway, isoprenoid

pathway, the AMC and the trans-sulfuration pathway were

regulated hierarchically. In contrast, the purine salvage

pathway, de novo purine biosynthesis pathway, and sulfur

metabolism could be classified into metabolic regulation

since corresponding genes were not induced by MTA feed-

ing. Only the abundances of metabolites were changed upon

MTA perturbation. In B. subtilis the subtilis-type methionine

salvage pathway corresponded to hierarchical regulation. The

purine salvage and de novo purine biosynthesis pathways

were regulated only at the metabolite level.

These results show that our analytical strategy is useful

for uncovering novel pathways, and that the addition of

gene expression patterns provide complementary data to

gain greater insight into bacterial metabolism. Therefore,

untargeted metabolomics greatly aids the discovery of

novel pathways. We expect our analytical pipeline to be

applicable to many other systems and useful for uncovering

a range of unexpected pathways.
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