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Abstract

This thesis reports on the simulation of correlated many-body systems. The topic is
approached from three different perspectives: First, models of non-unitary anyons
are studied by means of exact diagonalization. Second, a new approach to the
simulation of correlated fermions, the diagrammatic Monte Carlo technique, is
further developed and extended to the description of phase transitions. Finally,
this method is applied, on the one hand, to solve several questions regarding the
phase diagram of attractively interacting fermions and, on the other hand, to assess
the validity of different diagrammatic approximations.

More specifically, the first part of this work is devoted to the study of certain
generalizations of interacting non-abelian anyons, i.e. of quasiparticles obeying
fractional exchange statistics, which can emerge in two-dimensional systems like
fractional quantum Hall samples. We consider models of interacting non-abelian
anyons that are described by non-unitary topological field theories which arise
from their unitary counterparts by Galois conjugation. The resulting Hamiltonians
are typically non-Hermitian, but have a completely real spectrum. We solve the
systems by iterative exact diagonalization techniques, report the models’ phase
diagrams, and connect our numeric results to analytic solutions at the critical
points between adjacent phases. Furthermore we contemplate the possibility of
constructing a Hermitian Hamiltonian described by the same field theory and hence
of realizing a non-unitary topological phase in a quantum mechanical system. The
failure of the latter attempt motivated the development of a mathematical proof
showing such a construction to actually be impossible.

In the second part we extend the diagrammatic Monte Carlo (DiagMC) tech-
nique to the calculation of irreducible two-particle Feynman diagrams. The Di-
agMC method is a rather new development, which can simulate systems of inter-
acting fermions directly in the thermodynamic limit and in principle at arbitrarily
low temperature. This is in stark contrast to more conventional quantum Monte
Carlo approaches, whose computational effort in general grows exponentially in
system volume and inverse temperature when applied to fermions. With the ex-
tension to two-particle diagrams the method can be used to detect and characterize
phase transitions out of the Fermi liquid into an ordered state. We explain the
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technique, provide details on a generic and efficient implementation, and show
benchmark comparisons to other accurate simulation methods.

The third part of this work is finally devoted to the application of the DiagMC
method to several questions of current interest. One focus is on unconventional
superfluid phases, which could be realized in experiments with ultracold gases in
optical lattices. We study scenarios with spin-nematic Fermi surface deformations
and spin-imbalanced setups and find pairing instabilities with p-wave symmetry
and with finite pair momentum, respectively. The second focus is on the assessment
of various common diagrammatic approximations to the many-body problem. Such
approximations, e.g. theGW and the fluctuation exchange (FLEX) approximation,
have a long history and are commonly used both in the context of model systems
and for ab initio calculations. Our systematic comparison for the moderately
correlated regime shows that the partial summation of specific diagram topologies
and neglect of other topologies often yields worse results than simple perturbation
theory to second order.

viii



Zusammenfassung

Gegenstand dieser Arbeit ist die Simulation korrelierter Vielteilchensysteme. Sie
nähert sich diesem Thema aus drei verschiedenen Richtungen: Zunächst werden
Modellsysteme für nicht unitäre Anyonen mit exakten Diagonalisierungsmethoden
untersucht. Der zweite Teil widmet sich dann der Weiterentwicklung eines neu-
en Ansatzes zur Simulation korrelierter Fermionen, der diagrammatischen Monte-
Carlo-Methode, die für die Beschreibung von Phasenübergängen erweitert wird.
Schließlich wird diese Methode angewandt, einerseits um einige Fragen zum Pha-
sendiagramm attraktiv wechselwirkender Fermionen zu beantworten, und anderer-
seits zur Beurteilung verbreiteter diagrammatischer Approximationen.

Um genauer zu werden: Der erste Teil befasst sich mit bestimmten Verallge-
meinerungen von wechselwirkenden nicht abelschen Anyonen, also von Quasiteil-
chen mit gebrochenzahliger Austauschstatistik, die in zweidimensionalen Systemen
auftreten können, wie etwa dem Elektronengas beim fraktionalen Quanten-Hall-
Effekt. Wir betrachten Modelle wechselwirkender nicht abelscher Anyonen, die
von nicht unitären topologischen Feldtheorien beschrieben werden, welche aus ih-
ren unitären Gegenstücken durch Galois-Konjugation entstehen. Die entsprechen-
den Hamilton-Operatoren sind typischerweise nicht hermitesch, haben aber ein
vollständig reelles Spektrum. Wir lösen die Systeme mit iterativer exakter Dia-
gonalisierung, zeigen die Phasendiagramme der Modelle und verknüpfen unsere
Ergebnisse mit analytischen Lösungen an den kritischen Punkten zwischen an-
einander grenzenden Phasen. Außerdem wird die Möglichkeit betrachtet, einen
hermiteschen Hamilton-Operator zu konstruieren, der von der selben Feldtheorie
beschrieben wird – also ob sich eine nicht unitäre topologische Phase in quanten-
mechanischen System realisieren ließe. Das Scheitern dieses Versuchs bildete eine
Motivation für die Entwicklung eines mathematischen Beweises, der zeigt dass eine
solche Konstruktion tatsächlich unmöglich ist.

Im zweiten Teil der Arbeit wird dann die diagrammatische Monte-Carlo-Me-
thode (DiagMC) auf die Berechnung von irreduziblen Feynman-Diagrammen mit
jeweils zwei ein- und auslaufenden Teilchen erweitert. DiagMC is eine recht neue
Methode, die Systeme wechselwirkender Fermionen direkt im thermodynamischen
Limes und im Prinzip bei beliebig niedriger Temperatur beschreiben kann. Dies
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ist im Gegensatz zu konventionelleren Quanten-Monte-Carlo-Techniken zu sehen,
deren Rechenaufwand bei fermionischen Systemen üblicherweise exponentiell mit
Volumen und inverser Temperatur steigt. Dank der Erweiterung auf zwei-Teilchen-
Diagramme kann die Technik nun benutzt werden, um kontinuierliche Übergänge
von der Fermi-Flüssigkeit zu geordneten Phasen zu finden und zu charakterisieren.
Die vorliegende Arbeit enthält eine ausführliche Erklärung der Technik, beschreibt
eine flexible und effiziente Implementierung, und nimmt Vergleiche mit anderen
präzisen Simulationstechniken vor.

Der letzte Teil widmet sich schließlich der Anwendung dieser Methode auf
verschiedene Fragen von aktuellem Interesse. Ein Fokus liegt dabei auf unkon-
ventionellen suprafluiden Phasen, die sich in Experimenten mit ultrakalten Ga-
sen in optischen Gittern realisieren ließen. Wir untersuchen Szenarien mit Spin-
nematischen Verformungen der Fermiflächen und solche mit einem Ungleichgewicht
zwischen den beiden Spin-Einstellungen und finden dabei suprafluide Instabilitä-
ten, deren Paare einen endlichen Drehimpuls bzw. linearen Impuls besitzen. Der
andere Fokus betrifft die Beurteilung verschiedener diagrammatischer Näherungen
für das Vielteilchenproblem. Solche Approximationen, wie z.B. die GW -Näherung
und die Fluktuations-Austausch-Näherung (FLEX), haben eine lange Geschichte
und finden sowohl zur Beschreibung von Modellsystemen als auch in Ab-initio-
Berechnungen breite Verwendung. Unser systematischer Vergleich für moderat
korrelierte Systeme zeigt, dass die partielle Summierung bestimmter Diagramm-
topologien bei Vernachlässigung anderer Topologien oftmals zu unzuverlässigeren
Ergebnissen führt als die einfache Störungstheorie in zweiter Ordnung.
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Chapter 1

Introduction

At the heart of condensed matter physics lies the study of materials in their solid or
liquid states. Theory should be able to explain and ideally predict their properties
like, e.g., crystal structure, colour, or electrical conductivity depending on external
conditions, such as temperature and pressure. The basic constituents and the laws
governing their microscopic behaviour are all well-known [9]: Atomic nuclei and
electrons interact predominantly via electromagnetic forces1 and quantum mechan-
ics provides the equations of motion governing a system’s stationary and dynamic
behaviour. An exact solution of the Schrödinger equation for a macroscopic body,
containing on the order of 1023 atoms, is however generally impossible and will
remain so – at least with classical computing devices where the memory require-
ments for storing a wave function grow exponentially with the number of particles.
At the same time, a system consisting of many interacting particles can display
far more complex properties than one containing only a few constituents. In fact,
most macroscopic material properties are determined by collective behaviour that
can hardly be understood by studying a few atoms in isolation. Condensed mat-
ter physics can thus be largely understood as the study of emergent phenomena
arising when a macroscopic number of atoms are brought in close contact to each
other [10, 11]. A prime example of such phenomena that can only be understood
by considering a macroscopically large system, i.e. the thermodynamic limit, are
phase transitions where a material upon cooling undergoes an abrupt change into
a more ordered state; for instance in magnetic materials where microscopic mag-
netic moments all over the body spontaneously align along the same direction,
even though the microscopic laws do not distinguish this direction in any way, and
despite the short-ranged nature of the interaction between different moments. A
second prototypical example of a genuinely collective phenomenon with spectacu-
lar macroscopic properties is of course the superconducting state, where a fluid of

1Relativistic corrections, such as spin-orbit coupling, are also well understood and can be
included when their effects are significant.
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1.1 Lattice models

charge carriers can move through a lead without dissipation such that the electrical
resistivity completely vanishes, in spite of the presence of scattering impurities.

While a single atom in free space has very little in common with a macroscopic
body composed of these atoms, many materials can be described remarkably well
by an approximate model of free electrons moving in a background potential which
accounts for the joint effect of the atomic nuclei and all other electrons. This is
the basis for the local density approximation to density functional theory, which
has been extremely successful in predicting crystal structures, binding energies and
electronic band structures for many materials and has, together with improved ap-
proximations like generalized gradient and hybrid exchange correlation functionals,
become a standard tool in material science and chemistry [12, 13, 14].

There are however systems where this mapping to an effectively noninteracting
electron system fails spectacularly. Typically such materials contain atoms with
partially filled d or f shells, where the electrons are strongly confined compared to
the interatomic spacing. Then the system can be halfway between a metal, where
the orbital overlap between neighbouring atoms is large and hence the kinetic en-
ergy dominates, on the one hand, and the atomic limit, where the electrons are
localized in orbits with vanishing overlap, on the other hand. The former limit
is perfectly described by the band structure of non-interacting electrons and the
latter by electrons occupying the lowest-lying orbitals of independent atoms; but
in between these limits the competition between kinetic and potential energy poses
a formidable challenge to a theoretical solution. Such systems which do not al-
low for a mapping to a model of non-interacting particles moving in an effective
potential are called strongly correlated. Many exciting properties can be found in
strongly correlated matter, often with obvious potential for technical applications.
Prominent examples are metal-insulator transitions, high temperature supercon-
ductivity, large magnetoresistances, and fractional quasiparticles with nonabelian
exchange statistics. These phenomena call for a theoretical understanding, which
is hampered by the failure of common tools. Perturbation theory is questionable
in the regime far away from both weakly and strongly interacting limits. A direct
application of mean field theory fails by definition for strongly correlated systems,
and the validity of its application to effective field theories can be hard to judge,
particularly in low-dimensional systems where quantum fluctuations are impor-
tant. For these reasons the study of simple models and numerical simulations play
a vital role [15].

1.1 Lattice models

In the following we concentrate on the solid phase of a clean material forming a
regular crystal structure. We thus exclude disorder, impurities, grain boundaries,

2



Introduction

etc., striving to first understand the intrinsic properties of a clean and regular
material. (Note that this assumption may in some cases amount to a considerable
idealization, in particular when single crystals of a material are hard to grow or
when doping intrinsically creates disorder.) Then, as the nuclear masses exceed
the electron mass by at least three orders of magnitude, the electron system can
be assumed to follow any movement of the nuclei instantaneously, such that one
can in a first step consider electrons moving in the potential landscape created by
a fixed arrangement of the nuclei. Lattice vibrations (phonons) can subsequently
be included perturbatively. This is the well-known Born-Oppenheimer approxi-
mation [16]. Furthermore, electrons in filled shells are inert and can hardly be
excited thermally or by relevant ambient fields. Therefore, the low-energy physics
determining macroscopic material properties are dominated by electrons in the
open shells. We thus formulate a model for these valence electrons moving in the
field of atomic cores fixed at crystal lattice sites. In second-quantized notation,
this generic lattice model reads

H =
∑

i,j,α,β

tαβij c
†
iαcjβ +

∑

i,j,k,l
α,β,γ,δ

V αβγδ
ijkl c†iαc

†
jβckγclδ, (1.1)

where latin indices sum over lattice sites and greek indices over valence orbitals
and spins; the operators ciα (c†iα) destroy (create) an electron in orbital α on site
i. The off-diagonal elements of the hopping matrix t are determined by overlap
integrals between different orbitals while its diagonal entries tααii = εαi give the
potential energy of an electron in a given orbital. The screened Coulomb matrix
V contains the integrals of the effective Coulomb interaction between electrons
in the different valence orbitals after integrating out the core electrons. Usually,
overlap integrals and effective interactions decay quite quickly with the distance
between sites: The former can be made short-ranged by choosing a basis of well-
localized orbitals, while the effective Coulomb interaction is typically short-ranged
due to screening provided by the core electrons, which have been integrated out.
Therefore both matrices are commonly restricted to near neighbour sites.

The more simplifying assumptions are made, the less quantitative results can
be expected, but ideally the essential ingredients are retained to provide a simple
qualitative, or semi-quantitative, explanation of the phenomena observed in ex-
periment. In the simplest incarnation of the above model, the one-band Hubbard
model

H =− t
∑

〈i,j〉
σ=↑,↓

(
c†iσcjσ + h.c.

)
+ U

∑

i

ni↑ni↓, (1.2)

only a single orbital per site is considered, hopping processes are restricted to
nearest-neighbour sites 〈i, j〉, and the Coulomb interaction is maximally screened,

3



1.2 Numerical techniques

leaving only a pure on-site interaction U . This model, originally proposed for
describing itinerant ferromagnetism [17, 18, 19], has been most intensely studied
since the discovery of high temperature superconductivity in cuprate compounds
[20], where it is considered as a minimal model for the electrons in the CuO2

planes [21]. In the cuprates actually both copper d and oxygen px and py orbitals
are close to the Fermi level; therefore also three-band models [22, 23, 24] and other
multi-orbital models [25] have been studied, but most research concentrated on the
simpler single-band model since it was argued that, due to strong d–p hybridiza-
tion, dopant holes form singlets centered on the copper sites, whose low-energy
physics is well represented by a one-band model, even if the holes mostly reside
in the oxygen orbitals [26, 27]. In the context of cuprates, the two-dimensional
square lattice is studied, sometimes including next-nearest neighbour hopping, but
also other lattices have been considered.

In spite of its simple form, the Hamiltonian (1.2) is extremely challenging to
solve and no exact solutions are available except for points with special sym-
metries, such as particle-hole symmetry, and some extreme limits, namely the
one-dimensional model, the limit of infinite dimensions, and the weak- and strong-
coupling limits. The Hubbard model is the paradigmatic model for a strongly
correlated system. At half filling and low temperature it displays the typical
crossover from a metallic regime (for t� U ≥ 0) with delocalized electrons to an
insulating regime (U � t) with antiferromagnetic correlations, i.e. an interaction-
driven metal-insulator (“Mott”) transition. Away from half filling the model is
widely expected, based on numeric evidence, to feature pseudogap behaviour and
d-wave superconductivity, similar to observations in the cuprate family. Its phase
diagram is however still largely debated. In the strong-coupling limit, doubly oc-
cupied sites incur a large energy penalty and can hence be integrated out, yielding
the t–J model of spins with mobile vacancies. At half filling, the t–J model in turn
reduces to the Heisenberg model. Finally, it is worth pointing out that simple lat-
tice models are recently receiving additional interest due to the possibility of their
direct realization in “optical lattice emulators”, i.e. by loading a cloud of ultracold
atoms into an optical lattice. In this context the lattice model is not a crude
approximation to a much more complex material, but the model itself is realized
to high accuracy, and theoretical and experimental results can be quantitatively
compared [28, 29].

1.2 Numerical techniques

In the absence of reliable analytic solutions, numerical simulations are an indis-
pensable tool. However, strongly correlated problems often pose challenges to
numerical approaches, too, due to, e.g., the emergence of tiny energy scales and

4



Introduction

the close competition of different types of order. Straightforward diagonalization
of the Hamiltonian matrix can yield a lot of useful information, since it gives access
to the exact ground state wave function, and is sometimes the only reliable tool
available. Yet, this approach is inherently restricted to small model systems by the
exponential growth of the Hilbert space with system volume. This can make an
extrapolation to the thermodynamic limit impossible, even with the use of efficient
iterative diagonalization schemes that do not need to store the Hamiltonian matrix
explicitly [30]. For one-dimensional systems the density matrix renormalization
group (DMRG) [31], which is based on a low-entanglement ansatz for the ground
state, has become a standard tool [32]. For two- and higher-dimensional systems
however the computational effort again grows exponentially with the width of the
system [33]. Recently some success for two-dimensional systems has been achieved
with tensor network methods, which are also based on a low-entanglement ansatz
[34]. These are currently under heavy development [35].

Quantum Monte Carlo (QMC) methods, which stochastically sample a repre-
sentation of the partition function, are arguably the standard approach to bosonic
and unfrustrated spin systems and can simulate millions of particles without any
systematic errors [36]. The application to fermions typically results in the ap-
pearance of negative weights and hence significant cancellations between samples,
resulting in an exponential scaling of compute time with system volume and in-
verse temperature – the infamous sign problem of Monte Carlo [37, 38]. Dynamical
mean field theory (DMFT), on the other hand, can be considered the most suc-
cessful technique for simulating strongly correlated fermions [39, 40, 41]. Being
able to describe the Mott metal-insulator transition, it is the standard tool for the
regime of strong interactions. The foundation of DMFT lies in the neglect of any
momentum dependence of the self-energy, assuming all correlations to be local.
Except for the limit of infinite dimensions this is an uncontrolled approximation,
which can partially be remedied by cluster extensions [42]. Often, convergence in
cluster size cannot be obtained, because the sign problem puts severe limits on the
cluster volume. Long-range fluctuations, which become particularly important in
low-dimensional systems, are not captured within DMFT and its cluster extension.

1.3 Outline

This thesis starts in Chapter 2 with the study of anyonic lattice models, i.e. mod-
els whose basic degrees of freedom are not fermions but quasiparticles with frac-
tional exchange statistics, which are thought to appear, for instance, in fractional
quantum Hall systems. More specifically, we consider the possibility of realiz-
ing non-unitary topological phases in physical systems. Then in Chapter 3 we
turn to the development of a new quantum Monte Carlo technique for fermionic

5



1.3 Outline

lattice models, namely diagrammatic Monte Carlo (DiagMC), which samples di-
agrammatic expansions of correlation functions in terms of irreducible Feynman
diagrams rather than the system’s partition function. Here, no sign problem is as-
sociated with system size or inverse temperature, and in fact the technique can be
directly formulated in the thermodynamic limit, dispensing with finite-size scaling.
We extend the method to the calculation of susceptibilities, enabling the detec-
tion and characterization of phase transitions out of the Fermi liquid into ordered
states, and describe in detail a generic and efficient implementation. The remain-
der of the thesis is devoted to the application of this method to several physical
questions. Chapter 4 addresses some long-standing questions on the phase dia-
gram of fermions with an attractive interaction where the usual Bardeen-Cooper-
Schrieffer mechanism, which would yield a conventional s-wave superconductor, is
suppressed by a Fermi surface mismatch. We consider spin-nematic Fermi surface
deformations and spin-imbalanced situations and find different unconventional su-
perfluids. In Chapter 5 finally we turn to extensive comparisons of well-controlled
DiagMC results with different diagrammatic approximations. These approximate
schemes, such as GW and FLEX, are commonly used for correlated fermions and
have recently been considered for augmenting the DMFT self-energy with some
momentum dependence, but systematic benchmarks have so far been lacking.

6



Chapter 2

Non-unitary topological phases

Over thirty years ago Leinaas and Myrheim pointed out [43], that in systems
confined to two spatial dimensions particles with exotic exchange statistics, more
general than those of bosons and fermions, are possible. Such particles with ar-
bitrary exchange statistics were later coined anyons by Wilzeck [44]. Today it
is widely believed that this possibility is indeed realized in the fractional quan-
tum Hall effect. An even more intriguing form of statistics has recently received
considerable attention, namely that of non-Abelian statistics, first proposed in a
seminal paper by Moore and Read [45]. This form of statistics can occur in two-
dimensional systems in which introducing excitations gives rise to a macroscopic
degeneracy of states. Upon braiding the excitations, the wave function (or better,
the vector of wave functions) describing the system, does not merely acquire an
overall phase, but can actually transform into one another, as described by a uni-
tary braid matrix acting within the degenerate manifold. In general, these braid
matrices do not commute, hence the name non-Abelian statistics.

Systems featuring anyonic quasiparticle excitations are said to be in a topolog-
ical phase. The low-energy physics of such phases is described by a topological
quantum field theory (TQFT). Another defining property of topological phases is
the presence of a degenerate manifold of ground states that are robust with respect
to arbitrary local perturbations, i.e. any local operator L acts like the identity (up
to a constant factor c(L)) on the system’s ground space. This code property is the
reason why physical realizations of topological phases are much sought-after in the
quest for a robust quantum computer: If information could be encoded into the
ground state vector of a set of anyons, it would be protected against external per-
turbations, which couple to local operators, and calculations could be performed
by braiding of the anyons [46]. This is in contrast to other approaches to quantum
computing, where quantum information is stored in local objects, such as ultra-
cold atoms or ions, and the protection against and correction of errors induced by
interactions with the environment presents a colossal challenge.
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2.1 Yang-Lee chains

While several systems have been theoretically proposed to exhibit quasiparticles
with non-Abelian statistics, such as unconventional px + ipy superconductors [47],
rotating Bose-Einstein condensates [48], or certain heterostructures involving a
novel class of materials, so-called topological insulators [49], a system currently
being cast under intense experimental scrutiny is the fractional quantum Hall
effect observed at filling fraction ν = 5/2, with some evidence suggesting that this
state is indeed non-Abelian in nature [50, 51]. An early attempt to describe this
ν = 5/2 quantum Hall state came in the form of the so-called Haldane-Rezayi
wave function [52]. A peculiar feature of the Haldane-Rezayi state is that its
gapless edge modes are described by a non-unitary conformal field theory (CFT)
[53, 54, 55, 56, 57]. However, non-unitary dynamics cannot describe a physical
system as it would violate basic principles of quantum mechanics. For the Haldane-
Rezayi state it turns out that it does not describe a gapped topological phase.
But since the work of Haldane and Rezayi many other wave functions have been
proposed, which appear to have non-unitary edge state theories [58, 59, 60, 61],
most notably the so-called “Gaffnian state” [62] with the non-unitary “Yang-Lee”
CFT for the edge.

In this chapter, non-unitary field theories for non-Abelian anyons are studied
from two different perspectives: In the first part (Sections 2.1–2.2), which is based
on Ref. [3], we characterize the excitations of the corresponding topological phases
under the assumption that they existed. It turns out that the resulting model
Hamiltonians are non-Hermitian, but nevertheless their spectra are completely
real. Concentrating on critical points, we here discuss numerical results which are
obtained by exact diagonalization methods and complement analytical solutions
obtained by Ardonne et al., which we only mention as needed. In the second part
(Sections 2.3–2.4), based on Ref. [2], we address the more fundamental question
whether non-unitary topological phases can appear as ground states of Hermitian
Hamiltonians, i.e. whether a non-unitary topological theory can describe the low-
energy physics of a quantum-mechanical system. Several attempts to construct
explicit Hermitian Hamiltonians with these ground states fail to produce a topo-
logical phase. This work was in fact motivated by and spurred the development of
a proof by Freedman et al., who demonstrated that any such attempt is doomed
to fail and all the considered TQFTs, together with a large class of such theories,
do not describe physical realizations of topological phases.

2.1 Yang-Lee chains

At the focus of this section are anyonic models that are certain non-unitary gen-
eralizations of unitary non-Abelian anyon models, which have been extensively
studied in the recent past [63, 64, 65, 66, 67, 68, 69, 70]. The basic constituents
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Non-unitary topological phases

of the generalizations considered here are non-unitary, non-Abelian anyons. Like
their unitary counterparts they carry a quantum number that corresponds to a gen-
eralized angular momentum in so-called su(2)k anyonic theories, which are certain
deformations [71] of SU(2). Specifically, we concentrate on an elementary example
where there is only a single anyon type by explicitly considering the anyon theory
su(2)3. In the unitary version of this theory the elementary degrees of freedom are
often referred to as “Fibonacci anyons”, and it is their non-unitary counterparts
which we term “Yang-Lee anyons”.

We start by quickly reviewing the basic construction of microscopic (chain)
models of interacting non-Abelian anyons, following the ideas of the golden chain
model of Ref. [63] and the detailed exposition of Ref. [66]. The construction of
these models proceeds in two steps. First, we describe the general structure of the
Hilbert space of these models in a particular fusion chain representation, which is
identical for the unitary and non-unitary models. In a second step we turn to the
microscopic form of the Hamiltonian capturing interactions between the anyons.
While this second step is quite similar for the unitary and non-unitary cases, the
microscopic Hamiltonians for the two cases are distinct.

2.1.1 The golden chain

The elementary degrees of freedom in our microscopic model are the particle types
(or generalized angular momenta) of the su(2)3 anyonic theory. In its simplest
form (considering only integer momenta) this theory contains a trivial particle (or
vacuum state), which we denote by 1, and an anyonic particle, which we label as
τ . These particles can form combined states according to the fusion rules

1× 1 = 1 1× τ = τ τ × τ = 1 + τ . (2.1)

The non-Abelian nature of the anyonic τ -particle reveals itself in the multiple
fusion outcomes when combining two of these particles. Our chain model then

x1 x2 x3x0 . . .

τ τ τ τ τ

Figure 2.1: A chain of Fibonacci or Yang-Lee anyons (denoted by the τ ’s in the
upper row). The set of admissible labelings {xi} along the fusion chain (lines)
constitutes the Hilbert space of the Yang-Lee (and Fibonacci) chains.
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2.1 Yang-Lee chains

consists of L such τ -particles in a one-dimensional arrangement as depicted on the
top of Fig. 2.1, where L denotes the number of sites of the chain. Since pairs of
τ -particles can be fused into more than one state, such a system of L non-Abelian
anyons spans a macroscopic manifold of states, i.e. a vector space whose dimension
grows exponentially in the number of anyons. It is this manifold of states that
constitutes the Hilbert space of our microscopic model. To enumerate the states
in the latter we define a so-called fusion chain as illustrated on the bottom of
Fig. 2.1. Here the original τ -particles constituting the chain are denoted by the
lines which are “incoming” from above. The links in the fusion chain carry labels
{xi} which again correspond to the particle types of the su(2)3 theory. Reading the
labels from left to right a labeling is called admissible if at each vertex the fusion
rules (2.1) of su(2)3 are obeyed, i.e. a τ label is followed by either a 1 or τ label,
while a 1 label is always followed by a τ label. Every such admissible labeling
then constitutes one state in the Hilbert space of our anyonic chain. Considering
periodic boundary conditions, i.e. xL = x0, it is straight forward to show that the
dimension of the Hilbert space is given in terms of Fibonacci numbers as

dimL = FibL−1 + FibL+1 ,

where Fibi denotes the i-th Fibonacci number, defined by Fibi+1 = Fibi + Fibi−1

and the initial conditions Fib1 = Fib2 = 1.
We now proceed to the second step of our construction, the derivation of a

microscopic Hamiltonian. In doing so we follow the perspective of the original
golden chain model [63] in assuming that interactions between a pair of neighboring
τ particles – mediated, for instance, by topological charge tunneling [72] – will
result in an energy splitting of the two possible fusion outcomes in Eq. (2.1).
Our Hamiltonian captures this splitting by projecting the fusion outcome of two
neighboring τ particles onto the trivial fusion channel, i.e. assigning an energy of
E1 = −1 to the fusion of two τ particles into the trivial channel and an energy
of Eτ = 0 to the fusion into the τ channel. This anyonic Hamiltonian is thus
reminiscent of the common Heisenberg Hamiltonian for SU(2) spins, which, for
instance, projects two ordinary spin-1/2’s onto the singlet channel and assigns a
higher energy to the alternative triplet channel.

x1 x2 x3x0 . . .

τ τ τ τ τ

x1 x3x0 . . .
x̃2

τ τ τ τ τ
F

Figure 2.2: The F -symbol describing the local change of basis.
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To explicitly derive the Hamiltonian in the Hilbert space of fusion chain label-
ings introduced above, we note that in this basis the fusion of two neighboring τ
particles is not explicit. To get direct access to this fusion channel of two neigh-
boring τ particles, we need to locally transform the basis as depicted in Fig. 2.2.
The matrix describing this transformation is typically called the F -symbol, which
can be thought of as an anyonic generalization of Wigner’s 6j-symbol for ordinary
SU(2) spins. Its general form (in the absence of fusion multiplicities) is given in
Fig. 2.3.

=
�

f

�
F a,b,c

d

�e

f
a

b c

d

e
f

b c

a d

Figure 2.3: The general form of the F -symbol.

Assuming that we know the explicit form of the F -symbols (see the next section
for more details), we can now explicitly derive the microscopic Hamiltonian in the
fusion chain basis. After the basis transformation, the fusion channel of the two
neighboring anyons is manifest, so by means of a simple projection we can assign
an energy to each of the fusion channels. The final step left after this projection,
is to transform back to the original basis, which again employs the F -symbol.

To make the individual steps of this derivation more explicit, we consider the
example of Fig. 2.2 in more detail. Let us specify the five possible labelings of
three neighboring fusion chain labels xi−1, xi, xi+1, where in Fig. 2.2 we depicted
the case where the site label is i = 2,

|xi−1, xi, xi+1〉 ∈ {|1, τ ,1〉 , |1, τ , τ 〉 , |τ , τ ,1〉 , |τ ,1, τ 〉 , |τ , τ , τ 〉} .

After performing the basis transformation shown in Fig. 2.2, the following labels
satisfy the fusion rules at each vertex and thus form the new basis

|xi−1, x̃i, xi+1〉 ∈ {|1,1,1〉 , |1, τ , τ 〉 , |τ , τ ,1〉 , |τ ,1, τ 〉 , |τ , τ , τ 〉} ,

where x̃i is the fusion channel of the two neighboring τ particles. In the trans-
formed basis, we can project onto the trivial channel, by means of a projection
Pi,1, where the subscript i denotes that we are acting on anyons i and i+ 1, while
the label 1 denotes we are projecting onto the 1 channel. So, the part of the
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2.1 Yang-Lee chains

Hamiltonian acting on anyons i and i + 1, which we denote by H i, acts on the
Hilbert space as

H i |xi−1, xi, xi+1〉 = −
∑

x′i=1,τ

(
F xi−1,τ ,τ
xi+1

)xi
1

(
F xi−1,τ ,τ
xi+1

)1
x′i
|xi−1, x

′
i, xi+1〉 . (2.2)

Here, we have used that for the su(2)k anyonic theories we are considering, the
F -symbols are their own inverses. Moreover, we projected onto the 1 channel,
which we favored, because of the overall minus sign. The total Hamiltonian then
simply becomes the sum of (2.2) over all positions

H =
L∑

i=1

H i , (2.3)

where we assume periodic boundary conditions, i.e. xL = x0.
To describe the Hamiltonian of the various types of anyon chains we consider

in this paper, we only have to specify the explicit form of the F -symbols (apart
from the fusion rules, which determine the Hilbert space). The explicit form of
the Hamiltonian then follows from Equation (2.2).

2.1.2 Galois conjugation and non-unitary models

Now that we have expressed the Hamiltonian in terms of the F -symbols, we should
explain how to obtain the F -symbols for a given anyon theory. As stated, the F -
symbols transform between two different fusion bases as illustrated in Fig. 2.3. As
such, the exact form of these symbols can be determined self-consistently by iden-
tifying a circular sequence of basis transformations, which yield a set of strongly
overconstrained nonlinear equations called the “pentagon equations” (for a more
detailed exposition see, for instance, Refs. [66] and [73]). While finding a solution
to these pentagon equations is in general a highly non-trivial task, it has been
shown that they allow only for a finite set of inequivalent solutions, a property
which goes under the name of “Ocneanu rigidity”, see for instance Ref. [74]. For
the su(2)k anyonic theories of interest here, the complete set of possible F -symbols
can be found, e.g., in Ref. [75] where they were obtained by using quantum group
techniques.

The different F -symbols are found to have a general form that depends on a
single, so-called deformation parameter q only. This deformation parameter has
to be chosen appropriately [75] and it turns out that for the su(2)k anyonic theory
it must be one of the (k + 2)nd primitive roots of unity, i.e. of the form

q = e p · 2πi/(k+2) , (2.4)
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unitary
Fibonacci anyons

non-unitary
Yang-Lee anyons

t = e4πi/5

t = e2πi/5

Re t

Im t

Figure 2.4: The q-deformation parameters of Fibonacci and Yang-Lee anyons cor-
respond to different primitive roots of unity.

where the integer index p runs from 1 ≤ p ≤ (k + 2)/2 (and p and k + 2 are
relative prime). The process of increasing the index p by one, i.e. going from one
root of unity to the next, is what is usually referred to as Galois conjugation. For
our example theory, su(2)3, we can thus identify two possible values for q, which
are illustrated in Fig. 2.4. These two Galois conjugated theories corresponding to
deformation parameters, q = e2πi/5 and q = e4πi/5, then precisely correspond to
the cases of Fibonacci and Yang-Lee anyons, respectively. The explicit form of the
F -symbols and in particular the non-diagonal 2× 2 matrix for F τ ,τ ,ττ can then be
written [75] in terms of this deformation parameter q as

F τ ,τ ,ττ =




1
q−1+1+q

1√
q−1+1+q

1√
q−1+1+q

q−1−1+q
q−1+q


 . (2.5)

For Fibonacci anyons we set q = e2πi/5, in which case q−1+1+q = 1+2 cos(2π/5) =
(1 +
√

5)/2 = φ is the golden ratio, and the F -symbol becomes the unitary matrix

FFibonacci =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
. (2.6)

The golden ratio, of course, is one solution of the equation x2 = 1 + x, which is
an algebraic analog of the fusion rule τ × τ = 1 + τ of the su(2)3 anyonic theory.
The process of taking the Galois conjugate of the original Fibonacci anyon model
corresponds then simply to the substitution φ → −1/φ, where −1/φ is the other
solution to the equation x2 = 1 +x. In terms of the deformation parameter q, this
amounts to choosing the other possible value of q = e4πi/5, which indeed yields
q−1 + 1 + q1 = 1 + 2 cos(4π/5) = −1/φ. The F -symbol for Yang-Lee anyons thus
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2.1 Yang-Lee chains

becomes the (invertible) non-unitary matrix

FYang−Lee =

(
−φ −iφ1/2

−iφ1/2 φ

)
. (2.7)

Having obtained the F -symbols in both the unitary as well as the non-unitary
case, we can now write down the Hamiltonians for the Fibonacci and Yang-Lee
chains. On the states |xi−1, xi, xi+1〉 ∈ {|1, τ ,1〉 , |1, τ , τ 〉 , |τ , τ ,1〉} both Hamil-
tonians act in the same diagonal way, H i = diag{−1, 0, 0}. Acting on the states
|xi−1, xi, xi+1〉 ∈ {|τ ,1, τ 〉 , |τ , τ , τ 〉}, the Hamiltonians take the following forms

H i
Fibonacci = −

(
φ−2 φ−3/2

φ−3/2 φ−1

)
,

H i
Yang−Lee = −

(
φ2 iφ3/2

iφ3/2 −φ

)
. (2.8)

Before discussing these anyonic models in further detail, we note that while
Galois conjugation changes some aspects of these models, i.e. the parameters in
their respective Hamiltonians get Galois conjugated, this turns out to be a rather
mild change, since the underlying algebraic structure of these models remains
largely untouched. As a consequence, the non-unitary Yang-Lee chains allow for
an analytic solution similar to their unitary counterparts as first obtained for the
golden chain model in Ref. [63].

2.1.3 Numerical results

We have numerically studied the excitation spectra of the Yang-Lee chains by ex-
act diagonalization of systems with up to L = 32 anyons, typically using periodic
boundary conditions. These excitation spectra not only allow for an independent
identification of the conformal field theory describing the gapless collective state,
as discussed in Section 2.3 of Ref. [3], but also reveal further details about the
correspondence between continuous fields and microscopic observables. In partic-
ular, the low-energy states of a conformally invariant system can be identified with
conformal fields and the excitation spectrum is expected to take the form

E = E1L+
2πv

L
·
(
− c

12
+ h+ h̄

)
, (2.9)

where h and h̄ are the (holomorphic and anti-holomorphic) conformal weights of a
given CFT with central charge c. E1 is a non-universal number, v a non-universal
scale factor, and L the length of the chain. To match the excitation spectra of
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the Yang-Lee chains to these CFT predictions we consider the family of so-called
minimal models M(p, p′) (where p and p′ are mutually prime) with central charge

c = 1− 6(p− p′)2

pp′
,

and conformal weights

h(r, s) =
(rp− sp′)2 − (p− p′)2

4pp′
, (2.10)

where the indices r and s are limited to 1 ≤ r < p′ and 1 ≤ s < p. We note that
the labels (r, s) and (p′ − r, p− s) correspond to the same field.

In the following, we will discuss our numerically obtained excitation spectra for
“antiferromagnetic” and “ferromagnetic” couplings, which are plotted in Figs. 2.5
and 2.6, respectively.

The antiferromagnetic chain. We first turn to the “antiferromagnetic” chain,
for which the pairwise anyon-anyon interaction energetically favors the trivial fu-
sion channel

τ × τ → 1 .

The conformal field theory describing the critical behavior of this model is the
non-unitary minimal model M(3, 5) with central charge c = −3/5, which is also
referred to as the Gaffnian theory [62]. The four primary fields of this CFT and
their respective scaling dimensions ∆ = h+ h̄ are

σ I ε ψ
∆ -1/10 0 2/5 3/2 (2.11)

with the non-trivial fusion rules

σ × σ = I + ε σ × ε = σ + ψ σ × ψ = ε

ε× ε = I + ε ε× ψ = σ

ψ × ψ = I

For completeness, we give the conformal dimensions of the fields (with minimal
model labeling) in table 2.1, and note that this model is a particular Galois con-
jugate of the su(2)3 CFT.

To identify the gapless theory numerically, we typically perform the following
procedure: We first look at the two lowest energy eigenvalues in the spectrum, E0

and E1, and by identifying the energy gap ∆E = E1 − E0 with the difference of
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Figure 2.5: Conformal excitation spectrum of the antiferromagnetic Yang-Lee
chain. The spectrum matches the non-unitary minimal modelM(3, 5) with central
charge c = −3/5, which is often referred to as Gaffnian theory. Primary fields
I, σ, ε, ψ of this conformal field theory are indicated by squares, descendant fields
by circles. We also indicate the topological flux of each energy eigenstate, which
indicates the topological symmetry sector.

the two lowest scaling dimensions we can identify the non-universal scale factor
2πv/L in (2.9), which we subsequently set to 1 thereby rescaling the entire energy
spectrum. This identification of the two lowest energy eigenvalues with conformal
operators also allows to identify an overall energy shift, e.g. setting the energy of
the trivial operator I with scaling dimension h(1, 1) + h̄(1, 1) = 0 to zero. In the
case at hand, there is only one negative scaling dimension, so the lowest energy
corresponds to −2hmin = −1/10, while the second lowest state corresponds to
the identity operator, with zero energy. At this point, all the energies are fixed,
and indeed the rescaled and shifted numerical spectrum is found to reproduce the
position of the (other) primary fields (indicated by green squares in Fig. 2.5), as
well as the descendants (indicated by red circles in Fig. 2.5).
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M(3, 5)

h(r, s) s = 1 2

r = 1 0 3/4
3 1/5 -1/20

M(2, 5)

h(r, s) s = 1

r = 1 0
3 -1/5

Table 2.1: Kac table of conformal weights for the non-unitary minimal models
M(3, 5) andM(2, 5). We only displayed fields with odd r labels, to avoid dupli-
cates.
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Figure 2.6: Conformal excitation spectrum of the ferromagnetic Yang-Lee chain.
The spectrum matches the non-unitary minimal modelM(2, 5) with central charge
c = −22/5, which is commonly referred to as Yang-Lee theory. The primary fields
I, ε of this conformal field theory are indicated by squares, descendant fields by
circles. We also indicate the topological flux of each energy eigenstate, which
indicates the topological symmetry sector.

The ferromagnetic chain. We now turn to the “ferromagnetic” chain, for which
the pairwise anyon-anyon interaction energetically favors the τ -fusion channel

τ × τ → τ .

The critical theory is the non-unitary minimal modelM(2, 5) with central charge
c = −22/5, which is commonly referred to as the Yang-Lee theory [76, 77, 78]. The
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two primary fields of this CFT and their respective scaling dimensions ∆ = h+ h̄
are

I ε
∆ 0 −2/5

(2.12)

with the non-trivial fusion rule

ε× ε = I + ε

Again we give the conformal dimensions of the fields (with minimal model labeling)
in table 2.1 for completeness. The spectrum of this theory, after the appropriate
shift and rescaling of the energy is displayed in figure 2.6, which beautifully repro-
duces the primary fields, as well as descendants to a high level, constituting the
spectrum of the Yang-Lee model.

2.1.4 Topological symmetry

Before considering further generalizations of the Yang-Lee chains we mention an-
other peculiarity of these anyonic chains. Like their unitary counterparts the
Yang-Lee chains exhibit an unusual, non-local symmetry. This symmetry, which
was dubbed a topological symmetry in the context of the golden chain model [63],
corresponds to the operation of commuting a τ particle through all particles of
the chain. The so-defined operator, which we denote by Y , is found to commute
with the Hamiltonian and for the su(2)3 theory has two distinct eigenvalues, thus
defining two symmetry sectors. Its matrix form is given by

〈x′0, . . . , x′L−1|Y |x0, . . . , xL−1〉 =
L−1∏

i=0

(
F τxiτx′i+1

)x′i
xi+1

. (2.13)

This definition solely in terms of the F -symbols immediately suggests a general-
ization of this symmetry to the case of the non-unitary Yang-Lee models studied
above by simply replacing the F -symbols with their non-unitary counterparts (2.7).
For both the unitary and non-unitary variants the two eigenvalues of the respec-
tive topological symmetry operator are y1 = φ and y2 = −1/φ. In the unitary
case these are identified as no-flux / τ -flux symmetry sectors. This assignment is
simply reversed in the Galois conjugated, non-unitary case.

For the unitary models it has been demonstrated that this topological symme-
try protects the gapless ground state of the interacting anyon chain model [69]:
it was shown that all relevant operators (in a renormalization group sense) that
have otherwise identical quantum numbers as the ground state, e.g. the same mo-
mentum, fall into different topological symmetry sectors. We have performed a
similar symmetry analysis for the Yang-Lee chains at hand. For chains with either
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antiferromagnetic or ferromagnetic couplings, we have evaluated the eigenvalue of
the topological symmetry Y for all eigenvectors of the Hamiltonian and thereby
assigned topological symmetry sectors to the primary fields of the conformal field
theory describing their energy spectrum. These assignments are given in Figs. 2.5
and 2.6 for antiferromagnetic and ferromagnetic chain couplings, respectively. A
situation similar to the unitary models emerges: For both signs of the coupling
the ground state with conformal dimension h + h̄ < 0 is found to be in the topo-
logically non-trivial (or τ -flux) sector, while all other primary fields with the same
momentum are found to be in the topologically trivial (or no-flux) sector.

For the unitary anyon chains this topological protection mechanism has subse-
quently been cast in a broader physical picture [69] interpreting the gapless modes
of the anyonic chains as edge states at the spatial interface of two topological
liquids, and the conclusion that anyon-anyon interactions result in a splitting of
the topological degeneracy for a set of non-Abelian anyons and the nucleation
of distinct topological liquid within the parent liquid of which the anyons are
quasiparticle excitations [69, 70]. The similarity of our results for the topologi-
cal symmetry properties of the non-unitary anyon chains thus raises the question
whether a similar interpretation would also hold for the non-unitary systems at
hand.

2.2 Doubled Yang-Lee models

2.2.1 The ladder Hamiltonian

In this section, we turn to quantum double variants of the anyonic chains discussed
in the first part. The unitary incarnations of these quantum double models have
been introduced in the context of exotic quantum phase transitions in time-reversal
invariant systems that are driven by topology fluctuations [79]. The specific model
is defined on a ladder geometry, shown in figure 2.7. The Hamiltonian

Hladder = −Jr
∑

rungs r

δl(r),1 − Jp
∑

plaquettes p

δφ(p),1 (2.14)

consists of two competing terms. The first term favors the trivial label 1 on each
rung of the ladder, while the second term favors the no-flux state for all plaquettes.
As shown in Ref. [79], the projector onto the flux through a square plaquette can be
expressed in terms of the unitary/non-unitary F-matrices (2.6)/(2.7). This term is
equivalent to the plaquette term in the Levin-Wen models [80], which are defined
on a different lattice, the honeycomb lattice.
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2.2 Doubled Yang-Lee models

Figure 2.7: The geometry of the Fibonacci and Yang-Lee ladders. To discuss the
physics, it is enlightening to “thicken” the ladder, and consider the two-dimensional
surface thus obtained.

Explicitly, the plaquette term reads

δφ(p),1

∣∣∣∣∣

α

β

γ

δ

a b

cd

〉
=
∑

s=1,τ

ds
D2

∑

α′,β′,γ′,δ′

(
Fα′sδ
a

)δ′
α

(
F β′sα
b

)α′
β

×
(
F γ′sβ
c

)β′
γ

(
F δ′sγ
d

)γ′
δ

∣∣∣∣∣

a b

cd

α�

β�

γ�
δ�

〉
, (2.15)

where ds denotes the quantum dimension of particle type s, i.e. d1 = 1 and dτ = φ.
D denotes the total quantum dimension, D =

√
d2
1 + d2

τ =
√

2 + φ for Fibonacci
(as well as Yang-Lee) anyons. The latin and greek labels denote the degrees of
freedom, and any of these takes one of the values {1, τ}. We note that the Hilbert
space of the ladder models consists of all possible labelings of the rungs and the
legs, such that at each vertex, the Fibonacci fusion rules are obeyed.

With this description of the ladder models, we can easily go back and forth
between the Fibonacci anyon ladder, and the Yang-Lee anyon ladder, simply by
choosing the corresonding set of F -symbols, namely equations (2.6) or (2.7) re-
spectively.

2.2.2 The phase diagram

To discuss the phase diagram of both the original and Galois conjugated model,
shown in figure 2.8, we parametrize the couplings Jr = sin θ and Jp = cos θ in terms
of an angle θ. We start with the first gapped phase, for π/4 < θ < π, most easily
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solvable point
(c = 8/35)

gapped phase

gapped phase

Jp

Jr

solvable point
(c = -44/5)

critical phase
c = -44/5

Figure 2.8: Phase diagram of the doubled Yang-Lee chain.

discussed at the special point θ = π/2, or Jr = 1 and Jp = 0. In the ground state at
this point, all rungs have the trivial label. In the two-dimensional surface geometry,
this means that no τ -fluxes go through the rungs, implying that the rungs can
be completely pinched off, changing the geometry to that of two disconnected
cylinders, one for each leg of the ladder. Each of the cylinders accommodates two
ground states, either with or without τ -flux, leading to a four-fold ground state
degeneracy. The lowest (gapped) excited state consists of configurations where one
rung of the ladder contains a τ flux.

In the other extended gapped phase, for −π/2 < θ < π/4, let us discuss the
special point θ = 0, or Jp = 1 and Jr = 0. Here the situation is reversed, and
no τ -fluxes go through the plaquettes. Thus they can be closed of, giving rise to
a geometry consisting of a single cylinder. Again, this cylinder can accommodate
two ground states, with or without flux, resulting in a two-fold degenerate ground
state. The lowest (gapped) excited state consists of configurations with a single
τ -flux going through a plaquette, effectively piercing a hole through the cylinder.

Precisely at the point where both couplings are equal in strength, the gap
closes, and the system is critical. At this point, the geometry is fluctuating at
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2.2 Doubled Yang-Lee models

M̃(7, 10)

h(r, s) s = 1 3 5

r = 1 0 13/7 4/7
3 2/5 9/35 −1/35
5 11/5 2/35 27/35

M̃(3, 10)

h(r, s) s = 1

r = 1 0
3 −2/5
5 −1/5

Table 2.2: Kac tables for the (A,D)-modular invariant non-unitary minimal mod-
els M̃(7, 10) and M̃(3, 10). The fields with the conformal dimensions in bold (i.e.
those with label s = 5) appear twice.

all length scales, interpolating between the two extremes of having one or two
cylinders, respectively. In addition, also precisely at this point, the (critical) model
is exactly solvable, as explained in Section 3.3 of Ref. [3].

Finally, for π < θ < 3π/2, there is an extended critical region, which is charac-
terized by another exactly solvable point, at θ = 5π/4, where both couplings are
again of equal strength, but negative.

2.2.3 Numerical results

We finally present the numerical spectra of the conjugated ladder model at the
two critical points θ = π/4, 5π/4, where the analytical solution yields the ((A,D)-
modular invariant) non-unitary conformal field theories M̃(7, 10) and M̃(3, 10),
respectively, whose fields are given in table 2.2 [3]. The spectrum for the critical
point at θ = π/4, is given in the top panel of Fig. 2.9, where we indicated the
locations of the primary fields of M̃(7, 10) by green squares, as well as some low-
lying descendants with red circles. As usual, there are only two free parameters to
match the numerically obtained spectrum with the result obtained from conformal
field theory, so the fact that the six lowest primaries, as well as several descendants
match to high precision (limited by finite size effects) is a very non-trivial check
on our results.

In the bottom panel of Figure 2.9, we give the numerical spectrum of the fer-
romagnetic Yang-Lee ladder, at θ = 5π/4, which is characteristic of the critical
phase extending over θ ∈ (π, 3π/2). In this case the critical behavior is described
by the M̃(3, 10) non-unitary conformal field theory, and, as for the antiferromag-
netic case, we were able to identify the primary fields, as well as several low-lying
descendant fields, as indicated in the figure.
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Figure 2.9: Conformal energy spectra of the critical points in the doubled Yang-
Lee chain. For antiferromagnetic (top panel) and ferromagnetic coupling (bot-
tom panel) the spectrum matches the non-unitary minimal models M̃(7, 10) and
M̃(3, 10), respectively. Primary fields of the conformal field theory are indicated
by green squares, descendant fields by red circles.
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2.3 Levin-Wen model and its Galois conjugates

Up to this point we have studied non-unitary anyon models, which arose by Ga-
lois conjugation of unitary anyon models. The resulting Hamiltonians were non-
Hermitian, but their diagonalization yielded completely real spectra, which at the
solvable critical points matched the predictions by non-unitary conformal field
theories. One might be tempted to take these findings as an indication that non-
unitary anyons may also be realized in Hermitian models. Therefore, we now turn
to the second part of the chapter, which is concerned with the possibility of real-
izing a non-unitary topological phase in a quantum-mechanical system, i.e. with a
Hermitian Hamiltonian. As explained in the introduction, this work was performed
in conjunction with a proof that rules out this possibility for Galois conjugates of
many unitary topological phases [2]. Since both this proof and the numerical work
presented below are performed on quantum double models, we start with an intro-
duction to these models, a variant of which has already appeared in the previous
section.

Topological quantum field theories are highly constrained mathematical con-
structs [81, 82, 83] designed to capture the low energy physics of topologically
ordered systems. Chern-Simons theory [84] generates most of the known exam-
ples; the simplest of these, all chiral, being based on a Lie group and level k, Gk.
Starting from a set of particles and fusion rules, there is a standard construction
– called the “quantum double” – which produces an achiral TQFT. Such quan-
tum doubles were introduced in the physics literature by Levin and Wen [80] in
the form of “string-net" Hamiltonians. If, for instance, we take the particles and
fusion rules from the chiral Fibonacci TQFT Fib, see Eq. (2.1), and use these
to label string-nets on surfaces, a “larger" TQFT DFib ∼= Fib ⊗ Fib (with more
particle types) is obtained.

The Levin-Wen model thus is a microscopic spin Hamiltonian implementing
doubled topological theories. Originally, it was defined [80] on a honeycomb lattice,
but its extension to any trivalent graph is straight-forward. Given a lattice graph
and an anyonic theory, the model’s Hilbert space is spanned by all labelings of
graph edges with the theory’s particle types which are consistent with the theory’s
fusion rules. As a simple example, we first consider the Fibonacci theory Fib, where
there are only two particle types, namely, a trivial particle 1 and the Fibonacci
anyon τ . Two particles can combine according to the fusion rules (2.1). In the
Levin-Wen (LW) model implementing the doubled Fibonacci theory DFib, this
amounts to the constraint that of the three edges meeting in any single vertex,
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Figure 2.10: Edge labeling for a plaquette of the honeycomb lattice.

never only one can carry a τ label. Within these states, the Hamiltonian

HLW = Jp
∑

plaquettes p

δφ(p),τ (2.16)

is a projector onto the τ -flux state of a plaquette p thus favoring the trivial flux
φ(p) = 1 through each plaquette. The action of this operator on an element of
the basis where the edges belonging to plaquette p carry labels α, . . . , ζ, a, . . . , f as
displayed in Fig. 2.10 results in a superposition of states where the inner edges of
the plaquette carry new labels α′, . . . , ζ ′ whereas all other edges remain unchanged.
Any of the labels takes one of the values {1, τ}. Similar to the ladder geometry
of Sec. 2.2.1, the matrix elements between these basis states read explicitly (see
Refs. [80] and [79] for a detailed derivation)

δφ(p),τ = 1−
∑

s

ds
D2

(
Fα′sζ
a

)ζ′
α

(
F β′sα
b

)α′
β

(
F γ′sβ
c

)β′
γ

×
(
F δ′sγ
d

)γ′
δ

(
F ε′sδ
d

)δ′
ε

(
F ζ′sε
d

)ε′
ζ
, (2.17)

where ds denotes the quantum dimension of particle type s, i.e. d1 = 1 and dτ =
φ ≡ (1 +

√
5)/2, the golden ratio and D the total quantum dimension, D =√

d2
1 + d2

τ =
√

2 + φ for Fibonacci anyons. For different plaquette geometries this
operator has an analogous form with one F -symbol for each edge of the plaquette.
The F -symbol, introduced in Sec. 2.1.1, is a defining property of the anyonic
theory.

The Levin-Wen model can can be solved exactly since all the plaquette terms
commute [80]. As a sum of projectors it counts the number of plaquettes pen-
etrated by a nontrivial τ -flux and the spectrum hence consists of states at all
non-negative integer multiples of Jp, corresponding to the number of nontrivial
plaquette fluxes. The ground states of the model correspond to all states with no
plaquette fluxes, corresponding to the ground states of the topological liquid on
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2.4 Hermitian model from non-unitary theory

a doubled surface around the lattice. With periodic boundary conditions in both
directions this surface is a doubled torus with four degenerate ground states.

Because the Levin-Wen model is entirely defined in terms of the particle types,
fusion rules and F -matrices of a TQFT, there is a straightforward quantum dou-
ble construction for any Galois conjugate of the original TQFT, which amounts to
simply replacing all F matrix occurrences with the Galois conjugated F matrix.
Specifically, the doubled Fibonacci model DFib is turned into its Galois conjugate
by swapping FFibonacci (2.6) with the non-unitary FYang-Lee (2.7). As Galois con-
jugation does not change the theory’s algebraic structure, the doubled Yang-Lee
(DYL) Levin-Wen model can be solved in exactly the same way as its DFib coun-
terpart. In particular, it has exactly the same spectrum whose eigenvalues count
the number of plaquettes penetrated by a non-trivial flux and the same ground
state degeneracies. The DYL model also retains the topological protection of the
ground state degeneracy against local perturbations.

2.4 Hermitian model from non-unitary theory

2.4.1 Constructing Hermitian models

While the non-Hermitian DYL model features a generalized stable topological
phase and a generalized code property, discussed in more detail below, an imme-
diately arising question is whether this phase can also be realized in a Hermitian
model. There are multiple ways to obtain a Hermitian model that has the same
ground states as the non-Hermitian parent model. However, as we will see in the
following the question whether the topological nature of the ground state remains
is a more subtle one.

The simplest Hermitian model H†H is obtained by squaring the non-Hermitian
parent Hamiltonian H. This model has the same right ground-state eigenvectors
as the original model. Alternatively, HH† has the same left ground-state eigen-
vectors. The simplicity of this approach comes at the cost of a Hamiltonian which
is highly non-local. To avoid non-local terms, we can take an alternative route
and individually square each plaquette term of Hp = δDYL

φ(p),τ , arriving at the Hamil-
tonian

∑
pH

†
pHp or

∑
pHpH

†
p. Since each plaquette term annihilates the ground

state, squaring them in this way also annihilate the (right/left) ground state eigen-
vectors. Finally, we can replace the non-Hermitian plaquette operator Hp with a
projector onto the complement of the operator’s kernel. More specifically, we diag-
onalize the plaquette operator and use its orthogonalized right eigenvectors |0(r)

i 〉
belonging to the eigenvalue 0 to define a projector

Pp = 1−
∑

i

∣∣∣0(r)
i

〉〈
0

(r)
i

∣∣∣ . (2.18)
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The sum of these projectors is then used to define the Hermitian Hamiltonian

Hherm = Jp
∑

p

Pp . (2.19)

It turns out that all three approaches result in the same qualitative behavior – a
loss of the code property and the associated stable topological order – and we will
limit our discussion to the last approach.

2.4.2 Loss of the code property

We find that the non-Hermitian models are stable against local perturbations, and
they satisfy a generalized code property. Keeping in mind that a non-Hermitian
matrix has left and right eigenvectors, which in general are not identical, a local
operator acts as a scalar multiple of an identity operator connecting the left and
right ground state subspaces:

〈
0

(l)
i

∣∣∣L
∣∣∣0(r)
j

〉
= λ(L)δij . (2.20)

Independent of the way we derive a Hermitian model from the parent DYL
model, we find that the code property is lost for the Hermitian models: when
constructing a Hermitian model, one inevitably has to decide wether to preserve
left or right ground states. The code property for the Hermitian model would
require expectation values of local operators of the form

〈
0

(r)
i

∣∣∣L
∣∣∣0(r)
j

〉
and

〈
0

(l)
i

∣∣∣L
∣∣∣0(l)
j

〉
(2.21)

to again be multiples of the identity. In general, this usual code property will not
be satisfied, as one can see, for example, by calculating the matrix elements of a
local observable such as a string tension. Perturbing any Hermitian Hamiltonian
which has the (right or left) DYL ground states with an arbitrary small string
tension will hence immediately lead to a splitting of the ground-state degeneracy,
as we will discuss below.

2.4.3 Absence of topological order

In this section we probe whether topological order survives the construction of
a Hermitian model by numerically diagonalizing the models on different lattice
geometries, the honeycomb lattice of the original Levin-Wen construction [80] and
the two-leg ladder geometry of Ref. [69]. We diagonalized systems with up to 24
edges using a dense eigenvalue solver and employed iterative schemes for systems
with up to 39 edges: the Lanczos algorithm for Hermitian models and an implicitly
restarted Arnoldi method for non-Hermitian models.
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Honeycomb model

Our results on the honeycomb lattice show a clear distinction between the DFib
and DYL models on the one hand and the Hermitian model Hherm derived from
the DYL model on the other hand. While all models feature four degenerate
ground states, the former two are gapped, whereas the latter one turns out to be
gapless in the thermodynamic limit; see the finite-size extrapolation in Fig. 2.11a).
Furthermore, the ground-state degeneracy is easily lifted by a local perturbation,
such as a string tension – in contrast to the stability of the topological phases of
the DFib and DYL models.

Ladder model

Since only small linear dimensions are accessible to exact numerical diagonaliza-
tion for the honeycomb lattice, we also consider the quasi-one-dimensional ladder
geometry introduced in Section 2.2. The DFib and DYL models on this ladder ge-
ometry were introduced and solved in Refs. [69] and [3], respectively. Both models
feature topological phases with two (instead of four) degenerate ground states, but
are otherwise identical to the respective honeycomb lattice models.

The quasi-one-dimensional geometry allows to numerically diagonalize systems
up to linear system size L = 13. The finite-size gap of the Hermitian model Hherm

is again found to vanish in the thermodynamic limit, showing a linear dependence
on the inverse system size as shown in Fig. 2.11b). To further demonstrate the
fragility of these gapless ground states against local perturbations we add a string
tension [69]

Hpert = Jr
∑

rungs r

δl(r),τ (2.22)

favoring the trivial label l(r) = 1 on each rung of the ladder. We parameterize the
couplings of the competing plaquette and rung terms as

Jr = sin θ and Jp = cos θ ,

where θ = 0 corresponds to the unperturbed Hamiltonian. The phase diagrams as
a function of θ have been mapped out for both the DFib model [69] and the DYL
model (see above).

Directly probing the topological order in the DYL model and its Hermitian
counterpart we show the lifting of their respective ground-state degeneracies in
Figs. 2.12 and 2.13 when including a string tension. We find a striking qualita-
tive difference between these two models: For the DYL model the lifting of the
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Figure 2.11: Scaling of the finite-size gap ∆(L) (in units of Jp) with linear system
size for the Hermitian projector model Hherm on two different lattice geometries:
the honeycomb lattice with L×W plaquettes (top panel) and 2-leg ladder systems
of length L (bottom panel).
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Figure 2.12: Ground-state degeneracy splitting of the non-Hermitian doubled
Yang-Lee model when perturbed by a string tension (θ 6= 0).

ground-state degeneracy is exponentially suppressed with increasing system size
– characteristic of a topological phase. For the Hermitian model, on the other
hand, we find a splitting of the ground-state degeneracy proportional to JrL. The
linear increase with both system size and coupling can be easily understood by
the different matrix elements of the string tension term on a single rung for the
two degenerate ground-states of the unperturbed model. Plotting the low-energy
spectrum in Fig. 2.13 clearly shows that the two-fold degeneracy of the unper-
turbed Hermitian model arises from a (fine-tuned) level crossing. Similar behavior
is found in the honeycomb lattice model (not shown).

Considering the model in a wider range of couplings, as shown in Fig. 2.14,
further striking differences between the non-Hermitian DYL model and its Hermi-
tian counterpart are revealed: The DYL model exhibits two extended topological
phases around θ = 0 and θ = π/2 (with two and four degenerate ground states, re-
spectively), which are separated by a conformal critical point at precisely θc = π/4
as discussed extensively in the first part of the chapter and Ref. [3]. In contrast,
the Hermitian model Hherm exhibits no topological phase anywhere, and the inter-
mediate coupling θ = π/4 does not stand out.
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Figure 2.13: Ground-state degeneracy splitting of the Hermitian model Hherm, the
counterpart to the DYL model, when perturbed by a string tension (θ 6= 0) (top
panel). The slope of the splitting around the unperturbed model (θ = 0) is given
in the inset (top panel) for different system sizes L. The bottom panel shows the
low-energy spectrum, which clearly shows that the degeneracy at θ = 0 is due to
a level-crossing.
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Figure 2.14: The low-energy spectra of the doubled Yang-Lee model (top) and its
Hermitian counterpart (bottom) for a wide range of coupling parameters. Data
shown is for a ladder of length L = 8.
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2.5 Conclusions
In Sections 2.1–2.2, we studied the collective states of Yang-Lee anyons, a family of
non-unitary, non-Abelian anyons which are close cousins of the unitary Fibonacci
anyons. Non-unitary anyons of this form have attracted interest in the context of
studies of certain quantum Hall wavefunctions, including the Gaffnian state [62].
Both Yang-Lee and Fibonacci anyons arise from the same anyonic theory, su(2)3,
and in particular they share the same fusion rules. The key distinction between
the two anyon types is that Yang-Lee anyons are non-unitary and relate to their
unitary counterparts, the Fibonacci anyons, via Galois conjugation. To charac-
terize the collective states formed by a set of anyons in the presence of pairwise
interactions, we have considered one-dimensional models of interacting Yang-Lee
anyons similar to the golden chain model of the unitary case [63]. Analogous to
the case of interacting Fibonacci anyons, the collective states of such chains of
Yang-Lee anyons are found to be critical and the gapless theories are described by
certain non-unitary conformal field theories.

We then turned to the question whether non-unitary anyons could arise from a
quantum phase. Our numerical study, described in Section 2.4, used three different
attempts to construct a gapped local Hermitian Hamiltonian whose ground state
described a Galois conjugated phase. Each attempt failed, and we elucidated the
reason underlying this failure, namely the problem of preserving the non-unitary
phase’s generalized code property within a Hermitian model.

This failure was the motivation for the mathematical results in Section IV of
Ref. [2], which in fact suggest that all such attempts will be doomed to fail and
a large class of non-unitary topological quantum field theories cannot be realized
as ground states of gapped quasi-local Hermitian Hamiltonians. While our discus-
sion and the corresponding proof have been formulated for quantum doubles of
TQFTs, it also rules out the realization of the constituent non-doubled TQFT in a
Hermitian system: if the latter were to exist, it could be used to trivially construct
a Hermitian model for the corresponding quantum double.
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Chapter 3

Diagrammatic Monte Carlo

The extension of the diagrammatic Monte Carlo (DiagMC) technique to the cal-
culation of two-particle Feynman diagrams for fermionic lattice models and its
implementation in a flexible and efficient code constitutes a central part of the
work presented in this thesis. The DiagMC method was originally introduced by
Prokof’ev and Svistunov for sampling the bare diagrammatic series for a polaron
propagator [85], and later extended to a self-consistent calculation of irreducible
diagrams defined in terms of interacting propagators and interactions [86, 87].
Later it was shown that the method can also be applied to fermionic many-body
systems, namely the Fermi liquid phase of the Hubbard model [88, 89] and the
unitary Fermi gas [90, 91], whose diagrams have a more complex structure than
the polaron models treated before. While the original DiagMC formulation for
the Hubbard model was essentially based on the bare diagrammatic expansion,
very recently the sampling of bold series in terms of bold propagators [92] and
an expansion around the T-matrix approximation [93] have been explored in this
context, too. Other recent applications of the DiagMC idea include the study of
Anderson localization by sampling the corrections to dynamical mean field theory
(DMFT) [94] and of frustrated spin models, whose treatment requires a fermion-
ization procedure [95, 96].

The basic idea underlying the DiagMC approach is the calculation of Feynman
diagrammatic series to relatively high orders by means of stochastic sampling.
Both the integrals over internal variables and the sums over different diagram or-
ders and topologies are performed by a Markov chain Monte Carlo algorithm. In
contrast to traditional approaches to many body perturbation theory, large enough
expansion orders become accessible for explicitly checking convergence properties
of the diagrammatic series in nontrivial parameter regimes and hence claiming
quantitative results with an estimate of the systematic uncertainty due to the
neglect of higher-order diagrams. For fermionic many-body problems, exchange
statistics imply that different diagram topologies have different signs. This prop-
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erty has two important consequences: On the one hand it implies the presence
of a sign problem, i.e. a large-scale cancellation of contributions from different
terms, which drastically reduces the efficiency of the Monte Carlo sampling pro-
cedure [37]. The severity of the sign problem in DiagMC, determined by the ratio
between the sum of diagrams and the sum of their absolute values, increases fac-
torially with diagram order and hence poses a strong limit on the diagram orders
for which results with acceptable stochastic error bars can be obtained. On the
other hand the alternating sign can drastically improve the convergence properties
of the diagrammatic series. This issue is discussed in detail in Section 3.2.1.

A crucial feature of the DiagMC approach is that different diagram topologies
appear explicitly in the sampling process, so that the calculation can easily be
restricted to specific topologies. This allows for the direct sampling of irreducible
diagrammatic quantities, such as self-energies and vertex functions. All the tech-
niques developed in the context of many body perturbation theory like, e.g., partial
summations and the formulation of diagrams in terms of self-consistently defined
interacting propagators and vertices, can be directly applied within a DiagMC
method. This is in contrast to determinantal diagrammatic Monte Carlo schemes
where the different topologies appearing in the same order are implicitly summed
by a matrix determinant.

The present chapter aims to give a self-contained introduction into the DiagMC
method and explain its implementation in some detail. After a quick reminder of
some essential ingredients of diagrammatic perturbation theory we describe the
implementation of the DiagMC sampling process in Section 3.2. Then in Sec-
tion 3.3 we turn to the measurement process and efficient storage of diagrammatic
quantities, which are functions of several variables. Section 3.4 is devoted to the
calculation of observables from the measured irreducible quantities and the estima-
tion of the related stochastic and systematic uncertainties. The chapter concludes
with benchmark comparisons to other numerical methods in Section 3.5.

3.1 Diagrammatic perturbation theory

The treatment of fermionic many body systems with Feynman-Dyson perturbation
theory is not a new subject and has been covered in numerous textbooks [97, 98,
99, 100, 101]. We therefore just introduce the basic quantities and relations in
order to fix notation and mention some important properties that are used later
on.
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3.1.1 Matsubara Green’s functions

For describing a system at finite temperature we work with the Matsubara for-
malism in the grand-canonical ensemble, i.e. Heisenberg operators depend on an
imaginary time τ = it ∈ [0, β], with β = 1/T the inverse temperature:1

OH(τ) =eHτOe−Hτ , (3.1)

where H = H − µN is the grand-canonical Hamiltonian and O a quantum-
mechanical operator in the Schrödinger picture. The central objects of diagram-
matic perturbation theory are time-ordered propagators, also called Green’s func-
tions. We are concerned with the one- and two-particle temperature Green’s func-
tions

Gαβ(x, τ,x′, τ ′) = −〈TτcHα(x, τ)c†Hβ(x′, τ ′)〉 (3.2)

GII
αβγδ(1, 2; 3, 4) = 〈TτcHα(1)cHβ(2)c†Hγ(3)c†Hδ(4)〉. (3.3)

Here cHα(x, τ) (c†Hα(x, τ)) are field operators in the Heisenberg picture annihi-
lating (creating) a fermion with spin α at site x and imaginary time τ , and
〈. . . 〉 = Tr{eβ(Ω−H) . . . } denotes the thermal average with respect to the grand-
canonical ensemble of the Hamiltonian H. Tτ denotes the imaginary-time ordering
operator which arranges the following operators in order of decreasing time argu-
ment and includes a factor of (−1)P according to the sign of the permutation which
brings the fermionic operators into the correct order. In the second line we have
used the abbreviated notation 1 = (x1, τ1) etc. for space-time coordinates. We
are exclusively concerned with translation-invariant lattices and time-independent
Hamiltonians conserving the particle number for ↑ and ↓ spin states individually,
therefore the single-particle propagator only depends on a space and time difference
and is diagonal in the spin indices:

Gαβ(x, τ,x′, τ ′) = δαβGα(x− x′, τ − τ ′). (3.4)

Similarly, the two-particle propagator only depends on three space and time differ-
ences and the spin indices of the creation and annihilation operators must match
pairwise. An important consequence of the fermionic anticommutation property
is that the propagators are antiperiodic in each time variable:

G(x, τ + β) = −G(x, τ) (3.5)

1Throughout this work we set the reduced Planck constant ~, the Boltzmann constant kB
and the lattice spacing a to unity, ~ = kB = a = 1, so temperature is measured in energy units
and time and length in inverse energy units.
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and likewise for all time arguments of the two-particle propagator. Therefore the
Fourier transform in the time variables

G(x, τ) = T
∞∑

n=−∞
e−iωnτG(x, ωn) (3.6)

is written in terms of fermionic Matsubara frequencies

ωn = (2n+ 1)πT, n ∈ Z, (3.7)

whereas the difference between two fermionic frequencies is a bosonic frequency

ωl − ωn = νm = 2mπT, m = l − n ∈ Z. (3.8)

The inverse Fourier transform is

G(x, ωn) =

∫ β

0

dτeiωnτG(x, τ). (3.9)

Furthermore, we introduce the spatial Fourier transform

G(k, τ) =
∑

x

e−ik·xG(x, τ), (3.10)

G(x, τ) =

∫
ddk

(2π)d
eik·xG(k, τ), (3.11)

where the sum runs over all lattice points x and the momentum integral over the
first Brillouin zone.

3.1.2 Many body perturbation theory

Except for trivial models, the exact Green’s functions are unknown, therefore the
Hamiltonian H is split into a non-interacting part H0, which is a quadratic form
of the field operators, and a part H1 containing the interaction terms. Then the
definitions of the Green’s functions are expanded in H1, resulting in a series of
integrals over time-ordered operator averages, like for the single-particle Green’s
function:

Gαβ(1, 2) = −eβΩ

∞∑

n=0

(−1)n

n!

∫ β

0

dτ ′1 · · ·
∫ β

0

dτ ′n〈TτH1(τ ′1) · · ·H1(τ ′n)cα(1)c†β(2)〉0.

(3.12)

Here all operators are in the interaction picture and the expectation value 〈. . . 〉0
is taken with respect to the non-interacting ensemble of the Hamiltonian H0. The
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prefactor eβΩ can also be expanded and is found to cancel specific terms of the
diagrammatic series (see below). Due to a generalized version of Wick’s theorem
the expectation values of time-ordered operator products appearing in such an
interaction expansion can be decomposed into sums of products of non-interacting
propagators (and interaction matrix elements). Of course the non-interacting prop-
agators, i.e. the propagators of particles described by H0, are known analytically.
In momentum space, the imaginary-time and -frequency versions of the single-
particle propagator are

G0(k, τ) =

{
− e−ξτ

1+e−βξ , τ > 0
e−ξτ

1+eβξ
, τ ≤ 0

, (3.13)

G0(k, ωn) =
1

iωn − ξ
, (3.14)

with ξ = ε(k)−µ the single-particle dispersion ε(k) shifted by the chemical poten-
tial µ. Non-interacting many-particle propagators reduce to symmetrized products
of the corresponding single-particle propagators.

The terms appearing in the interaction expansion of a temperature Green’s
function can be conveniently represented by Feynman diagrams, where each prop-
agator and each interaction matrix element are pictured by a line. Two propagator
lines and one interaction line at a time meet in a vertex, which corresponds to one
of the space-time points to be integrated over. Using this graphical representation,
all terms of the interaction expansion can be produced by systematically drawing
diagrams and then translating these into integral expressions according to a set
of Feynman rules. In constructing these rules it turns out that disconnected dia-
grams, i.e. those graphs that are separated into subgraphs not joined by any line,
exactly cancel the prefactor in Eq. (3.12), so that the latter can be ignored while
restricting the diagrammatic expansion to connected diagrams.

Since our DiagMC implementation works in momentum and imaginary time
space, we list the corresponding Feynman rules for the single-particle propagator
of a model of spin-1

2
fermions interacting with a Hubbard on-site interaction U :

1. Draw all topologically distinct diagrams containing n interaction lines and
2n+ 1 particle lines.

2. Assign a directed momentum to each particle and interaction line such that
momentum is conserved at each vertex.

3. Assign a time to each vertex such that vertices connected by an interaction
line have equal times.
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G(k, τ ′ − τ) =
τ τ ′k

+
τ τ1 τ ′k k

k1

+
τ τ1 τ2 τ ′k k k

k1 k2

+
τ τ1 τ2 τ ′k k1 k

k2

k1 + k2 − k

+O(U3)

Figure 3.1: Diagrammatic expansion of the one-particle propagator up to second
order. Black directed lines represent free one-particle propagators, dashed blue
lines the Hubbard interaction.

4. Assign a spin index to each vertex such that particle lines connect only
vertices of equal spin and interaction lines only opposite spins.

5. Associate a factor Gα(k, τ1− τ2) with each particle line running from vertex
2 to vertex 1.

6. Associate a factor U with each interaction line.

7. Integrate over all n independent internal momenta and times.

8. Multiply by (−1)n(−1)F (2π)−nd, where F is the number of closed fermion
loops.

9. Interpret any Green’s function connecting equal times as G(k, τ = 0−). (This
is the reason for us including τ = 0 in the negative domain in Eq. (3.13).)

Figure 3.1 presents the first few terms of the diagrammatic series for the one-
particle propagator. Spin labels are not shown explicitly; according to the stated
rules, the lower vertices carry the same spin label as the external vertices, and
hence the total Green’s function, whereas the upper vertices have the opposite
label.

3.1.3 Dyson’s equation

An important part of diagrammatic perturbation theory for propagators is the pos-
sibility of summing analytically an infinite number of terms and using the resulting
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G(k)
=

G0(k)
+ Σ(k)

G0(k) G(k)
(3.15)

=
G0(k)

+ Σ(k)
G0(k) G0(k)

+ Σ(k) Σ(k)
G0(k) G0(k) G0(k)

+ . . . (3.16)

=
1

(

G0(k)

)−1

− Σ(k)

(3.17)

Figure 3.2: Graphical representation of Dyson’s equation for the one-particle prop-
agator: Interacting and non-interacting fermion propagators are drawn as double
and single lines, respectively, with an arrow indicating their direction. Grey circles
represent the sum of all one-particle irreducible self-energy diagrams.

expressions as building blocks of other diagrams. One example for such a graphical
summation is the decomposition of propagator diagrams into free propagators and
self-energy insertions. The (proper/irreducible) self-energy is defined as the sum
of all sub-diagrams that are connected to the rest of the diagram via two parti-
cle lines and cannot be separated into two disconnected graphs by removing one
particle line. In Fig. 3.1 the second and fourth diagram consist of two free prop-
agators and a single self-energy insertion, while the first and third diagrams have
zero and two self-energy insertions, respectively. Diagrams consisting of repeated
self-energy insertions need not be calculated explicitly, but once the self-energy is
known they can all be accounted for by solving Dyson’s equation:

G(k) = G0(k) +G0(k)Σ(k)G(k) =
[
G−1

0 (k)− Σ(k)
]−1 (3.18)

Here we have used the notation k = (k, ωn). While Dyson’s equation is an integral
equation in time space, it is straightforwardly solved by the Fourier transform to
frequencies, where it is an algebraic equation for matrices, which are diagonal for
a translation-invariant system and and can be inverted analytically. A pictorial
representation of the equation is shown in Fig. 3.2.
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GII(1, 2; 3, 4) =

1

2

3

4

1

2

4

3
− Γ̃

1

2

3

4

+

Figure 3.3: Decomposition of the two-particle Green’s function into one-particle
propagators and the reducible vertex function Γ̃.

(a) Γ̃ Γpp Γpp Γ̃= +

(b) Γ̃ Γph Γph Γ̃= +

Figure 3.4: Bethe-Salpeter equations for the vertex function Γ̃ in the (a) particle-
particle and (b) particle-hole channels.

3.1.4 Bethe-Salpeter equations

Similar to the self-energy insertions in the one-particle propagator, the two-particle
Green’s function can be split into single-particle propagators and vertex function
subdiagrams, which are connected to other parts of the diagram with four particle
lines as shown in Fig. 3.3. The full (reducible) vertex function can be further
decomposed into two-particle irreducible subdiagrams connected by pairs of one-
particle propagators. In this case however there is some choice in the definition of
irreducibility: One can either consider particle-particle irreducible blocks, which
cannot be cut in half by removing a pair of particle lines going in the same direction,
or particle-hole irreducibility, where different irreducible blocks are connected by
a pair of propagators with opposite directions. The corresponding diagrammatic
quantities are the particle-particle and particle-hole irreducible vertex functions,
respectively. They are related to the reducible vertex function, and hence the
interacting two-particle Green’s function, via Bethe-Salpeter equations, drawn in
Fig. 3.4, which are the two-particle analogs of Dyson’s equation,

Γ̃Q = ΓxQ − ΓxQχ
x
QΓ̃Q =

ΓxQ
1 + χxQΓxQ

. (3.19)

Here Γ̃Q is the reducible vertex with total four-momentum Q = (Q, iνm), whereas
ΓxQ is the corresponding irreducible vertex in the particle-particle (x = pp) or
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particle-hole (x = ph) channel and

χppQ (k) = G(k)G(Q− k), χphQ (k) = G(k)G(k −Q) (3.20)

the product of two one-particle propagators. Equation (3.19) should be read as
a matrix equation in the spin labels and the remaining two independent four-
momenta after fixing Q. The χxQ are diagonal matrices. For the sign of the vertex
function we choose the convention that the first-order approximation to the vertex
is identical to the interaction, Γ̃(1) = U . For this reason each occurrence of a vertex
function in a diagram implies a factor of (−1), just as an interaction line. This
explains the sign difference between the graphical representation in Fig. 3.4 and
the algebraic expression in Eq. (3.19). Further care needs to be applied when de-
termining the sign of vertex function diagrams in the particle-hole channel: When
the left vertices of Γph (and equivalently the right ones) are connected by particle
lines, iteration of the Bethe-Salpeter equation creates a fermion loop and hence
incurs another minus sign.

These equations are of fundamental interest to the present work because they
describe how, in the diagrammatic language, the divergence of a susceptibility
arises at a continuous phase transition: Since the individual non-interacting prop-
agators for our model are finite at non-zero temperature, a divergence can only
arise from the summation of an infinite number of diagrams. This sum can be
performed analytically by solving the Bethe-Salpeter equation for the channel cor-
responding to the ordering transition. Furthermore, for locating and characteriz-
ing a phase transition it is not necessary to solve the full Bethe-Salpeter equation
(calculate the exact two-particle Green’s function) because the point of divergence
can be determined from the Bethe-Salpeter kernel exclusively: The expression in
Eq. (3.19) diverges when the smallest eigenvalue in the denominator reaches zero,
i.e. when the largest eigenvalue of the kernel −χxΓx equals unity. Monitoring the
leading eigenvalues of the Bethe-Salpeter kernels for the different channels while
varying the system’s parameters, like temperature or interaction strength, a phase
transition is signalled by the first eigenvalue growing to unity. The symmetry
properties of the corresponding eigenvector identify the type of order setting in at
the transition.

3.2 DiagMC sampling
The present section aims to provide a self-contained account of a DiagMC algo-
rithm and implementation. A detailed description of a similar DiagMC scheme for
the Hubbard model, which has guided the design of our implementation, can be
found in Ref. [88]. In comparison to this previous work, which concentrated on
the computation of bare self-energy diagrams, the implementation described here
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allows for the simulation of different two- and four-point diagrams, in terms of
bare or self-consistently determined quantities. Additionally, we describe several
performance optimizations that have not been published before.

Markov chain Monte Carlo

The basic idea underlying the DiagMC method is the stochastic sampling of a
diagrammatic series. In an abstract way, such a series can be written

F (y) =
N∗∑

n=0

∑

ξ

∫
dx1 · · · dxnD(ξ, y, x1, . . . , xn), (3.21)

with external coordinates y, n the diagram order, ξ enumerating the different
diagram topologies for that order, and xi the (in general vector-valued) internal
coordinates that are to be integrated over. D is the integrand corresponding to a
specific diagram ξ with fixed values for the external and internal coordinates. In
practice, all sums and integrals appearing in Eq. (3.21) are sampled with a Markov
chain Monte Carlo algorithm.

To this end, the set of variables (ξ, y, x1, . . . , xn) defining the value of the di-
agram integrand D constitutes a configuration x ∈ C in the process’s state space
C. The algorithm then defines a set of updates that, given any such configu-
ration x, produce a new configuration y with some fixed transition probability
P (x → y) = Pyx. The repeated application of these updates creates a Markov
chain, which is a sequence of random configurations c0, c1, . . . , cn, . . . where, at any
step n, the probability distribution for the next configuration cn+1 only depends
on the current configuration P (cn+1 = y|cn = x) = Pyx and not on any earlier
part of the history (the process is memoryless). The properties of the Markov
chain are entirely defined by the transition matrix P = (Pyx). The definition in
terms of transition probabilities from a given state x directly implies that P is
non-negative and its column sums are normalized:

Pyx ≥ 0,
∑

y∈C
Pyx = 1, (3.22)

which are the defining properties of a (column-)stochastic matrix. In general, we
are interested in the probability distribution p

(n)
x ≡ P (cn = x) for finding the

system after n steps in state x and the limiting distribution for n → ∞. These
distributions can be compactly written as vectors p(n) in the state space with the
obvious properties

0 ≤ p(n)
x ≤ 1,

∑

x

p(n)
x = 1. (3.23)
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The Markov chain starts with some initial distribution vector p(0)
x , which may, but

need not, be p(0)
x0 = 1 for a deterministic initial state x0 and zero otherwise. This

initial probability distribution is transformed by the transition matrix P into the
first-step probability distribution

p(1)
y =

∑

x

Pyxp
(0)
x , (3.24)

where the properties (3.22) ensure that the total probability is conserved. In
other words, the probability distribution after one step can be computed from
the previous one by a matrix-vector product. By repeating this argument, the
probability distribution after n steps is given by the nth matrix power of the
transition matrix

p(n) = P np(0). (3.25)

The Perron-Frobenius theorem guarantees that the stochastic matrix P has a
unique unit eigenvector π: Pπ = π, which therefore represents a stationary
probability distribution, and the Markov chain converges to this distribution [102]:

lim
n→∞

p(n) = π, (3.26)

irrespective of the initial distribution if and only if it is ergodic:2

∃n0∈N : ∀n>n0 P
n > 0. (3.27)

Less formally, a Markov chain converges to a unique stationary distribution if any
configuration x can be reached from any other in a finite number of steps and
there are no periodic cycles.3

Having established convergence to a unique stationary distribution by an er-
godic set of updates, the main challenge in the design of any Markov chain Monte
Carlo method lies in the determination of suitable transition probabilities such
that the stationary distribution coincides with the target distribution that is to be
sampled. For DiagMC, the probability for a specific configuration to appear in the
Markov chain πx should be proportional to the absolute value of the diagrammatic
integrand. In general, π is a stationary distribution of the transition matrix P if
and only if the transitions from and to any state x are balanced :

∑

y

Pyxπx =
∑

y

Pxyπy. (3.28)

2Ergodicity is equivalent to the statement that the transition matrix is irreducible and prim-
itive.

3The second criterion, aperiodicity, is automatically satisfied whenever there is a finite prob-
ability to stay in a configuration ∃x : Pxx > 0 and therefore usually not an issue.

45



3.2 DiagMC sampling

While this global balance condition leaves a lot of freedom in the choice of specific
transition probabilities, the most straightforward and common solution equates
the individual terms in the sums on the left and right hand sides:

Pyxπx = Pxyπy. (3.29)

This is the well-known detailed balance condition.

Metropolis-Hastings probabilities

The detailed balance condition can be fulfilled by different constructions for the
transition probabilities. We employ the very common Metropolis-Hastings scheme
[103, 104], which factors the transition probability for the update x→ y

Pyx =

{
PyxAyx, if x 6= y∑
z 6=xPzx(1−Azx), if x = y

(3.30)

into an a priori proposal probability P and an acceptance probability A. Detailed
balance requires that the ratio of acceptance probabilities

R ≡ AyxAxy
=
Pxyπy
Pyxπx

. (3.31)

This is satisfied by the Metropolis acceptance probability

Ayx = min(1, R) (3.32)

because the acceptance probability for the inverse move is obviously

Axy = min(1, 1/R). (3.33)

In practice for each simulation step, an update x→ y is proposed and the proba-
bilities for proposing this move and the reverse one calculated, together with the
relative weights of the new and old configurations πy/πx. Then, the update is
either accepted, i.e. y becomes the new configuration, or rejected and the new
configurations is the same as the old one. When the acceptance ratio R ≥ 1, the
move is accepted unconditionally, otherwise only with probability R. A lower re-
jection rate generally means that the state space is sampled more efficiently. The
acceptance probabilities can be optimized by tuning the proposal distributions.
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(a) Na = Unσ̄

σ σ

(b) Nb = U

σ

σ̄

σ

σ̄

(c) Nc = −Unσ̄
σ

σ

σ

σ

Figure 3.5: Normalization diagrams for (a) the self-energy, (b) the particle-particle
pairing vertex between different spins, and (c) the pairing vertex between identical
spins. Diagrams (a) and (b) are physical, whereas diagram (c) is disconnected and
only sampled for the purpose of normalization.

3.2.1 Normalization and sign problem

The DiagMC algorithm samples a diagrammatic quantity by constructing a prob-
ability distribution which is proportional to the target quantity. In order to be
useful, the results need to be scaled by a normalization factor that is a priori
unknown. We therefore introduce the concept of a normalization diagram, which
is a specific diagram topology that is both simple enough to be quickly computed
analytically or numerically, and easy to identify when it appears as a configu-
ration. A natural choice is the lowest-order diagram appearing in the sampled
series, like, e.g., the Hartree diagram in the self-energy series. In cases where
there is no physical first-order diagram, as for the particle-particle pairing vertex
in the equal-spin channel, an unphysical normalization diagram can be introduced
in the sampling process, cf. Fig. 3.5. Whenever a measurement encounters the
normalization diagram, a normalization counter CN is incremented in addition to
the accumulators for the physical quantity, e.g. CΣ(k,τ) for a self-energy diagram
with momentum k and time τ . At the end of the simulation, the normalization
factor is straightforwardly computed from the value of the normalization diagram
N and the corresponding counter:

Σ(k, τ) =
N
CN

CΣ(k,τ). (3.34)

Sign problem

The discussion until now implicitly assumed that the sampled quantity is non-
negative such that it could be cast into the form of a probability distribution
times a constant normalization factor. Unfortunately, this is not always the case,
and in particular, different fermionic Feynman diagrams do have different signs.
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We therefore need to use the integrand’s absolute value as weight and keep track
of its sign separately, so each configuration contributes with the correct sign to the
overall simulation average. In the following, we will use the convention that the
acceptance ratio R can have either sign, and the acceptance probability (3.32) is
modified to use the absolute ratio

Ayx = min(1, |R|). (3.35)

Whenever an update with R < 0 is accepted, the configuration’s sign is flipped.
The sum over configurations with alternating signs can lead to strong cancellation
effects and thus require many samples for a reliable estimate of the mean value.
In fact, the numbers of both positive and negative diagrams grow factorially with
the diagram order N ; therefore, the average of the sign s is expected to vanish
〈s〉 = O(1/N !). Since the relative error after a fixed simulation time scales like
the inverse of the average sign

∆s

〈s〉 ∝
√

Vars

〈s〉 =

√
〈s2〉 − 〈s〉2
〈s〉2 =

√
1

〈s〉2 − 1 = O(1/〈s〉) = O(N !), (3.36)

we expect the computational effort for a predefined relative error to grow faster
than exponentially in the diagram order. For this reason, we always need to restrict
the sampling process to diagrams below a cutoff order N ≤ N∗. The neglect of
higher-order diagrams is a systematic error that needs to be controlled by varying
the cutoff and checking whether the results can be extrapolated to N∗ →∞.

This is of course just another appearance of the infamous NP-hard sign prob-
lem that plagues Monte Carlo simulations of general fermionic systems [37, 38].
In contrast to more conventional QMC techniques, like world-line or determinant
QMC, or cluster DMFT schemes, where the computational effort scales exponen-
tially in the system size and inverse temperature, the DiagMC algorithm can be
applied directly to the thermodynamic limit, so no finite-size analysis is required.
Also low temperatures do not present a principal problem. The DiagMC sign is
directly related to the order of the interaction expansion, and for irreducible quan-
tities all the relevant physics may be contained in the low-order terms, in particular
with weakly interacting systems. Whether a finite-size or finite-order method can
provide the most reliable results for a physical system will generally depend on
the specifics of the system. Ideally, the combination of different methods allows
for the cross-validation of different extrapolations.

On a final note, it should be pointed out that the DiagMC sign problem is inti-
mately related to the diagrammatic series’ convergence properties: If all diagrams
had the same sign, as is the case for an interaction expansion of bosons, the series
would necessarily have zero convergence radius [105]. Only the cancellation of di-
agrams with alternating sign opens the possibility for a convergent weak-coupling
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l = (t,k)
v

s0

s1

s2

s3

Figure 3.6: Building blocks of a general diagram: (left) Propagator line l, charac-
terized by line type t and momentum k. (right) Four-point vertex v, characterized
by vertex type t, momentum q and four slots si = (τi, σi), each having a time τi
and a spin σi.

expansion and even asymptotic fermionic series tend to be more well-behaved than
the corresponding bosonic series [106]. In a quickly converging series the sign for
large orders will necessarily be spectacularly small, but this does not present a
problem as long as convergence can be checked within the range of computation-
ally accessible orders. The finding that the alternating sign of the diagrammatic
series strongly extends the range of applicability of the DiagMC method by making
the series more well-behaved has lead some authors to coin the term “sign blessing”
[107].

3.2.2 Representation of diagrams in the simulation

In the course of the present work a DiagMC code has been written from scratch.
An important design goal was the flexibility of the data structures and algorithms,
such that, e.g. two-point and four-point diagrams could be simulated with the same
code, for different dimensionality and model variations. Additionally, propagators
(and in principle interaction vertices) can represent the bare or dressed quantities.
For this reason, the data structure describing the diagram of a configuration is
built out of propagator lines and general four-point vertices, illustrated in Fig. 3.6.
Each four-point vertex has two incoming and two outgoing propagator lines.4 Our
data structures allows for different types of lines and four-point vertices to appear
in the same diagram. Therefore, each line l = (t,k) has an associated line type
in addition to the momentum it carries. Similarly, a vertex v = (t, q, s0, . . . , s3)
stores its type t, the momentum q transferred from the upper to the lower fermion,
and for each of its four slots si = (τi, σi) a time and a spin. In the case of the bare
Hubbard interaction, which is local in space and time, all times are the same and
we fix, by convention, the spin on the upper slots to σ0 = σ2 =↓ and on the lower
slots to σ1 = σ3 =↑. Pictorially, we draw such an interaction vertex as a blue box,

4Symmetry-broken phases with anomalous propagators are not simulated directly.
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τ τ ′

U(τ) U(τ ′)

1(k)

=

Figure 3.7: The second-order self-energy diagram in the usual form (left) and our
internal representation (right), where a neutral measuring propagator (grey dotted
line) connects the open ends and interactions are represented as 4-point vertices.

τ τ ′

1 U(τ) U(τ ′)=

Figure 3.8: Particle-particle irreducible second-order vertex diagram. (left) Con-
ventional drawing with four open ends. (right) Internal representation with mea-
suring vertex (grey dotted box).

labelled U(τ), as shown in the example of Fig. 3.7.
Furthermore, we find it algorithmically convenient to work with completely

closed diagrams only, i.e. each line is connected to one start and one end slot of
a vertex and each vertex to four lines. As physical correlation function diagrams
do have open ends, we need to introduce neutral dummy lines which close the
open ends but do not change a diagram’s value. For self-energy diagrams, a single
dummy line is sufficient to connect the two open slots as shown in Fig. 3.7 for the
simple case of the second-order self-energy diagram. We call this dummy line the
measuring line because it carries the total momentum and time difference of the
self-energy, so during the measurement only the properties of this artificial line
must be inspected. Similarly, two-particle vertex diagrams are represented with
a neutral measuring vertex that is connected by dummy lines to the open ends
of the physical diagram (Fig. 3.8). Likewise, diagrams for four-point correlation
functions (as opposed to vertices) or the Bethe-Salpeter kernel can be directly
represented by simply changing all or two of the dummy lines attached to the
measuring vertex, respectively, to physical propagators.
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CWO

DWO

δI
M

Figure 3.9: The Create WOrms (CWO) update inserts a pair of worms on a random
slot, with excess momentum δ flowing from M (open red circle) to I (filled red
circle). Conversely, the Delete WOrms (DWO) update removes a pair of worms
located on the same slot.

3.2.3 Topology-preserving updates

As the diagrammatic configuration space is rather complex, a diverse set of up-
dates is required for an efficient and ergodic sampling. In the following we start
with the description of the simpler updates, which only touch the value of inter-
nal variables while leaving the diagram’s topology unchanged. Afterwards, the
topology-changing updates will be discussed.

All the described updates are local in the sense that each operation only changes
few elements of the configuration. This property is crucial in order to prevent van-
ishing acceptance rates and for computational efficiency, but not straight forward
to obtain in momentum space, where the momentum on a single line cannot be
changed without violating momentum conservation. In the spirit of the worm algo-
rithm [108], we therefore enlarge the configuration space to unphysical diagrams,
which contain a violation of momentum conservation at two distinct locations.
These locations are called the two worms, traditionally named Ira (I) and Masha
(M). The pair of worms is created by locally introducing an excess momentum δ,
which can be thought of as flowing fromM to I through a virtual line. Moving a
worm along a propagator or interaction line hence changes the line’s momentum
by δ. The worms can annihilate when they meet again, restoring momentum con-
servation. As long as the worms are present, the diagram is unphysical and not
included in any measurements.

[CWO/DWO] Create/Delete the WOrms

The simplest pair of updates creates transitions between the physical and the worm
sector without otherwise changing the diagram configuration. In detail, if there
is no worm yet, CWO chooses a random slot of a random vertex and a random
excess momentum δ ∼ Pδ. If the configuration is already in the worm sector,
the update is trivially rejected. For simplicity, the momentum is drawn from a
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k
δ

MWL

k + δ δ

Figure 3.10: The Move Worm along Line (MWL) update moves one worm along
the adjacent propagator line, changing the line’s momentum by ±δ.

uniform distribution in the Brillouin zone Pδ = U([−π, π)d). For a diagram with
Nv four-point vertices, the proposal probability is PCWO = 2Pδd

dδ/4Nv, where
the factor of two has a rather subtle reason: The worms are interchangeable, in
the sense that exchanging the positions I ↔ M and at the same time inverting
the excess momentum δ → −δ creates an equivalent configuration. Hence, the
actual number of possible configurations is halved, explaining the factor of two.
The converse update, DWO, is even simpler: If the worms exist and occupy the
same slot, they are removed. Otherwise, the update is trivially rejected. The
proposal probability for an allowed DWO update is therefore trivial PDWO =
1. We associate the worms’ presence with a weight factor Cw in order to tune
the ratio between physical and unphysical diagrams. Furthermore, due to the
creation of worms with continuously distributed momenta δ, the Monte Carlo
process implicitly samples the integral over all possible worm momenta, i.e. the
unphysical diagram represents an integrand with one more infinitesimal ddδ, which
cancels the infinitesimal proposal probability p(δ) = Pδd

dδ. Taking the pieces
together, we arrive at an acceptance ratio

RCWO =
ACWO

ADWO

=
PDWO

PCWO

Cwddδ =
2Nv

Pδ
Cw. (3.37)

Choosing a weight factor Cw(N) = (2π)−d/(4N), which depends on the diagram
order N , allows for efficient transitions between the physical and worm sectors
and a reasonable frequency of physical diagrams in the Markov chain. Specifically,
with this choice about 50% of the possible CWO updates and all possible DWO
updates are accepted, and the simulation typically stays approximately 90% of the
time in the worm sector.

[MWL] Move Worm along propagator Line

Once a pair of worms is present, each can be moved in three possible directions
from its current slot: along the adjacent propagator line, or between vertically or
horizontally neighbouring positions within the same four-point vertex. We realize
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V (q) δ MWV V (q + δ) δ

Figure 3.11: The Move Worm Vertically (MWV) update moves one worm be-
tween vertical neighbour slots of the same four-point vertex, changing the vertex’s
momentum by ±δ.

each of these possibilities with a separate update. The first one, MWL, illustrated
in Fig. 3.10, moves a worm along the propagator line ending at its current slot and
changes the line’s momentum k → k′ = k + swsdδ. The sign of the momentum
change depends on which worm is moved and on the movement direction compared
to the line’s direction. We define sw = +1 (−1) when the update moves I (M), and
sd = +1 (−1) when the worm moves with (against) the direction of the line. The
only freedom the update has is choosing which of the two worms is to be moved,
hence the proposal probability P = 1/2, which is, however, cancelled by the reverse
update, such that the acceptance ratio is simply given by the propagator’s value
with old and new momentum

RMWL =
AMWL

A′MWL

=
P ′MWL

PMWL

G(k′)

G(k)
=
G(k′)

G(k)
. (3.38)

Note that the value of the line G will depend, among other parts of the local
configuration, on the line’s type. For a dummy line, e.g., both the old and the new
value will be one, such that the update is always accepted when the worms exist.

[MWV] Move Worm Vertically

Next, the MWV update (Fig. 3.11) moves one worm between vertical neighbour
slots of the same four-point vertex. The vertex’s momentum, defined to flow from
the top to the bottom, is changed to q → q′ = q + swsdδ, with the worm sign sw
defined as before and the direction sign sd = +1 (−1) for a downwards (upwards)
move. As with the MWL update, the proposal probability P = 1/2 cancels, giving
the simple acceptance ratio

RMWV =
AMWV

A′MWV

=
V (q′)

V (q)
. (3.39)
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δ

MWH

δ

Figure 3.12: The Move Worm Horizontally (MWH) update moves one worm be-
tween horizontal neighbour slots of the same four-point vertex.

For the bare Hubbard interaction, V (q) = U , the vertex is momentum-indepen-
dent, such that RMWV = 1, the update is always accepted in the worm sector and
trivially rejected in the physical sector.

[MWH] Move Worm Horizontally

The MWH update (Fig. 3.12), finally, moves one worm between horizontal neigh-
bour slots of the same four-point vertex. As we have not implemented diagrams
with vertices that depend on all three independent momenta, this update is usually
always accepted when the worms are present. The only exception is the computa-
tion of the vertex function for fixed total momentum. In this case, the diagram is
initialized with the desired momentum and the worms are never allowed to cross
the measuring vertex in horizontal direction, i.e. the MWH update is always re-
jected for the measuring vertex, when it would change the four-point diagram’s
total momentum. This procedure allows for an efficient sampling of the vertex
function’s configuration space under the fixed momentum constraint.

Note that for the simulation of vertices in the particle-hole channel this re-
quires the additional provision that the MWV update needs to connect each of the
measuring vertex’s incoming slots with one of the outgoing ones, in contrast to our
usual convention of having the in-slots on the left and out-slots on the right-hand
side. Otherwise, the MWV update would change the diagram’s total momentum,
too.
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↓ k

↑ k′

δ
AIN

RIN

U(δ)

↓ k + δ

↑ k′

↓ k

↑ k′ + δ

Figure 3.13: The Add INteraction (AIN) update inserts an interaction vertex into
lines adjacent to the worms, absorbing the worms’ excess momentum δ. Con-
versely, the Remove INteraction (RIN) update deletes an interaction, inserting a
pair of worms to compensate for the resulting momentum mismatch.

3.2.4 Topology-changing updates

[AIN/RIN] Add/Remove INteraction vertex

The adding and removal of interaction vertices is obviously crucial for the sampling
of different diagram orders, but also provides a very efficient way to produce inde-
pendent configurations: After a few accepted AIN/RIN updates, most momenta
and times in the diagram have changed. As this pair of updates is more complex
than the ones previously described, we first introduce the simplest version and
defer the discussion of some optimizations, which increase sampling efficiency, to
Sections 3.2.6–3.2.8. The removal of an interaction (RIN) is only allowed in the
physical sector, i.e. when no worms are present; otherwise it is trivially rejected.
Then, the update randomly chooses one of the diagram’s interaction vertices and
removes the vertex together with the attached four lines, leaving four unconnected
slots, which now need to be rewired. As we consider a model with pure on-site
interactions and spin conservation, two of the dangling slots will have spin label
↑ and the other two ↓. Hence, the slots with matching spin labels are connected
with new propagator lines. In general, the interaction has transferred a momen-
tum q from the ↓ line to the ↑ line, so its removal causes a violation of momentum
conservation. This is accounted for by creating along with the new lines a pair of
worms that compensate for the excess momentum q. Here, a choice can be made
for each worm whether it is inserted at the start or end of the respective line. We
choose between the four possible configurations with equal probability by drawing
a random integer ∼ U({0, . . . , 3}). Which of the worms is placed on which line
does not matter due to their interchangeability, so for simplicity we always place
M on the upper and I on the lower line, such that the excess momentum is iden-
tical to the removed vertex’s momentum δ = q. (Recall that, by convention, δ
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flows fromM to I.) In summary, the proposal probability is PRIN = 1/4N , due
to the selection among N interaction vertices and four worm configurations.

Let us now turn to the converse addition of an interaction, which is only allowed
when a pair of worms is present and occupies slots with different spin labels. In
the following discussion we assume I to be placed on an ↑ slot and M on a ↓
slot, which can always be obtained by an exchange of the worms. After deleting
the adjacent propagator lines, a new interaction vertex needs to be created and
connected by four new lines. The momentum through the new interaction q = δ
is set to the excess momentum previously associated with the worms, such that
the worms can be deleted and the momentum for all four lines is determined by
momentum conservation. Only the time for the new interaction needs to be drawn
from some distribution τ ∼ Pτ . While a uniform distribution Pτ = U([0, β))
works, it becomes rather inefficient at low temperatures; Section 3.2.7 presents
a more efficient choice. All in all, we arrive at the simple proposal probability
PAIN = Pτdτ .

Next to the proposal probabilities, the acceptance ratio is determined by the
values of the old and new diagram configurations. Firstly, the AIN update removes
two propagator lines with value Gold

0 Gold
1 and adds an interaction and four propaga-

tors U
∏3

i=0G
new
i . Secondly, the diagrammatic rules associate a factor (−1)N and

an integral measure
∏N

i=1 ddqidτi/(2π)d with diagram order N , i.e. the transition
N → N + 1 implies a factor −ddqidτi/(2π)d . Lastly, the removal of the worms
incurs a contribution of 1/Cw(N)ddδ to the weight ratio. Thus, we arrive at the
acceptance ratio

RAIN =
AAIN
ARIN

=
PRIN
PAIN

wnew

wold

=
1/4N

Pτdτ
× −U(

∏3
i=0G

new
i )ddq dτ/(2π)d

Gold
0 Gold

1 Cw(N)ddδ

= − U
∏3

i=0G
new
i

4N(2π)dPτCw(N)Gold
0 Gold

1

. (3.40)

The implementation of these updates needs to exercise some care in the han-
dling of dummy lines in order to prevent the creation of invalid diagrams. For
self-energy diagrams, the measuring line must not be deleted during the RIN up-
date and, conversely, the AIN update into the measuring line must produce a
diagram with exactly one measuring line. The simplest approach without detailed
balance violations simply disallows the removal of the interaction at which the
measuring line ends (but not its start), such that the AIN update can always in-
sert the interaction to the left of the measuring line. For vertex function diagrams,
care needs to be taken to always produce diagrams with the correct configuration
of dummy lines attached to the measuring vertex.
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Figure 3.14: The Reconnect Worm Lines (RWL) update reconnects the propagator
lines starting or ending at the worms’ positions. In this example, the new excess
momentum is δ′ = δ + k − k′.

[RWL] Reconnect Worm Lines

It is easy to see that the previously described adding and removal of interaction
vertices does not change the number of propagator loops. A further essential
process for the ergodic sampling of diagram topologies is therefore the cutting and
reconnecting of propagator lines. As a reconnection would generally result in a
violation of momentum conservation, we only propose such changes at the locations
of an existing pair of worms, where the momentum change can be compensated by
adjusting the worms’ excess momentum. In detail, our RWL update, illustrated
in Fig. 3.14, is only allowed when the worms exist and occupy either both the
start or both the end of propagator lines with identical spin labels. Otherwise
the update is trivially rejected. The lines originating or ending at I and M are
then detached from these slots and attached to the other worm’s slot, respectively.
Afterwards, the worm momentum needs to be changed by the difference between
the momenta of the two propagators δ → δ′ = δ + sd(k − k′), where k (k′)
denotes the momentum of the line initially connected to M (I). The sign sd of
the momentum difference is +1 when the worms are at the start and −1 when they
are at the end of the propagators. With the proposal probabilities for both moves
equalling unity, the acceptance ratio is simply given by the ratio of the reconnected
propagators’ old and new values and the change to the diagram’s (−1)nL prefactor.
A moment of thought reveals that the update either merges two fermion loops into
one or splits a single loop into two separate loops. Hence the number of fermion
loops nL always changes by exactly one and the total acceptance ratio is

RRWL =
ARWL

ARWL′
= −G

new
0 Gnew

1

Gold
0 Gold

1

. (3.41)
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3.2.5 Optional updates

While the set of updates presented up to this point is sufficient for ergodic sampling
of typical diagrammatic one- and two-particle quantities, additional updates may
be considered, either to improve sampling efficiency or to facilitate debugging. In
the following we mention a few updates we have implemented.

[SMP] Swap Measuring Propagator

A simple and efficient update, which only applies to self-energy diagrams, is the
swapping of the measuring propagator with any physical propagator in the dia-
gram. If the simultaneous sampling of the self-energy for different spins is desired,
this update is actually required in order to change the diagram’s spin. As the pro-
posal probability of a swap cancels with the reverse swap and the diagram order
and number of fermion loops are left unchanged the acceptance ratio is just the
restored physical propagator divided by the propagator that is turned into the new
measuring propagator

RSMP =
ASMP

ASMP ′
=
Gnew

Gold . (3.42)

[MIT] Move Interaction vertex in Time

Changing the time of an interaction vertex is straight forward. A random inter-
action in the diagram is chosen together with a new time from some distribution
τ ∼ Pτ . With the interaction’s value being independent of the time, the change
in the diagram’s value is given by the adjacent propagators only. Using the time
distribution of Section 3.2.7 this update can be made rejection-free. However, the
recomputation of four propagators tends to be computationally rather expensive.

[AIW/RIW] Add/Remove Interaction vertex while keeping the Worm

An intriguing reason for the introduction of an overcomplete set of updates is
the detection and identification of possible detailed balance violations, which in
general are rather hard to diagnose. With a minimal set of updates, a bug in the
determination of an update’s acceptance probability, e.g., will typically lead to the
sampling of different configurations with wrong weights, and hence cause wrong
results, without leaving a trace detectable during the execution of the simulation.
If, in contrast, two configurations are connected by different sets of updates, a
wrong acceptance probability will in general lead to a net flux along a cycle of
updates, which is easily seen by comparing the number of accepted moves for
conjugate updates.
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Figure 3.15: Schematic view of three configurations connected by a cycle of up-
dates. cpN is a physical diagram of order N , cwN the corresponding unphysical
diagram with a pair of worms, whereas cwN−1 is an unphysical diagram which can
be created from either of the others by the removal of an interaction vertex.

Specifically, we have implemented an alternative version of the add/remove
pair of updates, which operates fully in the worm sector. In contrast to the AIN
update, the AIW update inserts an interaction vertex with random momentum
q and changes the worms’ excess momentum δ → δ − q. Conversely, the RIW
update can remove an interaction vertex that is connected to both worms via a
propagator line. Consequently, we have created cycles of configurations connected
by subsequent RIN→ AIW→ DWO updates (or, in the reverse direction CWO→
RIW→ AIN), as illustrated in Fig. 3.15. Comparing the acceptance rates of, e.g.,
the AIN and RIN updates, we therefore have a sensitive tool for detecting detailed
balance violations for the updates with the more complex acceptance ratios. Note
that for this purpose the AIW and RIW do not need to be very efficient or have very
large acceptance rates. It is therefore worthwhile to go for the simplest possible
implementation, which increases the chances of catching possible problems with
the optimized AIN/RIN updates. For production runs these updates can then be
proposed with a low probability or disabled altogether.

3.2.6 Suppression of disconnected and tadpole diagrams

Disconnected diagrams

A few of the described updates could potentially split a diagram into disconnected
pieces. As we are generally interested in connected diagrammatic quantities, dis-
connected diagrams should not contribute to any measurement, and are ideally
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Figure 3.16: Creation of disconnected diagrams. (a) Two-point (self-energy) di-
agram with a disconnected free-energy subgraph (green) as it would be created,
e.g., by removing the last interaction vertex connecting the two subgraphs. Due to
momentum conservation, there can be no excess momentum in the disconnected
part. (b) Four-point (vertex function) diagram consisting of two disconnected self-
energy parts. Finite excess momenta are possible due to differences between the
in- and out-going momentum of each subgraph.

never created, except when needed as normalization diagram. Most occurrences of
disconnected diagrams can be suppressed by imposing simple local restrictions in
the updates that are capable of removing the connections between subdiagrams;
these are the reconnection of propagator lines and the removal of interaction ver-
tices. The key idea for detecting pathological topologies without an expensive
check of the full diagram topology lies in a clever use of momentum conservation.
Discussing the simpler case of self-energy diagrams first, it is clear that a discon-
nected diagram will always consist of a connected self-energy subgraph with two
open ends, and one or more completely closed subgraphs (free-energy diagrams).
As each subgraph needs to satisfy momentum conservation separately, a single
new interaction vertex between two hitherto disconnected parts could not transfer
any momentum. Conversely, any interaction with non-zero momentum transfer
can be safely removed without creating a disconnected diagram. We hence reject
any RIN (RIW) update when the vertex’s momentum (sum of vertex and worm
momenta) vanishes. Strictly speaking, this procedure violates detailed balance
because the zero momentum might be created by pure chance. This chance is,
however, infinitesimal, or, more precisely, determined by the resolution of the in-
ternal representation of momenta, which can be checked by logging occurrences
of vanishing momentum transfers in the AIN/AIW updates. Similarly, the RWL
update would create a disconnected diagram when reconnecting the only two prop-
agator lines joining two otherwise disconnected subgraphs. This would leave one
worm in each of the disconnected subgraphs, as sketched in Fig. 3.16(a), which
is again only possible when the excess momentum flowing from M to I is zero.
Hence, this scenario is easily detected and rejected as well.

With this approach, the self-energy can be efficiently sampled without ever
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k k

Figure 3.17: Schematic self-energy diagram with a bare tadpole insertion.

creating disconnected pieces. The case is a bit more complex for the sampling of
four-point vertices. While the described implementation still suppresses the cre-
ation of free-energy subdiagrams, which constitute the majority of disconnected
diagrams, there are configurations consisting of two separate self-energy diagrams,
each having two open ends. As sketched in Fig. 3.16(b), this situation is slightly
less easy to detect because an arbitrary momentum can flow between the two sub-
graphs. Note that, although the worms in the sketched scenario are created in
disconnected subgraphs, they can move between the incoming or outgoing open
ends via the measuring vertex, and hence ultimately annihilate and create a “phys-
ical” disconnected diagram, where the incoming momentum equals the outgoing
one in each subgraph. We allow these diagrams to be created and only filter them
out during the measurement. In practice, it turns out that these disconnected
diagrams only occur rarely in the sampling process, in the sense that the fraction
of disconnected configurations among all diagrams without a worm is typically on
the order of one percent.

Tadpole diagrams

Another class of diagrams that are routinely suppressed are those with so-called
tadpoles, i.e. self-energy insertions on a propagator line which consist of a single
interaction line ending in a propagator loop with no other connection to the dia-
gram, sketched in Fig. 3.17. As the propagator loop closing on itself is the spin
density

∫
ddk Gσ(k, τ = 0−) = nσ, tadpoles are the diagrammatic equivalent of the

Hartree term, Unσ, which in general constitutes a large, but trivial, part of the
Hubbard model’s self-energy. Because of the Hartree term’s large value, an expan-
sion in terms of bare propagators would typically need to include many tadpole
insertions before achieving convergence, and hence require large diagram orders.
However, as the tadpoles do not carry any momentum or frequency dependence,
they can be accounted for by a simple shift of the chemical potential. We can,
therefore, implicitly dress all propagators with tadpole insertions by carrying out
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simulations at a modified (possibly spin-dependent) chemical potential

µ′σ = µσ + Un−σ. (3.43)

Here, nσ are the interacting spin densities, such that all tadpole insertions, also
those with dressed propagator loops, are implicitly included and need not (and
must not!) be sampled explicitly. Note that (3.43) implies that the physical chem-
ical potential µ is defined implicitly, i.e. only after a simulation has been finished
and the interacting density is known, it can be determined what the correct value
of µ is. Simulations at a given chemical potential therefore require an iterative
search for the corresponding µ′. In practice, this is not a problem, on the one
hand, because simulations for fixed density are more common, which would re-
quire an iterative search for the corresponding chemical potential anyway, and,
on the other hand, because usually only few iterations are required. With the
following scheme, we use the previous iteration’s self-energy estimate in order to
compute the chemical potential for the next iteration:

1. initialize Σ(0) = 0

2. define propagator G(i)(µ′) = 1/[iω + µ′ − ε− Σ(i)]

3. define density n(i)(µ′) =
∫

ddk G(k, τ = 0−)

4. solve n(i)(µ′) = ntarget for µ′

5. calculate Σ(i+1) by running DiagMC with µ′

6. go to step 2, unless |n(i)(µ′)− ntarget| is satisfactory small

Step 4 uses a numeric standard root solver. The first iterations can use significantly
less Monte Carlo steps than the final iteration, firstly, because density estimation
is rather robust with respect to stochastic errors in the self-energy, and, secondly,
because a rough self-energy estimate is already good enough to improve the µ′
guess. In practice, we routinely double the runtime in each iteration, such that
the total compute time over all iterations is less than twice the effort spent on the
final simulation, and find that 3–5 iterations are usually enough to find a density
indistinguishable from the target density within error bars.

Coming back to the suppression of unwanted diagrams during the sampling
process, we need to exclude all diagrams with tadpole insertions, whether the loops
are bare or dressed, because they have been implicitly included in the chemical
potential. It is easy to avoid the creation of bare tadpoles, by directly rejecting any
removal of an interaction line (RIN/RIW) or reconnection of propagators (RWL)
that would cause a propagator to start and end at the same interaction. Special
care may have to be taken to explicitly allow a possible normalization diagram with

62



Diagrammatic Monte Carlo

τ

τ

τ0

τ3τ1

τ2k0

k1

k2

k3

0 τ0 τ1 τ2 τ3 β

τ

0.00

0.01

0.02

0.03

G
(~ k

0
,τ
−
τ 0

)
G

(~ k
3
,τ

3
−
τ)

Figure 3.18: (left:) The time τ of an interaction influences the values of the four
adjacent propagators. (right:) Product of the four propagators depending on τ ,
for an arbitrary set of times τi and momenta ki and moderate inverse temperature
βD = 4.

a tadpole, such as those of Fig. 3.5 (a) and (c). The creation of bold tadpoles,
in contrast, is less easy to detect with a local check. Therefore, we allow such
diagrams to be created, but filter them out during the measurements.

3.2.7 Optimized proposal distribution for vertex time

At low temperature, the propagator G(k, τ) is in general strongly peaked. For
momenta above or below the Fermi surface, it decays exponentially from the time
differences τ = 0 and ±β. Choosing times for new or modified interaction ver-
tices from a uniform distribution will, therefore, lead to very low acceptance rates
in low-temperature simulations. As the exponential decay of the propagators is
known analytically, at least for free propagators, this issue can be resolved com-
pletely by choosing times from the correct exponential distribution. This is only
complicated by the fact that in general four different propagators depend on the
time τ of a single interaction vertex, as illustrated in Fig. 3.18. For fixed times τi
of the neighbouring vertices and fixed momenta ki, each propagator contributes
an exponential in τ and a jump of ±1 at the value τ = τi where the time difference
τ − τi changes sign. Hence, the product of the four propagators is an exponential
cs exp(−ξτ), with piecewise constant prefactors cs and the rate ξ = ξ0 +ξ1−ξ2−ξ3

given the sum of dispersions, on the five segments s of the interval τ ∈ [0, β) di-
vided by the neighbor vertices’ sorted times τi. The choosing of a new time is
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therefore a two-stage process: First, one of the segments is drawn from a discrete
distribution with weights

ws =
1

N

∫ τs+1

τs

dτ G(k0, τ − τ0) · · ·G(k3, τ3 − τ), (3.44)

and normalization constant N =
∑

sws. Second, a time inside that segment τ ∈
[τs, τs+1) is drawn from a truncated exponential distribution with rate parameter
ξ. This is readily implemented with a standard random variable transformation
[109, chap. 1.2].

Robust exponential evaluation at low temperature

A technical issue worth pointing out is the numerical evaluation of the analytical
expression for the imaginary-time propagator

G(k, τ) =

{
e−τξ

1+eβξ
, if τ ≤ 0

− e−τξ
1+e−βξ , if τ > 0,

(3.45)

where ξ = ε(k) − µ, as usual. For |βξ � 1|, the exponentials can numerically
evaluate to infinity, possibly resulting in the result NaN5 for the propagator. This
problem is best avoided by factoring the largest exponent out of the expression.
Depending on the sign of τ and ξk, our implementation, therefore, evaluates one
of four different expressions

G(k, τ) =





e−τξ/
(
1 + eβξ

)
, if τ ≤ 0 and ξ ≤ 0

e−(τ+β)ξ/
(
1 + e−βξ

)
, if τ ≤ 0 and ξ > 0

−e−(τ−β)ξ/
(
1 + eβξ

)
, if τ > 0 and ξ ≤ 0

−e−τξ/
(
1 + e−βξ

)
, if τ > 0 and ξ > 0,

(3.46)

such that all exponentials have negative arguments and the propagator always
evaluates to values in the range G ∈ [0, 1]. Finite numerical precision can only
result in propagator values smaller than the machine precision rounded down to
zero. Similar reasoning is straightforwardly applied to the drawing of exponentially
distributed times and the calculation of weights for the different time segments in
the proposal of a vertex time.

5“Not a Number:” a numerically undefined value resulting from operations like 0/0 or
Inf/Inf.
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3.2.8 Autocorrelations and order reweighting

As with any Markov chain Monte Carlo method, it is crucial to estimate and con-
trol autocorrelation effects. In the worst case, updates could be so inefficient that
the autocorrelation time is on the order of or longer than the length of the simu-
lation, and no configurations independent of the initial state would be generated,
rendering any mean and error estimates invalid. We estimate autocorrelation ef-
fects in two ways. Firstly, a binning analysis6 on the most important observables,
typically the diagrammatic quantities at the lowest spatial and Matsubara fre-
quencies, gives a statistical estimate of the autocorrelation time. Secondly, in each
simulation we record the average time needed to go from the normalization dia-
gram to a configuration of the largest allowed order and back. As the first-order
normalization diagram typically does not have any relevant free parameters, it
is clear that two complex configurations are independent of each other when the
Monte Carlo process has gone through the trivial configuration in between. Using
equilibration times, i.e. an initial number of Monte Carlo steps without performing
any measurements, much larger than this mean round-trip time, we can be con-
fident that our simulations generate statistically independent samples. Luckily,
typical autocorrelation times are rather short with the described updates. Still,
they are worth optimizing because any reduction of the autocorrelation time allows
a proportional reduction of the total simulation time or, conversely, yields better
statistics for the same computational effort.

In addition to the optimization of update proposals for better acceptance rates,
as described, e.g., in the previous section, a reweighting procedure can improve
the efficiency of the sampling process. Reweighting describes the process of modi-
fying the weights of specific configurations πc → π′c = wcπc, such that they appear
more (wc > 1) or less (wc < 1) often in the Markov chain. This can always be
done without changing expectation values, provided that the measurements com-
pensate for the added weight by recording the reduced contribution O(c)/wc of
the configuration c to an observable O: the configuration appears more/less often,
but each occurrence is proportionally less/more important. As reasoned above,
visiting low-order diagrams is an efficient way to produce independent configura-
tions. But, as the number of diagrams grows quickly with diagram order, and the
individual large-order diagram can have a significant value—even if the sum over
all large-order diagrams vanishes due to sign cancellations—the sampling process
may stay most of the time at the largest order and reject most proposals to re-
move an interaction. Associating a larger weight with lower diagram orders can
therefore improve mobility of the sampling process between orders and hence re-
duce autocorrelation times. Note that the suppression of a given order can lead to

6Ref. [109, chap. 1.3] explains the procedure under the name data bunching. We use the
implementation provided by the ALPS libraries [4].
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larger stochastic errors for this order if the fact that less samples are collected is
not (over)compensated by reduced correlations. Our default approach is to auto-
matically adjust the order-dependent weights such that no single order is sampled
less than 1% or more than 50% of the time. This rather conservative reweighting
scheme would at worst increase an order’s errors by 40% while ensuring reason-
able transition rates between orders.7 The dynamic adjustment of the weights
can be conveniently integrated into the chemical potential iteration scheme. Al-
ternatively, it could be performed during the equilibration period, but this would
require communication between independent Markov chains.

3.3 Measurements

After accepting or rejecting an update, the new configuration needs to be mea-
sured. To this end, the current diagram’s external momenta and times need to
be projected onto a suitable basis and added to the corresponding accumulators.
As both momenta and times are continuous, the storage of the sampled function
necessarily implies a truncation to a finite basis. The choice of basis is crucial
for efficient resource usage (of both memory and CPU time for the measurement)
while keeping systematic errors due to the finite basis controlled and small. This is
especially true for the measurement of vertex functions, which, even after fixing the
total momentum and frequency, depend on 2(d+ 1) independent variables. In this
section we discuss the use of symmetries for an efficient storage of the self-energy
and two-particle vertices and describe some optimizations for the measurement
process. However, before a configuration is added to any accumulators, it needs
to be checked for reducibility.

3.3.1 Reducibility tests

We already encountered some topologies that may be generated but should not
be included in the result in Sec. 3.2.6, namely disconnected and tadpole diagrams.
While the creation of disconnected self-energy diagrams and bare tadpole inser-
tions can be easily avoided by appropriate constraints on the updates, disconnected
vertex diagrams of the type sketched in Fig. 3.16 (b) and dressed tadpole inser-
tions can still appear and need to be identified during the measurement. Further,
one-particle reducible (improper) self-energy diagrams and two-particle reducible
vertex diagrams need to be filtered out. An identification of reducible topologies,

7The worst case would be realized if autocorrelation effects were negligible and all orders but
the largest had vanishing variance, such that nearly all sampling effort should be concentrated
on the latter. Then, the described reweighting scheme would collect half as many samples as the
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(a)

k k
k

(b) k

Q− k

k′

Q− k′

k1

Q− k1

Figure 3.19: (a) One-particle reducible (improper) self-energy diagram. (b) Two-
particle reducible pairing vertex diagram. Red, wiggly lines cut through propaga-
tors that connect irreducible subdiagrams.

like the ones sketched in Fig. 3.19, by checking a graph’s connectivity would usu-
ally require many graph traversals or similarly expensive operations, which are to
be avoided in production runs. Rather, the general strategy makes use of the im-
plications of momentum conservation for these topologies. This constraint leads to
the exact matching of the momenta flowing through lines that connect otherwise
disconnected subgraphs. Thus, reducible diagrams are quickly identified by checks
on a table of the lines’ momenta. Of course, configurations where truly indepen-
dent momenta agree exactly do exist, but these form a set of measure zero, so their
exclusion does not change the results. We quickly list the marker properties for
different reducible topologies:

. Disconnected vertex diagram (Fig. 3.16 (b)): The external in- and outgoing
momenta agree pairwise.

. Tadpole insertion: An interaction line transfers zero momentum.

. Improper self-energy diagram (Fig. 3.19 (a)): A propagator line transfers the
diagram’s total momentum.

. Two-particle reducible particle-particle vertex diagram (Fig. 3.19 (b)): There
is a pair of propagator lines whose combined momentum equals the diagram’s
total momentum. Note that not all propagator pairs need to be checked, but
only the fermions that enter the diagram on the left—because these need to
leave it on the right and cannot end in the left subdiagram.

. Horizontally reducible particle-hole vertex diagram: There is a pair of prop-
agator lines whose momentum difference equals the diagram’s total momen-
tum: k1−k2 = Q. Special care needs to be taken when the total momentum
Q = 0: Two propagators may have the same momentum just because they
are connected by a self-energy insertion.

. Self-energy insertion: Two propagator lines have equal momentum. This

optimal one, resulting in a factor of
√
2 on the error.
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is only relevant in self-consistent simulations where the diagram’s propaga-
tors are fully dressed. Then, any explicit self-energy insertions need to be
suppressed in order to avoid double-counting.

3.3.2 Symmetry classification

The use of symmetries is essential both for efficiency and for the characterization
of observed ordering instabilities. The present section summarizes some important
findings from group theory, which will be used in later sections. Extensive intro-
ductions and proofs for the subject can be found in text books, e.g. Refs. [110, 111].
We concentrate on finite symmetry groups; then all representations can be chosen
unitary, which we implicitly assume to be the case. A finite symmetry group
G contains g operations R ∈ G, e.g. the rotations and reflections of a point
group. We adopt a somewhat sloppy notation where R symbolizes not only the
abstract group element but also the associated transformation (e.g. the rotation
R(x, y)T = (y,−x)T ) and the corresponding variable transformation of a function
Rψ(x) = ψ(R−1x). Given any function ψ(x), the different symmetry operations
R ∈ G generate g functions Rψ, some of which may be linearly dependent, i.e.
they span an n-dimensional space with n ≤ g. Their orthogonalization yields a
basis ψi(x), i = 1, . . . , n. All generated functions can be expressed in terms of this
basis Rψ(x) =

∑
j cij(R)ψi(x), and the symmetry operations correspond to linear

transformations of the basis

Rψi(x) =
∑

j

ψj(x)Dji(R). (3.47)

The matrices Dij(R) form a representation of the group. A representation may be
reducible, i.e. there may be a similarity transformation S bringing all matrices to
the same block-diagonal form

SD(R)S−1 =




D(1)(R)
D(2)(R)

. . .
D(k)(R)


 , (3.48)

D ' D(1) ⊕D(2) · · · ⊕D(k), (3.49)

i.e. the µth block in each matrix D(R) has the same dimension dµ, such that
the space of functions decomposes into independent subspaces whose members
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transform only among themselves

ψi(x) =
k∑

µ=1

dµ∑

j=1

φ
(µ)
j (x), (3.50)

Rφ
(µ)
i =

dµ∑

j=1

φ
(µ)
j D

(µ)
ji . (3.51)

For a finite group there is only a finite set (up to similarity transformations) of pos-
sible irreducible representations (irreps), which are tabulated for all point groups.
An important characteristic of a representation are the traces of the matrices rep-
resenting the operations R, the characters

χ(µ)(R) =
∑

i

D
(µ)
ii (R). (3.52)

Given an arbitrary set of basis functions {ψi(x)}, we can always transform to
a new basis φ(µ)

si where each function transforms according to ith row of the µth
irrep:

Rφ
(µ)
si =

dµ∑

j=1

φ
(µ)
sj D

(µ)
ji , (3.53)

with the index s differentiating between different sets of partner functions trans-
forming according to the same irrep. The transformation to such a symmetry-
adapted basis can be found by means of suitable projection operators. If the
representation matrices are available for all irreps, one can construct the operator

P̂
(µ)
i =

dµ
g

∑

R∈G
D

(µ)∗
ii (R)R, (3.54)

which yields, when applied to an arbitrary function ψ, a new function

ψ
(µ)
i =P̂

(µ)
i ψ(x), i = 1, . . . , dµ (3.55)

transforming according to the ith row of the µth irrep (or zero if no function with
the corresponding transformation behaviour is contained in ψ). If, on the other
hand, only a character table is available, the operator

P̂ (µ) =
dµ
g

∑

R∈G
χ(µ)∗(R)R (3.56)
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generates

ψ(µ)(x) = P̂ (µ)ψ(x) (3.57)

where ψ(µ) =
∑

i ψ
(µ)
i is a linear combination of functions belonging to different

rows of the µth irrep. Then, for multi-dimensional irreps the splitting into differ-
ent rows must be done manually if needed. As the projection operators fulfill a
completeness relation

∑

µ

P̂ (µ) = 1 =
∑

µ,i

P̂
(µ)
i , (3.58)

∑

µ

ψ(µ) =
∑

µ

dµ∑

i=1

ψ
(µ)
i = ψ, (3.59)

applying these projections to any basis one obtains a new basis of the same di-
mension, where the transformation behaviour of each basis function is given by
a specific irrep (or irrep row in the former case). This is immediately useful for
functions that are invariant under the symmetry group: only basis functions be-
longing to the trivial irrep (∀R : D(1)(R) = 1) need to be retained, and all other
coefficients must vanish.

Let us now consider the example of the vertex function for a fixed total four-
momentum, where there are two independent momenta Γ(k|k′). In general, given
basis functions φ(µ)

ai (k), we would project the vertex onto a Kronecker product
representation

Γ
(µ,ν)
ai,bj =

∫
dkdk′φ(µ)∗

ai (k)Γ(k|k′)φ(ν)
bj (k′) =

(
φ

(µ)
ai ,Γφ

(ν)
bj

)
(3.60)

However, when G is the group of operations that leave the vertex invariant

∀R ∈ G : RΓ(k|k′) = Γ(R−1k|R−1k′) = Γ(k|k′) (3.61)

the function ψ = Γφ transforms according to the same irrep row as φ:

ψ
(µ)
i (k) ≡

∫
dk′Γ(k|k′)φ(µ)

i (k′) (3.62)

Rψ
(µ)
i (k) =

∫
dk′Γ(R−1k|R−1k′)φ(µ)

i (R−1k′)

=
∑

j

(∫
dk′Γ(k|k′)φ(µ)

j (k′)

)
D

(µ)
ji (R) =

∑

j

ψ
(µ)
j (k)D

(µ)
ji (R) (3.63)
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Then, the theorem holds [110, chap. 6]

Γ
(µ,ν)
ai,bj =

(
φ

(µ)
ai , ψ

(ν)
bj

)
=

1

dµ

∑

l

(
φ

(µ)
al , ψ

(µ)
bl

)
δµ,νδi,j ≡ Γ

(µ,i)
ab , (3.64)

i.e. Γ decomposes into blocks for different irrep rows (µ, i). As different rows of
the same irrep produce degenerate eigenvalues:

Γϕ
(µ)
i = λϕ

(µ)
i =⇒ ∀R : R[Γϕ] =

∑

j

Γϕ
(µ)
j D

(µ)
ji = λ

∑

j

ϕ
(µ)
j D

(µ)
ji (3.65)

the Bethe-Salpeter eigenvalues are identical for different irrep rows and we gener-
ally only need to store data for one row.

A simple but instructive example is the case of inversion symmetry

IΓ(k|k′) = Γ(−k| − k′) = Γ(k|k′). (3.66)

Then, the vertex can be written in block form

Γ =

(
Γ(k|k′) Γ(k| − k′)

Γ(−k|k′) Γ(−k| − k′)

)
=

(
A B
B A

)
(3.67)

The symmetry group Ci has two elements, namely the identity E and the inversion
I, and two irreps: Ag, Au with g and u denominating even (gerade) and odd
(ungerade) symmetry, respectively. Then, the projection operators

P̂ (g/u) =
1

2
(E ± I) (3.68)

symmetrize the basis functions ψi(k) to

φ
(g/u)
i (k) =

1

2
(ψi(k) + ψi(−k)). (3.69)

In the symmetrized basis the vertex assumes a block-diagonal form

Γ =
1

2

(
1 1
1 −1

)(
A+B 0

0 A−B

)(
1 1
1 −1

)
' Γg ⊕ Γu (3.70)

with

Γg/u = A±B. (3.71)
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3.3.3 Vertex decomposition by spin and parity symmetry

Using various symmetries, the pairing vertex can be decomposed into smaller
blocks. This is not only crucial for speed of the measurement process and an
efficient storage of the results, but also allows for a detailed characterization and
comparison of different ordering instabilities. In the following we discuss fermionic
exchange, spin and parity symmetries for particle-particle and particle-hole ver-
tices. Further decomposition into the representations of the lattice’s point group
is treated afterwards.

Particle-particle pairing

The general particle-particle (pp) pairing vertex can be parameterized as

ΓQαβγδ(k|k′) =

(α, Q
2
+ k)

(β, Q
2
− k)

(γ, Q
2
+ k′)

(δ, Q
2
− k′)

(3.72)

with four external spins α, β, γ, δ, total four-momentum Q = (Ω,Q), and two inde-
pendent fermionic four-momenta k(′) = (ω(′),k(′)). Due to fermionic commutation
rules, the vertex is antisymmetric with respect to exchange of the ingoing or the
outgoing legs. With the momentum convention of (3.72), this antisymmetry reads

(F) : ΓQαβγδ(k|k′) = −ΓQβαγδ(−k|k′) = −ΓQαβδγ(k| − k′) = ΓQβαδγ(−k| − k′). (3.73)

We are only concerned with models that conserve the total spin; therefore, the
sum of spins must agree on the left and right hand side:

α + β = γ + δ, (3.74)

so the vertex always separates into three blocks

(Γαβγδ) =




Γ↑↑↑↑
Γ↑↓↑↓ Γ↑↓↓↑
Γ↓↑↑↓ Γ↓↑↓↑

Γ↓↓↓↓


 . (3.75)

Due to the exchange symmetry F , only one half of the rows and columns in each
block are actually linearly independent. The first and last block can be transformed
into a symmetrized block

Γtσ(k>|k′>) =
1

2

{
Γσσσσ(k|k′)− Γσσσσ(−k|k′)
− Γσσσσ(k| − k′) + Γσσσσ(−k| − k′)

}
, (3.76)
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where the > signs indicate that only one half of the four-momentum space is used—
e.g. only positive frequencies appear explicitly—and thus the block’s dimension is
halved. Note that there is an effective factor of two, which compensates for the
reduced dimension, because four equivalent terms are summed but the normaliza-
tion factor is 1/2. For the central block there is an important peculiarity: Each
of the four sub-blocks contains the same diagrams. For example, any diagram
contributing to Γ↑↓↑↓ also contributes to Γ↑↓↓↑, just with a flipped sign due to the
exchange of the outgoing legs. Solving the Bethe-Salpeter equation for the full
block would therefore result in a double counting of diagrams. This is best seen by
drawing the diagrams from the first few BSE iterations, for instance with a first-
order approximation for the irreducible vertex. Symmetrizing the central block
with an additional factor of 1/2 to compensate for the double counting results in a
matrix that is equivalent to one of the diagonal sub-blocks. In conclusion, we can
limit our attention to the three blocks Γt↑, Γt↓, and Γ↑↓↑↓. Blocks with different
spin assignments are conveniently computed in separate simulations and can also
be evaluated independently. Often, all physically relevant channels are contained
in a single block.

Until now, only exchange symmetry and spin conservation have been used.
Usually, there are additional symmetries. Firstly, spin inversion symmetry

S : ΓQαβγδ(k|k′) = ΓQ
ᾱβ̄γ̄δ̄

(k|k′) (3.77)

makes the two triplet channels Γt↑ = Γt↓ equal and decomposes the central block
Γ↑↓↑↓ ' Γs ⊕ Γt into a singlet and a triplet sector

Γs/t(k
>|k′>) =

1

2
{Γ↑↓↑↓(k|k′)∓ Γ↓↑↑↓(k|k′)∓ Γ↑↓↓↑(k|k′) + Γ↓↑↓↑(k|k′)} (3.78)

(F)
=

1

2
{Γ↑↓↑↓(k|k′)± Γ↑↓↑↓(−k|k′)± Γ↑↓↑↓(k| − k′) + Γ↑↓↑↓(−k| − k′)} , (3.79)

where the upper (lower) sign correspond to the singlet (triplet) sector. Secondly,
space inversion symmetry

Pr : ΓΩ,Q
αβγδ(ω,k|ω′,k′) = ΓΩ,−Q

αβγδ (ω,−k|ω′,−k′) (3.80)

is most useful when the total momentum is invariant, Q = −Q. On a hypercubic
lattice this is true for the center and the corners of the Brillouin zone. Then, the
vertex ΓQ ' ΓQg ⊕ ΓQu decomposes into even and odd sectors,

ΓQg/u(ω,k
>|ω′,k′>) =

1

2

{
ΓQ(ω,k|ω′,k′)± ΓQ(ω,−k|ω′,k′)
±ΓQ(ω,k|ω′,−k′) + ΓQ(ω,−k|ω′,−k′)

}
. (3.81)
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Furthermore, space inversion is usually only one of several point group elements;
then, each parity sector is further divided into blocks belonging to the different
irreducible representations with this parity. In practice, the vertex is split into spa-
tial symmetry sectors by projection onto a suitable symmetry-adapted momentum
basis, as discussed in the following section. With combined spin and space inver-
sion symmetry, every sector has well-defined spin, space, and frequency parities,
whose product must be negative

psprpω = −1, (3.82)

because their combined action corresponds to a fermion exchange (F). In this
case, the separation of singlet and triplet sectors is particularly simple: depending
on the spatial parity sector, the measurement just needs to record symmetric or
antisymmetric combinations of the Fourier factors exp(±iωτ) and exp(±iω′τ ′).

Particle-hole pairing

The parameterization of the particle-hole vertex is similar to the particle-particle
one

ΓQαβγδ(k|k′) =

(α, k + Q
2
)

(β, k − Q
2
)

(γ, k′ + Q
2
)

(δ, k′ − Q
2
)

(3.83)

and uses the same notation for spin and four-momentum labels as (3.72). When
considering the vertex for a specific total momentum and frequency, fermionic
exchange is typically not useful because it mixes the three independent four-
momenta:

ΓQαβγδ(k|k′) =− Γk
′−k
δβγα

(
k + k′ −Q

2

∣∣∣∣
k + k′ +Q

2

)

=− Γk−k
′

αγβδ

(
k + k′ +Q

2

∣∣∣∣
k + k′ −Q

2

)
= Γ−Qδγβα(k′|k). (3.84)

Spin conservation

α− β = γ − δ, (3.85)

in contrast, again separates the vertex into three blocks

(Γαβγδ) =




Γ↑↓↑↓
Γ↑↑↑↑ Γ↑↑↓↓
Γ↓↓↑↑ Γ↓↓↓↓

Γ↓↑↓↑


 =




ΓSz=+1

ΓSz=0

ΓSz=−1


 .

(3.86)
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In the presence of spin rotation symmetry

ΓQαβγδ(k|k′) = ΓQ
ᾱβ̄γ̄δ̄

(k|k′) (3.87)

the first and last block are again equal Γm+ ≡ Γ↑↓↑↓ = Γ↓↑↓↑ ≡ Γm− and the
central block ΓSz=0 ' Γc ⊕ Γm0 can be separated into the symmetric charge and
the antisymmetric magnetic sector

Γc/m0 =
1

2
{Γ↑↑↑↑ ± Γ↑↑↓↓ ± Γ↓↓↑↑ + Γ↓↓↓↓} = Γ↑↑↑↑ ± Γ↑↑↓↓. (3.88)

In this case only simulations for two different spin assignments, e.g. Γ↑↑↑↑ and Γ↑↑↓↓,
are needed for the complete description of charge and magnetic channels because all
three magnetic susceptibilities are related by symmetry χm+ = χm− = χm0 = 1

3
χm.

In contrast, in the absence of spin rotation symmetry simulations for the different
spin assignments are needed and in particular the Bethe-Salpeter equation needs
to be solved for the full Sz = 0 block. Finally, point group symmetry can again
be used for further splitting the vertex into spatial symmetry sectors whenever
the total momentum Q is invariant under some or all of the lattice’s point group
operations.

3.3.4 Symmetry-adapted momentum basis

The projection operator (3.54) can be used to adapt any set of basis functions to
a model’s point group symmetry. One could, for example, symmetrize a parti-
tion of the Brillouin zone into momentum bins. Instead, we choose to symmetrize
a plane wave basis exp(in · k) with integer vectors n ∈ Zd, whose coordinates
in practice are truncated at a maximum value |nµ| ≤ rmax. In other words, the
k-dependent quantity is transformed into real space, and each basis function is
located at a combination of sites related by point group symmetry. The projec-
tion operator only combines n-vectors of the same magnitude; therefore every basis
component directly corresponds to a fixed distance |n| from the origin. Irreducible
diagrammatic quantities often decay quickly at long distances, especially in higher-
dimensional systems [39, 42], so that the relevance of basis components decreases
with growing |n|. Sorting the components according to this parameter allows for
a straightforward check whether the cutoff rmax was chosen large enough. Note
that similar arguments form the basis of cluster-extensions to DMFT, which are
currently among the most successful approaches to strongly correlated systems.
However, these techniques are usually restricted to small cluster sizes by an expo-
nential scaling in the cluster radius rmax, such that convergence can often not be
achieved, whereas in our case the computational effort O(rdmax) routinely allows
for a large enough basis to capture all contributions that do not vanish within
stochastic error bounds.
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Figure 3.20: Examples of symmetrized real-space basis functions for the square
lattice: Red and blue circles indicate the positions of delta functions with positive
and negative prefactors, respectively. The lattice is represented by thin lines, its
origin by a black dot.

Symmetrized real-space basis for the square lattice

As an instructive example, we list the resulting basis functions for the square
lattice. Its point group D4h has four relevant one-dimensional irreducible repre-
sentations A1g, A2g, B1g, and B2g and one two-dimensional one, Eu.8 We use the
convention n = (n,m) and k = (x, y) and identify appropriate intervals for the
integers n and m in order to avoid double counting of basis functions. We list
the form of the basis functions in momentum space that is used for measuring
k-dependent quantities. The functions’ Fourier transforms are delta functions on
a set of lattice sites as illustrated in Fig. 3.20.

. A1g (s-wave):

φsnm = Nnm (cosnx · cosmy + cosmx · cosny) , 0 ≤ m ≤ n ≤ rmax,

with normalization constants N00 = 1/2, Nn0 = Nnn = 1, Nnm =
√

2.

. A2g (g-wave):

φgnm =
√

2 (sinnx · sinmy − sinmx · sinny) , 1 ≤ m < n ≤ rmax.

. B1g (dx2−y2-wave):

φ
dx2−y2
nm = Nnm (cosnx · cosmy − cosmx · cosny) , 0 ≤ m < n ≤ rmax,

with Nn0 = 1, Nnm =
√

2.

8For the purely two-dimensional lattice, space inversion is identical to the π rotation; therefore,
the representations with inverted parity A1u, . . . , Eg vanish.
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. B2g (dxy-wave):

φdxynm = Nnm (sinnx · sinmy + sinmx · sinny) , 1 ≤ m ≤ n ≤ rmax,

with Nnn = 1, Nnm =
√

2.

. Eu (p-wave):

φpxnm = Nnm sinmx · cosny, 0 ≤n ≤ rmax,

φpynm = Nnm sinmy · cosnx, 1 ≤m ≤ rmax,

with normalization constants Nn0 =
√

2, Nnn = Nnm = 2. The functions
φpxnm and φ

py
nm correspond to the different rows of the two-dimensional irre-

ducible representation: they transform into themselves (up to a sign) under
π rotations and reflections at the coordinate axes and into each other under
π/2 rotations and reflections at the coordinate diagonals.

In addition to the tetrahedral symmetry group D4h we have implemented appro-
priate basis functions for the cubic group Oh, the rectangular symmetry group
D2h, the inversion group Ci in two and three dimensions, and the trivial group C1

(i.e. the plain Fourier transform to real space).

Evaluation of trigonometric functions

Every measurement of a momentum-dependent quantity requires the evaluation
of all basis functions {φµa(k)} for the measured momentum k. As the application
of the projection operator P̂ (µ) to a plane wave exp(in · k) yields a combination
of plane waves with different n-vectors, the most straightforward implementation
would evaluate, in general, several exponential functions exp(in ·k) for each basis
function. The number of costly exponential evaluations can however be greatly re-
duced by rewriting the basis functions in terms of combinations of single-coordinate
functions cos(nkµ), sin(nkµ) for n = 0, 1, . . . , rmax, as done for the square lattice
basis listed above. Then, at most 2drmax trigonometric functions need to be eval-
uated once in a measurement, and all O(rdmax) basis functions can be computed
exactly using this table. Note this is different from tabulating cosx for arbitrary
arguments, which always involves a tradeoff between precision and performance
because a large table will lead to frequent CPU cache misses.

3.3.5 Buffered measurements

A naive implementation of the actual measurement routine is as straightforward
as it is inefficient. Especially for vertex functions with a large Matsubara and
momentum basis the time needed to record a single sample may completely dom-
inate over all other parts of the simulation. An efficient implementation of this
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seemingly simple task is therefore essential. We discuss the two common cases of
measuring (a) the self-energy and (b) a vertex function for fixed total momentum,
and start with the former.

Self-energy measurement

The problem is easily stated: The DiagMC simulation samples the self-energy
Σ(k, τ), i.e. it generates samples (si,ki, τ i) with a sign si = ±1 such that

Σ̄(k, τ) =
1

M

M−1∑

i=0

siδ(k − ki)δ(τ − τ i) (3.89)

is the self-energy up to a normalization factor. Each sample is projected onto
a Matsubara basis χin = exp(iωnτ

i), n = 0, . . . , Nf − 1, and a momentum basis
φia = φa(k

i), a = 0, . . . , Na − 1. At the end of the simulation we need the sample
sum

Σ̄a,n =
M−1∑

i=0

siφiaχ
i
n. (3.90)

The naive approach would implement this by adding the outer product φi⊗χi to
the accumulator matrix Σ̄ in each measurement. The outer product, however, is a
level-2 BLAS operation with a very low computational intensity [112], because it
performs only few arithmetic operations per number that is loaded from or stored
to memory: Both the number of arithmetic operations and the memory traffic per
measurement scale as O(NaNf ). As the accumulator matrix is typically too large
to be kept in the CPU cache, this implementation would be strongly bound by the
available memory bandwidth.

Instead, we store the vectors siφi and χi from a series of measurements in
buffer matrices

Xk
a = skφka, Y k

n = χkn. (3.91)

After a predefined number of measurements K, the buffer is flushed with a single
matrix-matrix multiplication

Σ̄← Σ̄ +X · Y T , (3.92)

and the buffers are again filled with the next K measurements. The proof that
this approach yields the same results as (3.90) is a matter of straightforwardly
plugging in the matrix indices. The advantages of this procedure are threefold:
First, advanced matrix multiplication algorithms reduce the computational effort
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compared to the O(NaNfK) operations required by the naive approach for K
measurements. Second, this level-3 BLAS operation has a high computational
intensity because the arithmetic effort grows faster with buffer size K than the
amount of data. The memory bandwidth is hence not a bottleneck and the full
computational power of the CPU can be used. Third, linear algebra libraries
provide highly optimized matrix multiplication routines, which take full advantage
of the CPU cache hierarchy.

Vertex function measurement

Typical simulations for the vertex function fix the total momentum and frequency,
leaving two independent momenta and frequencies that need to be measured. The
DiagMC simulation produces samples (si,ki1,k

i
2, τ

i
1, τ

i
2), which are projected onto

the vectors

φia = φa(k
i
1), χin = exp(iωnτ

i
1),

ξib = φb(k
i
2), ψim = exp(iωmτ

i
2),

and are to be summed into the accumulator array

Γ̄a,b,m,n =
M−1∑

i=0

siφiaξ
i
bχ

i
nψ

i
m. (3.93)

We again collect K consecutive measurements into buffer matrices

Xk
ab = skφkaξ

k
b , Y k

mn = χknψ
k
m, (3.94)

but this time a pair of outer products is performed directly in each measurement in
order to merge the momentum vectors φk, ξk, on the one hand, and the Matsubara
vectors χk,ψk, on the other hand, into matrices. Then, formally interpreting the
three-dimensional arrays X and Y as matrices with combined indices α = (a, b)
and µ = (m,n), respectively, the large outer product and sum over measurements
k can again be cast into a matrix-matrix multiplication

Γ̄← Γ̄ +X · Y T , (3.95)

which is written out as

Γ̄a,b,m,n ≡ Γ̄α,µ ← Γ̄α,µ +
∑

k

Xk
αY

k
µ ≡ Γ̄a,b,m,n +

∑

k

Xk
abY

k
mn. (3.96)

The buffer size K can be tuned for optimal performance on the production system.
In our experience on current high performance clusters, throughput increases with
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K until it saturates in a wide plateau for K & 128. Note that the presented for-
mulation would allow for an efficient use of GPU accelerators for the measurement
process because only the small vectors φk, ξk,χk,ψk would need to be transferred
to GPU memory and the required zgeru and zgemm operations fit the GPU’s SIMD
operation mode very well.

3.4 Evaluations

Knowledge of the self-energy and the irreducible vertex implies knowledge of the
one- and two-particle Green’s functions, therefore the DiagMC simulation results
give in principle direct access to all thermodynamic one- and two-particle ob-
servables. While the algebraic relations between these quantities used below are
well-known, their numeric implementation requires considerable care. On the one
hand the presence of slowly decaying high-frequency tails or, equivalently, non-
analytic imaginary time functions, make many Fourier transforms and frequency
sums numerically ill-behaved. Even tails decaying faster than ∼ 1/ω require a
careful handling because resource constraints often prohibit computing or storing
enough frequencies to make the high-frequency contributions negligible. On the
other hand both stochastic and systematic errors from various sources need to be
controlled in order to claim a well controlled confidence interval on final results.

3.4.1 One-particle observables

The primary output of a one-particle DiagMC simulation is the self-energy for
Nf Matsubara frequencies ωn and Nk momentum basis functions φa and diagram
orders o = 2, . . . , N∗.

Σ(o)
σ,a(ωn) =

∫
dτ

ddk

(2π)d
φ∗a(k)Σ(o)

σ (τ,k) exp(iωnτ) (3.97)

with n = 0, . . . , Nf − 1, a = 0, . . . , Nk − 1. In addition, the integral

v1,σ =

∫
dτ

ddk

(2π)d
Σσ(τ, k)G(0)

σ (−τ, k) (3.98)

is measured in DiagMC as it allows for the elimination of the leading high-frequency
tail in the computation of the potential energy, as explained below. In the following
we will suppress spin and order indices unless explicitly required.
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Green’s function

The Dyson equation is most conveniently solved in frequency-momentum space
where only a scalar inversion

G(ωn,k) =
1

G−1
0 (ωn,k)− Σ(ωn,k)

(3.99)

is required and Σ(k) =
∑

a Σaφa(k) follows directly from the definition of the ba-
sis. The realness of the imaginary time functions G(τ),Σ(τ) ∈ R implies G∗(ωn) =
G(−ωn) and correspondingly for Σ and hence the real parts of G(ωn),Σ(ωn) are
even functions of ωn whereas the imaginary parts are odd. As the leading high-
frequency tail of a fermionic Green’s function is 1/iωn independent of the interac-
tion [98, chap. 3] we have the limiting behaviour

G(ωn) −−−−→
ωn→∞

1

iωn
+
g2

ω2
n

+
g3

iω3
n

+O(
1

ω4
n

) . (3.100)

After exclusion of the Hartree term the self-energy vanishes at high frequencies as

Σ(ωn) −−−−→
ωn→∞

s1

iωn
+
s2

ω2
n

+O(
1

ω3
n

) . (3.101)

Therefore, the correction to the free Green’s function

∆(ωn,k) ≡ G(ωn,k)−G0(ωn,k)

=
[
G−1

0 (ωn,k)− Σ(ωn,k)
]−1 −G0(ωn,k)

= G0(ωn,k)Σ(ωn,k)G(ωn,k) (3.102)

has quartic and cubic real and imaginary tails, respectively

<∆(ωn) −−−−→
ωn→∞

O(
1

ω4
n

) , (3.103)

=∆(ωn) −−−−→
ωn→∞

− s1

ω3
n

+O(
1

ω5
n

) . (3.104)

The imaginary time Green’s function

G(τ,k) = G0(τ,k) + ∆(τ,k) (3.105)
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is hence computed from the analytically known free Green’s function G0(τ) and
the Fourier transform of the correction

∆(τ,k) = T
∞∑

n=−∞
∆(ωn,k) exp(−iτωn)

= 2T

Nf−1∑

n=0

< [∆(ωn,k) exp(−iτωn)] + 2T
∞∑

n=Nf

[
−s1 sin(ωnτ)

ω3
n

+O(
1

ω4
n

)

]

= 2T

Nf−1∑

n=0

< [∆(ωn,k) exp(−iτωn)] + sin(ωnτ)O(
1

ω2
Nf

) +O(
1

ω3
Nf

) ,

(3.106)

where the last line indicates the asymptotic scaling of the dropped tail sums

∞∑

n=N

n−m =
(−1)m

(m− 1)!
ψ(m−1)(N) = O(N−m+1) (3.107)

with integer m ≥ 2 and ψ(m)(z) the mth derivative of the digamma function ψ(z).
The fact that the sum over a 1/ωm tail depends on the cut-off as 1/ωm−1

N is most
easily seen by replacing the sum with an integral.

Density

The momentum distribution function is obtained directly from the imaginary time
Green’s function (3.105) as

n(k) = G(τ = 0−,k) = G0(τ = 0−,k) + 2T

Nf−1∑

n=0

<∆(ωn,k) +O(ω−3
Nf

) , (3.108)

where the time argument τ = 0 eliminated the 1/ω2
Nf

tail. Restoring spin indices
for the sake of clarity, the spin density is calculated by integrating the momentum
distribution

nσ =

∫
ddk

(2π)d
nσ(k) (3.109)

and the total density of particles per site

n =
∑

σ

nσ . (3.110)
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Kinetic energy

With the momentum distribution function (3.108) and dispersion relation ε(k) the
kinetic energy density is

T =
∑

σ

∫
ddk

(2π)d
εσ(k)nσ(k) . (3.111)

Potential energy

Although the potential energy density

V = 〈Un̂↑n̂↓〉 (3.112)

is defined in terms of a two-particle correlation, it can be extracted from the self-
energy as [97, chap. 7]

V =
1

2

∑

σ

∫
dτ

ddk

(2π)d
Σ̄σ(−τ,k)Gσ(τ,k) . (3.113)

Since the Hartree term has been removed from the measured self-energy via a
chemical potential shift (cf. Sec. 3.2.6), it has to be accounted for explicitly: Σ̄σ =
Σσ + Unσ̄. Using the explicitly measured ΣG0 integral (3.98) further eliminates a
1/ω2

n tail, resulting in the final expression

V = Un↑n↓ +
1

2

∑

σ

v1,σ + T
∑

σ

Nf−1∑

n=0

∫
ddk

(2π)d
< [Σσ(iωn, k)∆σ(iωn, k)] +O(ω−3

Nf
) .

(3.114)

3.4.2 Calculation of the Bethe-Salpeter kernel

For detecting continuous phase transitions one needs to calculate pairing eigenval-
ues, i.e. the leading eigenvalues of Bethe-Salpeter kernels for the ordering channels
of interest. In principle, the Bethe-Salpeter kernel, which is the product of two
one-particle propagators χ = GG and the irreducible vertex Γ, can be calculated
in various possible ways. The straightforward approach would be a direct DiagMC
simulation of χΓ diagrams, i.e. two-particle irreducible vertex function diagrams
with one-particle propagators (including self-energy insertions) attached to two
of the external vertices. While we have implemented such a sampling procedure,
it has the severe drawback that repeated self-energy insertions in the external
Green’s functions are not summed by Dyson’s equation, but need to be sampled
explicitly. Also, the sampling of combined χΓ diagrams implies that the average
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diagram order available for each of the two parts is reduced, as compared to a
separate sampling of χ and Γ with identical order cutoff N∗. As it turns out that
the pairing eigenvalues are rather sensitive to self-energy corrections in χ, it is
hard to achieve convergence in N∗ with this method.

We therefore separate the sampling processes into one for the self-energy and
one for the irreducible vertex. Then the kernel for a given cutoff order o is defined
as the product (χΓ)(o) = χ(o)Γ(o), where χ(o) consists of a pair of one-particle
propagators whose self-energies contain all diagrams up to order o and Γ(o) =∑o

n=1 Γ̂(n) is the sum of irreducible vertex diagrams up to order o. In practice,
this is hardly a complication because we typically need to start with self-energy
calculations, in any case, to find the correct chemical potential for a parameter
set. Once the self-energy is known, χQ(k) trivially follows by Dyson’s equation.
Because the vertex function is stored in some momentum basis, as discussed above,
χ needs to be projected onto the same basis. Note that the projection

χab =

∫
dk

(2π)d
dk′

(2π)d
φ∗a(k)χ(k)φb(k

′) (3.115)

is generally not diagonal in the new basis. We currently perform this projection by
simple Monte Carlo integration. Improved integrators could be considered, but the
cost of this integration is clearly subdominant compared to the cost of sampling
the irreducible vertex Γ with DiagMC. When the matrices χ and Γ are available
in the same momentum-frequency basis, simple matrix multiplication yields the
kernel −χΓ and its leading eigenvalues can be calculated by standard (iterative or
exact) numerical eigenvalue solvers. We automatically repeat this procedure for
different frequency, momentum basis, and order cutoffs in order to estimate the
systematic uncertainty and for data from stochastically independent simulations
in order to estimate the stochastic errors. The remainder of this section contains
details on this procedure.

As an alternative to the separate projection process χ(k) → χab, the self-
energy data may be loaded into the DiagMC simulation so that χ(k) can be di-
rectly included in each measurement of an irreducible vertex function diagram.
This approach makes the integration process for the χ basis change redundant
and removes any inaccuracies arising due to the χΓ multiplication in a truncated
momentum basis. However, the cost of the vertex function measurements increase
significantly because a sample needs to be recorded for different orders separately:
According to (χΓ)(o) = χ(o)

∑o
n=1 Γ̂(n), an nth order diagram Γ̂(n) contributes to

all orders o ≥ n with different prefactors, so the sample needs to be measured in
all N∗−n+ 1 accumulators. This is in contrast to the former approach, where the
sum over diagram orders can be delayed to the evaluation procedure. Our use of
the latter procedure is therefore limited to consistency checks.
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3.4.3 Treatment of high-frequency tails in Bethe-Salpeter
equations

While the careful treatment of high-frequency tails was already important for the
evaluation of one-particle observables it can be even more essential for the case of
two-particle observables because, even after fixing the bosonic frequency Ωm = 0,
there are two independent frequencies such that computation and storage costs
scale quadratically in the frequency cut-off Nf . In the worst case, the irreducible
vertex Γ approaches a large negative constant value γ∞ at high fermionic fre-
quencies such that the scaling of the Bethe-Salpeter kernel is determined by the
single-particle propagators

χ(ωn)Γ(ωn|ω′n) −−−−−−→
ωn,ω′n→∞

γ∞
ω2
n

+O(1/ω3
n). (3.116)

This case is realized in all the conventional ordering channels where the instanta-
neous Hubbard U is a relevant direct interaction, i.e. where the first order diagram
for the irreducible vertex gives an attractive contribution. In other channels, where
the attractive interaction is purely a higher order effect, the interaction is typi-
cally found to be retarded; here the largest eigenvalue saturates quickly when
the cut-off frequency ωNf is larger than a characteristic frequency ωc. The fol-
lowing paragraphs discuss several complementary techniques to treat the former
case of slowly decaying high-frequency contributions. In order to simplify nota-
tion, momentum dependences are suppressed in this discussion and the number of
frequencies explicitly measured is simply represented by N ≡ Nf .

Fitting of frequency cut-off dependence

An N ×N matrix of the form

Anm =
γ∞
ω2
n

(3.117)

has only one non-zero eigenvalue

λ1 =
N−1∑

n=0

γ∞
ω2
n

. (3.118)

According to (3.107) the finite cut-off frequency introduces an error O(1/ωN). An
obvious way to remove this leading error is through extrapolation to ωN → ∞
by fitting the tail to a polynomial in 1/ωn. A linear fit to the highest 25% to
50% frequency bins routinely provides robust and conservative extrapolations. In
specific cases at very low temperature fitting quadratic and cubic polynomials
helped in improving the extrapolation.
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Exact summation of first-order diagram

In the extrapolation procedure introduced above all matrix elements Anm for
min(n,m) ≥ N are effectively replaced with zero. Instead of this the matrix
elements beyond the cut-off can be approximated by the first-order diagram for
the Bethe-Salpeter kernel

A(1)
nm = αn = −UT

∫
dk χ(0)(ωn,k) . (3.119)

This matrix has only one non-zero eigenvalue

λ(1) = −UT
∑

n

∫
dk χ(0)(ωn,k) . (3.120)

Here, the frequency sum can be evaluated with extremely high precision by per-
forming the sum over a very large frequency window |βωn| . 5000 numerically and
summing the remaining leading 1/ω2

n tail analytically.
This approximation for the unmeasured frequencies results conceptually in a

matrix of infinite dimension

A =




a00 a01 . . . a0N α1 α1 . . .
a10 a11 . . . a1N α2 . . .
...

...
...

...
aN−1,0 aN−1,1 . . . aN−1,N−1 αN−1 . . .
αN . . . αN αN . . .
αN+1 . . . αN+1 αN+1 . . .
...

...
...




(3.121)

where the upper left block (n,m < N) consists of the measured data for χΓ
whereas the remaining blocks are replaced by the first order diagram (3.119). As
all the columns of the high-frequency blocks are identical, they can be collected
into a single row and column by a similarity transform

A = SBS−1, (3.122)
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such that the matrix B has only N + 1 non-zero rows and columns:

B =




a00 a01 . . . a0N
α0

αN
ΛN 0 . . .

a10 a11 . . . a1N
α1

αN
ΛN 0 . . .

...
...

...
...

...

aN−1,0 aN−1,1 . . . aN−1,N−1
αN−1

αN
ΛN 0 . . .

αN αN . . . αN ΛN 0 . . .
0 0 . . . 0 0 0 . . .
...

...
...

...




=




Ã
α

αN
ΛN

αN ΛN 0
0


 , (3.123)

where

ΛN =
∞∑

n=N

αn = λ(1) −
N−1∑

n=0

αn . (3.124)

This N+1 dimensional matrix is straight-forwardly constructed from the measured
data Ã = (anm) and the first-order expressions (3.119), its eigenvalue accounting
for the full high-frequency dependence of the first-order diagram. The transforma-
tion matrix

S =




1N 0 0 0 . . .
0 1 −1 −1 −1 . . .

0
αN+1

αN
1 0 0 . . .

0
αN+2

αN
0 1 0 . . .

...
... 0 0

. . .




=




1N 0
1 −1

0
αn

αN
1∞




(3.125)

is never needed in practice. A similar strategy of dividing the Bethe-Salpeter
equation into low- and high-frequency blocks and replacing the latter parts by their
asymptotic form has recently been proposed by Kuneš [113] for DMFT calculations.

Fig. 3.21 shows a typical frequency extrapolation of the Bethe-Salpeter eigen-
value in a case where the first order diagram is relevant. It is apparent that the
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Figure 3.21: Dependence of a CDW Bethe-Salpeter eigenvalue on cut-off frequency
with and without exact summation of the first order diagram’s high frequency tail.
The inverse temperature is βt = 20; 64 frequencies were measured in total. Dashed
lines show linear extrapolations in 1/ωN , fitted to the last 32 data points for each
curve.

exact inclusion of the first order diagram strongly reduces the effect of the fre-
quency cut-off. While the former scheme completely neglects the contribution of
higher-order tails, the approximation of the vertex by the first-order diagram typi-
cally overestimates the prefactor of the tails. Therefore the difference between the
two extrapolations can be used as an estimate for the systematic extrapolation
error.

3.4.4 Non-uniform frequency grids

At very low temperatures it becomes impossible to compute and store all Mat-
subara frequencies up to a cut-off large enough to capture the essential features
of an observables. Here the frequencies form a dense mesh sampling a contin-
uous function, so storing data for all frequencies is an inefficient representation.
Still, observables are very sensitive to low-frequency features. Hence a represen-
tation is desirable which retains all information from the lowest frequencies while
the high-frequency behaviour can be described sufficiently well with less data.
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The approach implemented here divides the frequency space into three regions:
The lowest N1 frequencies ω0, ω1, . . . , ωN1−1 are all recorded explicitly. Then a
broader frequency window is covered with a coarser grid of N2 = N −N1 frequen-
cies ωN1 , ωN1+s, ωN1+2s, . . . , ωN1+(N2−1)s with stride s. Lastly, higher frequencies
ωn > ωN1+(N2−1)s are not measured explicitly but treated asymptotically with the
methods described above.

The simplest usage of coarse-grained self-energy data in the frequency sums
pervasive in the evaluation procedures described in Sec. 3.4.1 above would scale
each term for a frequency ωn ≥ N1 by the number wn = s of discarded frequen-
cies. This approach corresponds to numerical integration with a left-rectangular
rule, approximating discarded data with the closest smaller frequency. The dis-
cretisation error can however be reduced by interpolating discarded data from the
available one. Linear interpolation results in a weighting factor wN1 = (s + 1)/2
for the boundary of the coarse-grained mesh, whereas the data inside the region
is again scaled with the stride wn = s. This approach corresponds to numerical
integration with the trapezoidal rule and was implemented in this work.9

Although less obvious, the same reasoning can be applied to the eigenvalue cal-
culation for the Bethe-Salpeter kernel. Here, the rows of the vertex corresponding
to frequencies in the coarse-grained region need to be scaled accordingly. It is easy
to show that an approximation of the discarded data with the next lower or higher
frequency leads to the same scale factors as the left or right rectangular rule for
the simple frequency sums discussed above. It is intuitively plausible that weights
corresponding to the linear interpolation scheme, i.e.

Γcoarsenm = wnΓnm, wn =





1 if n < N1,

(s+ 1)/2 if n = N1

s if n = N1 + ls, 1 ≤ l < N2,

0 otherwise

(3.126)

reduce the discretisation error also in this case, which is confirmed empirically.

3.4.5 Momentum basis truncation

As irreducible quantities such as the self-energy and the irreducible vertex de-
cay quickly in real-space, the lattice harmonics basis onto which the momentum-
resolved quantities are projected can typically be restricted to basis functions cor-
responding to a rather small distance in real space. For the self-energy, which

9A possible weighting factor at the upper endpoint of the coarse-grained mesh is irrelevant
unless the cut-off frequency is considerably too small, in which case the results are unreliable in
any case.
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Figure 3.22: Absolute value of the self-energy Σa(ωn) =
∫

dkφ∗a(k)Σ(k, ωn) pro-
jected to a basis of fully symmetric square lattice harmonics {φa} and Matsubara
frequencies. Basis functions are labeled with the real-space offsets x − x′ they
correspond to in the first coordinate quadrant. The Hubbard interaction U = −4t
is attractive, the temperature T = 0.2t and filling n = 0.5.

depends only on one momentum and one frequency argument, a sufficient decay
within the used set of basis functions can routinely be checked by visual inspec-
tion. Fig. 3.22 shows a typical example where the magnitude at all frequencies has
decayed to less than 1% of the local self-energy for distances |x− x′| ≥ 4.

For calculations involving two-particle vertices the choice of an optimal number
of basis functions is more crucial due to the quadratically growing costs implied by
the presence of two independent momenta (after fixing the total momentum). It is
hence crucial to check, a posteriori, whether the basis was large enough to capture
the relevant physics. To this end, the evaluation is repeated for different subsets of
the recorded data. Ordering the basis functions according to increasing real-space
distance, the pairing eigenvalue can be computed with a systematically increasing
momentum resolution, as shown in Fig. 3.23. Typically, the irreducible vertex
is even more local than the self-energy such that the pairing eigenvalues quickly
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Figure 3.23: Dependence of the spin-singlet superconducting eigenvalues on the
number of lattice harmonic basis functions. Shown is the leading eigenvalue for
each point group symmetry class of the square lattice. Basis functions are added
in order of increasing real-space distance |∆x|, with the largest offset ∆x = (3, 3).
The Hubbard interaction U = −4t is attractive, the temperature T = 0.2t and
filling n = 0.5.

converge with the number of basis functions. It should be noted, however, that
this does not imply that the (right) Bethe-Salpeter eigenvector has no structure
in real space. For the special case of a purely local vertex Γ(k,k′) = γ, e.g., the
eigenvalue problem

−
∫

dk′χ(k)Γ(k,k′)v(k′) = λv(k) (3.127)

is trivially solved by

λ = −γ
∫

dkχ(k) , (3.128)

v(k) = γχ(k)/λ . (3.129)

In general, an accurate determination of the pairing eigenvalue is possible in a basis
that allows for a faithful representation of the irreducible vertex, while the much

91



3.4 Evaluations

sharper features of the pair propagator need not be resolved unless an accurate
description of the eigenvector is required, too.

3.4.6 Stochastic confidence intervals

For the explicitly measured basis functions and diagram orders, the DiagMC algo-
rithm yields numerically exact results, in the sense that the stochastic expectation
value of the average over a large number of samples converges towards the ex-
act integral of the sampled diagram, within the limits of numerical accuracy. As
any real simulation averages only over a finite number of samples, the results will
carry a stochastic uncertainty, which must be estimated in order to judge their
significance.

Naive error estimation

For the directly sampled diagrammatic quantities, confidence intervals are easily
computed from the variance over independent simulations. By running a simu-
lation with identical parameters but independent random number sequences, sta-
tistically independent estimates of the sampled diagrams are produced, provided
every simulation included a sufficiently long thermalization time for the configu-
ration to be independent of the initial configuration before the first measurement.
In other words, M simulations yield a sample of independent and identically dis-
tributed (i.i.d.) observations X1, . . . XM

i.i.d.∼ P with unknown distribution P . In
practice, the result of each simulation is typically the average over a large number
of measurements, hence samples are usually normally distributed

Xi ∼ N (µ, σ2) (3.130)

according to the central limit theorem of statistics [114]. But this is by no means
necessary. In the following we just assume that the mean

µ = 〈X〉 (3.131)

and variance

σ2 =
〈
(X − 〈X〉)2〉 (3.132)

of the distribution exist. These parameters have the well-known, unbiased estima-
tors

µ̂ = X̄ ≡ 1

M

M∑

i=1

Xi, σ̂2 =
M

M − 1
VarX ≡ 1

M − 1

M∑

i=1

(Xi − X̄)2. (3.133)
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Due to the additivity property of the variance, the sample mean’s variance VarX̄ =
σ2/M such that its standard deviation is directly estimated from the independent
results’ variance to

∆ =

√
VarX

M − 1
. (3.134)

With error bars we routinely indicate this standard deviation of the mean, which
corresponds to a 68% confidence interval when the mean is normally distributed.

In principle, the above strategy could also be used for estimating results and
confidence intervals for arbitrary functions of the observables. However, the appli-
cation of nonlinear transformations to data with non-negligible stochastic errors
can result in significant bias effects, which are better alleviated by more advanced
strategies. An illustrative example for this problem is the computation of the
single-particle Green’s function from the self-energy via the Dyson equation

G[Σ] =
1

g−1 − Σ
. (3.135)

If the exact self-energy was know, G[Σ] would yield the exact Green’s function.
However, we only have M samples Σ1, . . .ΣM . The naive estimator would now
compute the mean

Ĝ = Ḡ ≡ 1

M

M∑

i=1

G[Σi] (3.136)

and its standard deviation according to the expressions given above. As the expec-
tation value of the individual samples 〈Σi〉 = 〈Σ〉 is the exact self-energy, one might
hope that the expectation value 〈Ḡ〉 = 〈G[Σi]〉 yields the exact Green’s function.
This, however, is not the case and the expected deviation between estimated and
true result defines the estimator’s bias:

Bias = 〈Ĝ〉 −G = 〈G[Σi]〉 −G [〈Σ〉] . (3.137)

Assuming for simplicity that the self-energy samples were dominated by a uni-
formly distributed error gΣi ≈ ε ∈ [−σ, σ], the expectation value for the estimated
Green’s function can be explicitly computed

〈Ḡ〉/g =
1

2σ

∫ σ

−σ

dε

1− ε =
1

2σ
ln

1 + σ

1− σ = 1 +
σ2

3
+O(σ4) (3.138)

and has a positive bias, which even diverges when σ becomes of order unity and
the samples with the largest errors get close to the non-analytic point of the trans-
formation. It is therefore desirable to (a) eliminate bias as far as possible and (b)
apply nonlinear transformations only to values that are as close as possible to the
exact result.
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Jackknife analysis

The jackknife method addresses these issues in an elegant way. This paragraph
introduces the basic idea and expressions for variance and bias estimation for
functions of observables in a concise way, which prepares for the discussion of our
extended bias analysis for matrix eigenvalues. For a more general and rigorous
discussion of the jackknife the reader is referred to the literature, e.g. Refs. [115,
116].

Generalizing the previous example, suppose M independent simulation runs
produced results X1, . . . , XM

i.i.d.∼ P , where Xi stands for all the observables mea-
sured by the i’th simulation, and f(X) is an arbitrary function of one or more
observables. We are looking for an estimator f̂(X1, . . . , XM) that, given the data
X1, . . . , XM , yields an accurate estimate of the value f(〈X〉). Additionally, we
strive to estimate the variance

Varf̂ =

〈(
f̂ − 〈f̂〉

)2
〉

(3.139)

and

bias =
〈
f̂ − f

〉
. (3.140)

The naive estimator discussed above f̂naive =
∑

i f(Xi)/M evaluates the function
f on each simulation result Xi individually and in general suffers from a bias that
is the larger the larger the error on the Xi. Obviously, we could reduce the errors,
and hence bias, by running the simulations for a longer time. Instead, we take all
the known data together and compute

f̂ = f(X̄), (3.141)

i.e. we evaluate the function on the average over all results. As there is only a
single sample of size M available, it is not obvious how to estimate the variance
of f̂ . However, the variance of an estimate from a sample of size M should be
close to the corresponding estimate from a sample of size M − 1 and we can easily
construct samples of this size by averaging over all but one simulation:

X(−i) =
1

M − 1

M∑

j 6=i
Xj (3.142)

The jackknife estimator for the variance is hence

V̂ar =
M − 1

M

M∑

i=1

(
f̂(−i) − f̂(.)

)2

, (3.143)
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with f̂(−i) = f(X(−i)) and f̂(.) =
∑

i f̂(−i)/M . The prefactor (M − 1)/M can
be thought of as the sample size modification to go from M − 1 to M . In the
same spirit, the bias is estimated from the difference between the estimators with
different sample sizes, namely

b̂ias = (M − 1)
(
f̂(.) − f̂

)
. (3.144)

For many statistics, the bias can be expanded in a Taylor series in the inverse
number of samples 1/M . Under this assumption it is easy to show that the above
expression accounts for the leading order term, which can hence be removed by
calculating the bias-corrected estimator

f̃ = f̂ − b̂ias = Mf̂ − (M − 1)f̂(.). (3.145)

That being said, and while the removal of bias is in principle a worthwhile
goal, the estimated bias is in practice often negligible compared to the standard
deviation. Worse, bias estimates are usually less accurate than variance estimates,
implying that the bias-corrected estimate has a larger expected error than the
non-corrected one. On the other hand, a significant bias estimate compared to the
standard deviation may indicate problems with an estimator.10 For this reason, we
routinely compute the bias estimate but use the uncorrected estimates. We note
in passing that the jackknife variance estimate is conservative, i.e. the expected
estimate tends to be larger than the true variance, if anything, for sufficiently
regular statistics [115, chap. 4]. For linear functions of the observables, there is
no bias and the jackknife estimates are equivalent to the naive estimates. For
quadratic functions, the bias-corrected estimator f̃ is free of any bias.

As a final remark, more recent resampling methods, such as the bootstrap and
delete-d jackknife, could provide additional and more precise estimates of distri-
bution properties, but they need more samples to match the robustness of the
jackknife. As our evaluations tend to be rather expensive, involving k-space inte-
grals or large eigenvalue problems, this is a considerable disadvantage. Addition-
ally, typical Monte Carlo results are well characterized by a normal distribution
defined by the mean and variance, and most known deficiencies of the jackknife
estimates concern non-smooth statistics which do not occur in our applications.

Bias analysis for matrix eigenvalues

While for most observables bias effects are found to be negligibly small compared
to the standard deviation, the case is different for the computation of the lead-
ing pairing eigenvalue. The main problems lie (1) in the fact that the procedure

10Cf. [116, chapter 10] and [115, chapter 2].
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of choosing the largest eigenvalue is inherently biased and (2) that the leading
eigenvalues in a given channel might be arbitrarily close to zero, especially when
checking unconventional ordering channels with weakly attractive effective inter-
actions, such that stochastic errors can easily dominate over the physical answer.

Observing the effect of stochastic errors on the spectrum of the pairing matrix,
we can in general identify two different regimes, depending on the magnitude of
the leading physical eigenvalues in a given channel on the one hand and of the
stochastic errors on the other hand. In the weak-perturbation regime the largest
singular value (in absolute value) of the error matrix is small compared to the
gap below the leading physical eigenvalue.11 In this case the largest eigenvalue of
the perturbed matrix can be identified as the perturbed physical eigenvalue and
the process of choosing the largest eigenvalue of the perturbed matrix does not
introduce an inherent bias. Then, the usual statistical estimators for standard
deviation and bias work well. In the opposite regime of strong perturbations,
however, the measured spectrum is dominated by the random perturbation matrix
such that the selection of the largest eigenvalue is strongly biased towards the
upper boundary of the stochastic eigenvalue distribution.

Let us consider for a moment the extreme case where the measured matrix is
dominated by errors such that random matrix theory can be applied. According
to Girko’s circular law [118], the eigenvalues of a large random N ×N matrix are,
under rather general assumptions, uniformly distributed on the complex plane in-
side the circle |λ| <

√
Nσ.12 In other words, for a fixed magnitude of errors, the

expectation value of the leading eigenvalue 〈λ1〉 ≈
√
Nσ can be large while con-

fidence intervals estimated with the aforementioned methods could be arbitrarily
small. In the considered limit, the situation does not improve for a symmetrized
matrix: According to Wigner’s semicircular law [119], the probability density of
eigenvalues for a Hermitian random matrix is

p(λ) =
1

2πσ2N

√
4σ2N − λ2, (λ2 < 4σ2N) (3.146)

such that the expectation value for the largest eigenvalue 〈λ1〉 ≈ 2
√
Nσ.

The problem is well illustrated by a simple toy model: Take a Hermitian
N × N matrix A with unit-spaced eigenvalues λi = −N/2,−N/2 + 1, . . . , N/2

11According to the Bauer-Fike theorem [117], the gap should in general be compared to the
perturbation’s largest singular value multiplied by the eigenvectors’ condition number in order
to account for the sensitivity of eigenvalues to a perturbation. As the additional factor does not
change the existence of the two discussed regimes and the leading physical eigenvector is typically
found to be well conditioned we simplify the discussion by assuming a Hermitian pairing matrix.

12Strictly speaking, the circular law describes the limiting distribution of λ/
√
N for N →∞,

but typical pairing matrix sizes are sufficiently large to be well approximated by this limit.
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Figure 3.24: Spectrum of the perturbed model matrix A+σB with A having unit-
spaced eigenvalues and B normally distributed matrix elements Bij ∼ N (0, 1) for
varying perturbation strength σ. Each data point is averaged over 1024 realizations
of the model and perturbation matrices. Extremal eigenvalues are shown as blue
or green dots, the others as grey lines. Fits of the asymptotic ∼ σ(2) dependence
in the strong- (weak-) perturbation regime are indicated by dashed (dotted) lines.
Solid black lines delimit the bounds of the eigenvalue distribution predicted by
Wigner’s semicircle law for random Hermitian matrices.

and perturb it with a random matrix σB (also Hermitian, for simplicity) with
normally distributed matrix elements Bij ∼ N (0, 1) for i ≤ j and the remaining
matrix elements given by symmetry. The average spectrum of the perturbed ma-
trix C = A + σB is plotted in Fig. 3.24 against varying standard deviation σ of
the perturbation for a matrix size of N = 31. The crossover between the weakly
perturbed regime σ � 1 and the random matrix regime σ � 1 is clearly visible.
While the largest eigenvalue always has a positive bias, in the weakly perturbed
regime it vanishes ∼ σ2, as generally expected. As soon as the perturbation be-
comes of the order of the gap between the eigenvalues there are strong deviations
from this form, and the eigenvalues acquire a linear dependence on the standard
deviation of the perturbation.

The usual Jackknife bias estimator assumes that the bias vanishes to leading
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order linearly in the inverse sample size 1/M ∝ σ2 and hence completely fails
in the regime where spurious eigenvalues grow ∼ σ ∝ 1/

√
M . In general, as it

is a priori unknown whether the vertex data for a given channel is in the weak-
or strong-perturbation regime, the bias estimator cannot be made more reliable
by assuming a different functional form for the leading order bias. Our approach
therefore strives to estimate the sample size dependence over a larger size range
by means of a modified resampling strategy: Instead of applying the evaluation
only to samples of the minimal size, as with the naive error estimator, or only to
the largest available samples, as the Jackknife strategy, we repeat the evaluation
with successively larger samples, thereby interpolating between the simple and the
Jackknife strategy. In detail, for m = 1, . . . ,M − 1 we define

X
(m)
(i) =

1

m

i+m−1∑

j=i

Xj, (3.147)

with indices wrapping around the limit XM+j ≡ Xj and the corresponding esti-
mators

f̂
(m)
(i) = f(X

(m)
(i) ), (3.148)

f̂ (m) =
1

M

M∑

i=1

f̂
(m)
(i) , (3.149)

V̂arm =
m

M(M −m)

M∑

i=1

(
f̂

(m)
(i) − f̂ (m)

)2

, (3.150)

b̂iasm =
m

M −m
(
f̂ (m) − f̂

)
, (3.151)

where f̂ = f(X̄) is again the function applied to all available data at once.13 It is
straight forward to verify that (1) form = 1 andm = M−1, the above expressions
reduce to the corresponding naive and jackknife estimators, respectively, (2) for
linear functions of the observables, the estimators are unbiased for any integer
m = 1, . . . ,M − 1, and (3) the bias estimator removes the leading order term of a
1/M expansion of the bias for any m.

The main point of this generalization is, however, not in the generalized bias
and variance estimators, which in the strong-perturbation regime fail at least as
badly as the regular jackknife ones, but in the function estimators f̂ (m), which di-
rectly contain the full bias dependence on the sample size m = 1, . . .M − 1. Plot-
ting this dependence provides an invaluable tool for judging whether the recorded

13These estimators correspond to a delete-(M−m) jackknife where only a deterministic subset
of M instead of all the

(
M

M−m
)
subsamples are evaluated [120].
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Figure 3.25: Antiferromagnetic eigenvalue estimates λ̂(m) for varying subsample
size m for a 3D Hubbard model, U/t = 5, T/t = 1 at N∗ = 6. The eigenvalue in
the even parity sector λg is physical and shows no significant m-dependent bias,
whereas the odd parity eigenvalue is entirely due to stochastic errors and vanishes
∼ 1/

√
m. Solid lines are fits to the form λ̂(m) = λ(∞) + c/

√
m, diamonds at

1/m = 0 the corresponding extrapolation to m→∞.

data is in the weak-perturbation regime and hence the reliability of the computed
confidence intervals, as demonstrated in Fig. 3.25: Evaluating the pairing matrix
for fixed sample size, one finds a significant eigenvalue with odd parity. In spite
of its small standard error estimate, indicated by error bars that are as small as
the symbols, this eigenvalue is entirely due to stochastic errors in the matrix, as
its perfect 1/

√
m dependence reveals. The observed eigenvalue is hence only an

upper bound for any physical eigenvalue in this channel and significantly longer
simulations would be required for a more precise estimate. In the even parity sec-
tor, on the other hand, the leading eigenvalue is separated by a large enough gap
from the rest of the spectrum, such that the errors in the measured pairing matrix
produce no significant bias, even for the smallest sample size in the plot, and the
estimated standard deviation is comparably small. Once a set of sample-size de-
pendent estimators λ̂(m) is available, a fit of the form λ̂(m) = λ(∞) + c/

√
m allows
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Figure 3.26: Antiferromagnetic eigenvalue estimates λ̂ versus diagram order cutoff
N∗ for the same system as in Fig. 3.25. Error bars include the worst-case bias
estimate as described in the text.

for a worst-case extrapolation to infinite sample size. Plotting error bars that cover
the interval [λ̂−∆−, λ̂+∆+], with ∆± = max(∆, |±∆− b̂iasw.c.|), the standard de-
viation estimate ∆ and the worst-case bias estimate b̂iasw.c. = λ̂(M)− λ(∞), allows
for a straight-forward distinction between cases where an eigenvalue changes sig-
nificantly with some parameter and ones where an apparent parameter dependence
is purely due to changes in the stochastic errors, as in the example of Fig. 3.26
where λ̂u grows with diagram order only due to increasing errors. Note that in
practice not all subsample sizes m = 1, . . . ,M need to be computed. We find
that a selection of a few powers of two, e.g. m = M/2,M/4, . . . ,M/32, routinely
provides more than enough information for very robust bias estimates.

3.4.7 Diagram order truncation

Both systematic errors due to finite momentum and frequency bases and stochastic
errors can in principle be decreased to arbitrarily small values with only polynomi-
ally scaling computational efforts. This is different for the error due to truncation
of the diagrammatic series, where an increase of the order cutoff asymptotically
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requires a factorial increase of compute time for achieving the same stochastic
accuracy. It is thus important to identify the best reference problem to base the
perturbation expansion on and to use appropriate diagrammatic summations so
that reliable results can be extracted from manageable orders. In addition, the
asymptotic scaling of the truncation error with diagram order is usually unknown
in many body perturbation theory; in fact it is not clear a priori whether the dia-
grammatic series for a given system converges at all. In the case of an asymptotic
series the truncation error will increase with order beyond some optimal cutoff
[106]. For these reasons, the order truncation error is typically the largest system-
atic error and it is advisable to repeat all evaluations for different cutoff orders and
manually examine the results for convergence. Ideally the corrections to a result,
compared to the corresponding data for smaller order cutoffs, decrease monoton-
ically with order. Then the fluctuations between the results for the largest few
cutoff orders are found to provide a reasonable estimate for the truncation error.
We typically find that bare irreducible quantities like the self-energy and vertex
function can be treated in this way for systems with interactions up to values of
the order of the half-bandwidth. Benchmarks with other numerical techniques and
in particular exactly solvable models provide important guides for the reliability
of such estimates.

In principle, resummation techniques can regularize even divergent series and
provide more reliable extrapolations to the limit of infinite diagram order (cf. Refs.
[87, 121, 91] for some examples in the DiagMC context). Our test for the Hub-
bard model did however not show relevant cases where the asymptotic behaviour
of the resummed series was apparent for manageable values of the resummation
parameters. Hence none of the results presented in this work are based on series
resummations.

3.5 Benchmarks

We conclude the chapter with benchmark comparisons to results from other con-
trolled numerical methods and specifically examine the convergence behaviour of
different observables with the diagram order cutoff N∗. Excellent benchmark data
are available for the Hubbard model at some points with additional symmetries:
For repulsive interactions U > 0 at half filling, n = 1, and for attractive interac-
tions U < 0 in the absence of a magnetic field, n↑ = n↓, the sign problem is absent
in some QMC formulations, so that these methods become numerically exact in the
sense that all stochastic and systematic errors can be reduced to arbitrarily small
values with polynomial effort. We compare in particular to data obtained by the
dynamical cluster approximation (DCA), a cluster extension of dynamical mean
field theory, and determinantal Quantum Monte Carlo (DetMC) calculations on
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finite lattices. Both methods become exact in the limit of infinite cluster or lattice
size, respectively, and do not suffer from a sign problem in the aforementioned
cases.

3.5.1 One-particle observables

In the following we examine observables that are available from self-energy cal-
culations in the Fermi liquid phase, in particular the energy per site E and the
double occupancy 〈nx↑nx↓〉, before turning to pairing eigenvalues and transition
temperatures.

3D Hubbard model at half filling

1.1

1.0

0.9

0.8

E
/
t

DiagMC
DCA
CTQMC

0.0 0.5 1.0 1.5 2.0
temperature T/t

0.16

0.17

〈 n x↑
n

x
↓〉

Figure 3.27: Temperature dependence of the energy density and double occupancy
in the half-filled 3D Hubbard model at U/t = 4: DiagMC finite-order extrapola-
tions compared to finite-size extrapolations of DCA and CTQMC data.

Figure 3.27 presents the energy and double occupancy of a half-filled three-
dimensional Hubbard model at interaction U/t = 4 over a wide range of tempera-
tures, from T/t = 2 down to the vicinity of the Néel transition, which is roughly
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located at T/t ≈ 0.18 (see below). For these parameters both DCA data for cluster
sizes Nc = 18, . . . , 64 and determinant diagrammatic continuous-time Monte Carlo
(CTQMC) results for lattices with up to 103 sites are available from Refs. [122] and
[123], respectively. The agreement between their finite-size extrapolations and the
DiagMC finite order extrapolation is excellent, except for the lowest temperatures,
which are presumably at or below the Néel transition. Here the diagrammatic se-
ries breaks down due to the divergence of the sum of particle-hole ladder diagrams.
In the vicinity of such a phase transition we usually observe that the finite-order
DiagMC results smoothly extrapolate the Fermi liquid behaviour like in the present
case.

Turning to the convergence properties of the series, Figure 3.28 displays the
dependence of the energy (top panel) and double occupancy (bottom panel) esti-
mates on the cutoff order N∗ for representative temperatures. Here one observes
a particularity of the half-filled model: All contributions from odd-order diagrams
vanish due to particle-hole symmetry, resulting in the characteristic step structure
of the convergence plots. The height of these steps, i.e. the magnitude of the cor-
rection yielded by an increase of the order cutoff by two, decreases by an order of
magnitude in all cases. (The first-order estimate for the double occupancy is the
mean-field result 〈nx↑nx↓〉 = 〈nx↑〉〈nx↓〉 = 0.25, independent of temperature.) We
therefore use the result for the largest cutoff as estimate for the extrapolated value
and the difference to the previous two orders (including stochastic error bars) as
confidence interval, indicated by dashed horizontal lines in Fig. 3.28. The finite
size extrapolations from DCA and CTQMC are shown for comparison. The lower
panel additionally contains the respective DMFT results (green dotted horizontal
lines) and DCA data for finite cluster sizes Nc = 18, . . . , 64 (green dots); their
respective X coordinates are given by 1/N

2/3
c , such that a linear scaling to the

TDL limit (green dashed lines) is expected [122].

2D Hubbard model

Figure 3.29 shows the convergence behaviour of the energy and double occupancy
with diagram order for the two-dimensional Hubbard model at various fillings.
Away from half filling no numerically exact results are available (in the sense that
arbitrary accuracies for large systems cannot in general be reached with polynomial
efforts), but at moderate temperatures there are still results for large finite size
systems available. Here we compare to DCA results provided by E. Gull’s group.
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Figure 3.28: Convergence of energy and double occupancy with diagram order:
Half-filled 3D Hubbard model at U/t = 4. See main text for explanations.
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Figure 3.29: Convergence of energy and double occupancy with diagram order for
different fillings: 2D Hubbard model at temperature T/t = 0.25 and interaction
U/t = 4. Circles are DiagMC finite-order data, dashed horizontal lines their
extrapolations. Crosses represent DCA data for cluster sizes Nc = 20, . . . , 50 (and
20, . . . , 72 for n = 1). We use 1/Nc as X coordinates for the DCA data points,
which is the expected scaling to the TDL [124].
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3.5.2 Phase transitions

Néel transition

As a first benchmark for the calculation of transition temperatures we consider
the Néel transition in the half-filled three-dimensional Hubbard model. The top
panel of Fig. 3.30 shows the growth of the leading Bethe-Salpeter eigenvalue in the
magnetic (Sz = 0) channel with decreasing temperature. DiagMC data points for
cutoff orders N∗ = 1, . . . , 6 are represented by open circles with different colors.
According to weak-coupling BCS theory one would expect a logarithmic divergence
∼ lnT , hence the panel’s temperature scale is logarithmic. We fit the data points
for each order with a second order polynomial (solid lines) in order to capture
first-order corrections to this form, which cause a slight curvature. At the point
where a curve crosses unity, marked by a diamond symbol, the series of ladder dia-
grams built from Nth order approximations to the self-energy and the irreducible
vertex diverges. We hence use this point as the Nth order estimate of the transi-
tion temperature TN . These estimates are then plotted in the lower panel against
the inverse cutoff 1/N∗. They apparently exhibit a decaying oscillatory pattern
between even and odd orders. From the largest three orders we extrapolate the
Néel temperature to TN = 0.185(26) (dashed lines), in units of the hopping am-
plitude t. In the literature there is a slight discrepancy between (discrete-time)
determinantal Monte Carlo (DetMC) extrapolations by Staudt et al. [125] and
DCA extrapolations by Kent et al. [126], on the one hand, which indicate a Néel
temperature close to TN = 0.19, and recent CTQMC simulations by Kozik et al.
[123], on the other hand, who claim an upper bound TN < 0.17 after a careful finite
size scaling analysis. Our DiagMC results should not be subject to the finite size
scaling issues which are the likely cause of this discrepancy, but the convergence of
the diagrammatic series is not quick enough to resolve the difference. So within the
stochastic and systematic uncertainties the DiagMC result is compatible with all
the mentioned results, but the transition temperature should not be too far from
the upper bound of 0.17. The lower panel of Fig. 3.30 indicates this upper bound
with a blue arrow. Additionally, DCA data for cluster sizes Nc = 4, . . . , 128 from
Ref. [127] are shown (green dots),14 which seem consistent with the extrapolation
of Ref. [126].

At slightly larger interaction U/t = 5, the even-odd oscillations in the finite-
order TN estimates decay considerably more slowly, as shown in Fig. 3.31, so our
extrapolation TN = 0.25(7) contains a larger systematic uncertainty, but here a
highly accurate reference point TN = 0.2175(44) is available from Ref. [123], which

14Raw data courtesy of J. Imriška.
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Figure 3.30: Néel transition in the half-filled 3D Hubbard model at U/t = 4 (see
main text for description).
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Figure 3.31: Convergence of the Néel transition temperature with diagram order
in the half-filled 3D Hubbard model at U/t = 5. The extrapolation, indicated
by dashed lines, is consistent with the finite-size extrapolated CTQMC data [123]
(blue diamond).

is consistent with our result.

Superconducting BKT transition

As a final test case we consider the attractive two-dimensional Hubbard model.
According to the Hohenberg-Mermin-Wagner theorem [128, 129] no continuous
symmetry can be broken at finite temperature in a two-dimensional system. Still,
at generic filling there is a Berezinskii-Kosterlitz-Thouless (BKT) transition [130,
131, 132] to a quasi-ordered phase with algebraically decaying superfluid correla-
tions. From a diagrammatic perspective this transition does not differ from a con-
tinuous superfluid transition in three dimensions; it still manifests in a divergence
of the particle-particle correlation function, driven by the series of particle-particle
ladder diagrams. We thus track the leading Bethe-Salpeter eigenvalue for zero
centre-of-mass momentum in the spin-singlet channel with s-wave symmetry on
lowering the temperature and record the point where the eigenvalue crosses unity,
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signalling the transition. Figure 3.32 presents the dependence of this transition
temperature estimate on the order cutoff imposed on self-energy and irreducible
pairing vertex for the three fillings n = 0.1, 0.5, and 0.8. As determinantal Monte
Carlo schemes do not suffer from a sign problem for attractive interactions in the
absence of a magnetic field, we can again compare to accurate results from finite
lattice and dynamical cluster calculations – even though the large length scales
typically connected to the vortex unbinding physics at the BKT transition require
large system sizes and a careful finite size scaling analysis. In particular we com-
pare to finite size extrapolations of DetMC data from Ref. [133] and to results from
large-scale DCA+ calculations [134], i.e. a variant of the dynamical cluster approx-
imation with continuous lattice self-energy. Figure 3.32 indicates the finite-cluster
estimates from DCA+ clusters with Nc = 24, . . . , 256 sites by green dots and the
corresponding extrapolation to the thermodynamic limit by a green square. The
DetMC extrapolation is represented by a blue diamond. The DiagMC data is con-
sistent with the reference data in all cases. However, the convergence behaviour
of the diagrammatic series clearly varies significantly between the different fillings:
In the neighbourhood of half-filling (n = 0.8) there are strong oscillations between
even and odd orders, which decay only slowly. In the dilute regime, in contrast,
there are no oscillations but a strong trend to smaller transition temperatures. We
can address larger orders in the latter case because the sign problem is less severe
in this regime, and there seems to be some saturation beyond the eighth order,
but a reliable extrapolation is still difficult. We thus indicate upper and lower
bounds (dashed lines) corresponding to an instant saturation and a linear extrap-
olation of the trend, respectively. Clearly the sweet spot is around quarter filling
(n = 0.5), where the series converges fast enough to allow for a similarly accurate
determination of the transition temperature as the methods not suffering from a
sign problem. Presumably the slower convergence in the low and high density
regimes can be attributed to important contributions from the particle-particle
and particle-hole ladder diagrams, respectively, to the self-energy.

On a final note we point out the behaviour of the eigenvalue in the particle-hole
channel corresponding to a checkerboard density wave, i.e. with centre-of-mass
momentum Q = (π, π), which is indicated by magenta triangles in the bottom
panel of Fig. 3.32. At half filling the superfluid and density wave channels become
degenerate and form a three-component order parameter, which prevents any fi-
nite temperature transition. From a weak-coupling perspective, the density wave
should be suppressed by doping, which removes the perfect nesting property of
the Fermi surface, so the superfluid phase is expected to dominate away from half
filling. The finite-order data we can access at n = 0.8 agrees with this expectation
and lies below the corresponding superfluid data up to N∗ = 4, but the fifth and
sixth order estimates are significantly larger. With this irregular behaviour we
cannot extrapolate the density wave eigenvalue, so from the present data it would
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be impossible to decide whether the superfluid transition is preempted by a density
wave transition.
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Chapter 4

Unconventional order by Fermi
surface mismatch

Usually a system of spin-1
2
fermions with an attractive effective interaction, even

arbitrarily weak, is unstable towards a superfluid transition at low temperature
where electrons at the Fermi surface (FS) form singlet pairs with zero center-of-
mass momentum and the spectrum of single-particle excitations features a nodeless
gap [135, 136]. More exotic types of order can arise when the s-wave superfluid
state is suppressed by manipulating the spectrum or band fillings of the spin com-
ponents, thereby creating a mismatch between the spin-up Fermi surface (FS↑) and
the spin-down one (FS↓). The latter option, i.e., the introduction of spin popula-
tion imbalance, may lead to the formation of pairs with finite total momentum and
an inhomogeneous superfluid phase [137, 138]. Another possibility is to keep the
spin species equally populated but realize a spin-dependent FS deformation, which
could either form spontaneously in a spin-nematic transition [139, 140, 141] or be
imposed externally when ultracold atoms are loaded into spin-dependent optical
lattices [142].

In the following section, published in Ref. [1], we study the latter scenario,
which has been suggested to harbor an exotic Cooper-pair Bose metal ground
state, a putative metallic phase of tightly bound pairs with a gap for single-particle
excitations, but no condensate and gapless bosonic excitations along so-called Bose
surfaces in momentum space. Afterwards, we turn to the former case and investi-
gate the creation of superfluid instabilities with finite pair momentum.

4.1 Spin-dependent hopping anisotropy

The proposal for realizing a Cooper-pair Bose metal phase is exciting for it would
establish an entirely new quantum phase and be one of very few known examples

113



4.1 Spin-dependent hopping anisotropy

0.0 0.5 1.0 1.5 2.0
attraction |U|/D

0.0

0.2

0.4

0.6

0.8

1.0

a
n
is

o
tr

o
p
y
 α

sSSF

p3 TSF

p2 TSF
IDW

Figure 4.1: Schematic low temperature phase diagram at density n = 1.2. Black
triangles indicate phase transitions in the weak-coupling limit. Black circles mark
the onset of instability in the sSSF channel (with dashed lines interpolating be-
tween them). Stars mark points where various ordering channels were compared
to each other. Colored regions delimited by dotted lines indicate possible extents
of the phases consistent with our data. Except for the data points represented
by symbols, we do not claim precise location of the respective phase boundaries.
At α . 0.2 the p2TSF and p3TSF phases are nearly degenerate. SSF/TSF are
singlet/triplet superfluids, IDW an incommensurate density wave; see main text
for an explanation of s/p symmetry classifications.

of systems with d ≥ 2 space dimensions that do not form an ordered ground
state at zero temperature. Until now however, a well-controlled investigation of
the setup in two dimensions (2D) beyond the mean-field level, which in itself is
debated [143, 144], is lacking. In the relevant regime of intermediate interaction
strength this is challenging due to the absence of small parameters and the fact
that broken spin-inversion symmetry causes a sign problem in determinant Monte
Carlo simulations even for attractive interactions. DMRG simulations on a ladder
geometry see evidence for the existence of a one-dimensional analog of the Cooper-
pair Bose metal [145] but extrapolations to the thermodynamic 2D limit are not
straightforward.
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In this work we solve the fundamental questions on the nature of the low tem-
perature phases emerging once a spin-dependent anisotropy suppresses the conven-
tional s-wave singlet superfluid by both a systematic study of the weak-coupling
limit and by diagrammatic Monte Carlo (DiagMC) simulations at intermediate
interaction strengths. We find that mean-field calculations overestimate the sta-
bility of superfluid phases with trivial symmetry. At low temperatures we find a
rich phase diagram, shown in Fig. 4.1, consisting of a conventional s-wave singlet
superfluid (sSSF) at weak anisotropy, an incommensurate density wave (IDW) at
strong anisotropy and two different p-wave triplet superfluids (p2TSF and p3TSF)
at intermediate anisotropy. Additionally, we clarify the mechanism leading to an
indirect effective interaction between particles with identical spins, enabling triplet
pairing.

The model of Ref. [142] is a Hubbard-type Hamiltonian on a square lattice

H =−
∑

i,σ
ν=x̂,ŷ

(
tν,σc

†
i,σci+ν,σ + h.c.

)
+ U

∑

i

ni,↑ni,↓ − µ
∑

i,σ

ni,σ (4.1)

with spin-dependent anisotropic hopping amplitudes tν,σ, on-site attraction U < 0,
chemical potential µ, and standard notations for on-site fermionic creation, c†i,σ,
and annihilation, ci,σ, operators with spin σ =↑, ↓. The hopping parameters are
set to tx↓ = ty↑ = ta, ty↓ = tx↑ = tb leading to an unpolarized system with balanced
spin populations 〈ni,↑〉 = 〈ni,↓〉 = n/2. Unless explicitly mentioned, all numerical
results presented below are at fixed density n = 1.2, which is equivalent to n = 0.8
due to particle-hole symmetry. Other fillings will be discussed at the end of this
section. Without loss of generality we choose tb < ta and define an anisotropy
parameter α = 1 − tb/ta ∈ [0, 1] so that α = 0 corresponds to the isotropic
Hubbard model and α = 1 is the extreme anisotropy limit where fermions can
only move in one dimension.1 The half-bandwidth D = 2(ta + tb) is chosen as the
unit of energy. The spin-dependent anisotropy breaks the continuous SU(2) spin-
rotation symmetry to a discrete Z2 symmetry of combined spin inversion and space
rotation by 90◦ and reduces the spatial symmetry to the point group of a rectangle,
which has two irreducible representations with even and two with odd parity. In
the absence of spin rotation symmetry neither can the particle-particle channel
be decomposed into singlet and triplet channels nor the particle-hole channel into
density and spin channels. The terms “singlet”/“triplet” therefore refer to pairing
between different/same spin species. A “density wave” (DW) refers to an in-phase
modulation of both spin densities. In 2D, these phases have gapless Goldstone
modes and exhibit algebraically decaying order-parameter correlations instead of
true long-range order at finite temperature [146, 147].

1Note that this definition of α differs from the α parameter chosen in Ref. [145].
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4.1.1 Weak coupling analysis

As all the phases we find in our simulations can be understood from a weak-
coupling perspective we first analyze the system in the |U | → 0 limit before pre-
senting DiagMC results for finite U . Our general approach is to look for instabilities
of the Fermi liquid when lowering the temperature. A phase transition if signalled
by the divergence of a correlation function and hence of the two-particle vertex Γ̃,
which is related by the Bethe-Salpeter equation [97]

Γ̃ = Γx + Γx χx Γ̃ (4.2)

to the particle-particle (x = pp) or particle-hole (x = ph) irreducible vertex Γ
and a product of two single-particle propagators χ = GG. Γ̃ diverges when the
largest eigenvalue of the kernel (−Γχ) reaches unity. Decomposing the vertices
according to spin and spatial symmetry and monitoring their leading eigenvalues
we can hence detect and characterize phase transitions into ordered states.

Suppression of BCS transition

In the isotropic model the dominant weak-coupling instability is the formation of
Cooper-pair singlets with zero center-of-mass momentum and s-wave symmetry
(sSSF). To first order in the interaction Γ = U such that the leading eigenvalue2

λ
(1)
sSSF = −U

∫
dk G↑(k)G↓(−k) (4.3)

will equal unity at a finite temperature for any U < 0 because the integral over
the pair propagator diverges logarithmically with decreasing temperature. A fi-
nite anisotropy α 6= 0 reduces the overlap between FS↑ and FS↓ to four discrete
crossing points, as illustrated in Fig. 4.2. This renders the integral (4.3) finite in
the T → 0 limit, removing the weak-coupling Cooper instability.

Incommensurate density wave

In the extreme anisotropy limit α = 1 the particles can move only in one dimension
and the Fermi edges are straight lines k↓

F = (±kF , y) and k↑
F = (x,±kF ) as

illustrated in Fig. 4.3. Like in one-dimensional systems [147] the particle-hole
propagators show perfect nesting and hence a low temperature divergence when
the total momentum Q is equal to 2kF for the dispersing direction. In contrast

2We use the shorthand notation k ≡ (iωn,k) and
∫
dk ≡

∫
BZ

d2k
(2π)2T

∑
n for the Brillouin

zone integral and sum over Matsubara frequencies.
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α=0.0 α=0.1 α=0.23 α=0.5

Figure 4.2: (top row:) Momentum distributions (color plots) of free ↓-fermions
(dashed lines indicate FS↑) with hopping anisotropy α increasing from left to
right at temperature T/D = 0.02. Axes correspond to momenta kx,y ∈ [−π, π] in
the first Brillouin zone of the square lattice. At α∗ ≈ 0.23 the FS topology changes
from a single closed contour (“2D like”) to two disconnected lines that wind around
the BZ boundaries in one direction (“1D like”). (bottom row:) Pair propagator χpp↑↓
for the same systems at zero frequency. The maximum value D/4T (red color)
is independent of α and diverges linearly with inverse temperature. However, for
α 6= 0 its support shrinks to four discrete points in the T → 0 limit, rendering the
integral over k finite.

to one-dimensional systems, the dispersing directions are different for the different
spin species. Because the dominant process for weak coupling is a chain of particle-
hole bubbles of alternating spin, the wave vectorQ = (2kF , 2kF ), providing perfect
nesting for both types of bubbles, creates the dominant instability. The result is an
incommensurate density wave (IDW) along one or both lattice diagonals. Which of
the two possible scenarios (uniaxial order along one spontaneously chosen diagonal
or biaxial order corresponding to an incommensurate checkerboard) is ultimately
realized cannot be determined from the instabilities of the Fermi liquid.

At generic anisotropy α < 1 the weak-coupling instability in the particle-hole
propagator remains only at half filling n = 1 where nesting at the staggered wave-
vector Q = (π, π) is expected to lead to checkerboard density order.
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Figure 4.3: (left:) Momentum distribution function for free Fermions at extreme
anisotropy α = 1. The white arrow indicates the momentumQ = (2kF , 2kF ) which
leads to perfect nesting for both spin species. (right:) Density waves with uniaxial
(top) or biaxial (bottom) ordering momentum. Colour saturation indicates the
particle density at a given lattice site (white: ni = 0, red: ni = 2), black arrows
the vectors 2π/Q.

Triplet pairing

Away from these special lines in the α−n phase diagram there are no instabilities
to first order in U as there is no direct interaction between identical particles. But
at second order the particle-hole bubble

Γpp↑↑(k − k′) = U2

∫
dk1G↓(k1)G↓(k1 + k − k′) (4.4)

mediates an effective interaction between the same-spin particles. As FSσ triv-
ially matches with itself there is a generic superfluid instability in the triplet chan-
nel, which becomes relevant whenever all other instabilities are removed. Due to
fermionic antisymmetry the triplet pairs have odd parity (“p-wave”).3 The point
group’s two odd irreducible representations are B2u and B3u, which differ in the
position of the nodal line but are related to each other by a 90◦ rotation such that
they merge into the 2D representation of the square lattice in the isotropic limit.
Numeric calculations of (−Γχ) with the second-order vertex (4.4) show logarith-
mically diverging eigenvalues in both sectors. The prefactors of the lnT terms
strongly depend on anisotropy (and filling) as shown in Fig. 4.4. While intermedi-

3Channels with odd frequency symmetry are irrelevant in the weak-coupling limit as the
effective vertex vanishes at ω → 0, cancelling the pair propagator divergence.
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Figure 4.4: (left:) Weak-coupling eigenvalues for pairing of ↑ particles. The dashed
vertical line marks the crossover at α∗ from 2D to 1D topology of the FS. (right:)
Momentum-space structure of the leading pairing eigenvector obtained with Di-
agMC at finite attraction |U | = D. Axes are the same as in Fig. 4.2. As in the
weak-coupling analysis the leading instability at intermediate anisotropy α = 0.375
belongs to the representation B3u with horizontal nodal line ky = 0 (top) whereas
at large anisotropy α = 0.9 the B2u configuration with vertical node kx = 0 domi-
nates (bottom).

ate anisotropy in general favors the configuration where the nodal line is parallel
to the FS patches (B3u for ↑ spins, upper right panel in Fig. 4.4) the pairing vertex
in this sector vanishes at extreme anisotropy because the ↓ spins mediating the
effective interaction can only move in the direction of the nodal line, leaving only
the configuration with the nodal line cutting through the FS of the pair’s con-
stituents (B2u, lower right). For α → 0 both configurations become degenerate.
As the model is invariant under a combined spin inversion and 90◦ rotation of
space, both species reach the superfluid transition at the same temperature but
in different symmetry sectors. To leading order, the resulting state consists of
independent condensates for the ↑ and ↓ spins, with the order parameter of one
condensate having a horizontal nodal line and the other a vertical one. Still, the
effective interaction holding the pairs together is purely due to the other species.
We refer to the superfluid phase where the ↑↑ pairs have B2u or B3u symmetry as
p2TSF and p3TSF, respectively.
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Figure 4.5: Extrapolation of the leading eigenvalues of the Bethe-Salpeter kernel
(4.5) restricted to the lowest Matsubara frequencies ω = ω′ = iπT to zero tem-
perature to determine the slope of the lnT -divergence in the weak-coupling limit.
Shown is the data for intermediate anisotropy α = 0.5 at n = 1.2. Dashed lines
are guides to the eye, solid lines are linear fits, crosses at T = 0 mark the extrapo-
lated values. While eigenvalues for all four irreducible representations of the point
group D2h are displayed, the even representations have odd frequency symmetry
and hence vanish at ω → 0. Extrapolated values for the odd representations are
plotted versus anisotropy in Fig. 4.4.

Weak-coupling pairing eigenvalues

The generic form of the Bethe-Salpeter kernel for superfluidity with zero center-
of-mass momentum is

K(ωn,k|ωn′ ,k′) = − T

(2π)2
χ(ωn,k)Γ(ωn,k|ωn′ ,k′) (4.5)

with pair propagator χ(ωn,k) = G(ωn,k)G(−ωn,−k) and two-particle irreducible
vertex Γ. At low temperature T � TF it is dominated by processes taking place
on the FS and at vanishing frequency where the pair propagator diverges whereas
the irreducible vertex converges to a smooth zero-temperature value such that
its arguments can be restricted to the FS (k, k′ → kF ) and ωn, ωn′ → 0. After
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Figure 4.6: Weak coupling eigenvalues for pairing of ↑-particles at density n = 1.1.
The dashed vertical line marks the FS topology change α∗. The fact that here
the anisotropy quickly splits the B2u and B3u representations suggests that the
near-degeneracy in a wide regime 0 < α . 0.2 at density n=1.2 (Fig. 4.4) is
accidental.

this replacement, only the pair propagator depends on frequency ωn and on the
deviation from the FS k−kF . Both variables are readily integrated out with stan-
dard techniques, linearizing the dispersion around the FS [98]. Then, discretizing
the FS into segments s of length ls, the asymptotic scaling of the Bethe-Salpeter
eigenvalue with temperature is

λ ∝ −λFS ln
T

TF
, (4.6)

where λFS is determined by a discrete eigenvalue problem

λFS = eig

(
− lsZ

2
s

(2π)2vF,s
Γs,s′

)
, (4.7)

with Zs and vF,s the quasiparticle weight and Fermi velocity, respectively, at mo-
mentum kF,s. In practice we split the FS into > 200 segments s, making the
discretization error negligible. In the |U | → 0 limit the leading instability is solely
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determined by the largest lnT prefactor. Computing λFS in each channel from
the leading order diagram and extrapolating to T → 0 (Fig. 4.5) therefore di-
rectly yields the weak-coupling phase diagram as shown in Fig. 4.4 and Fig. 4.6
for different fillings.

4.1.2 DiagMC results for finite interaction

In order to confirm that this weak-coupling picture holds at finite U , we turn
to DiagMC simulations, which sample the bare many-body Feynman diagram-
matic series directly in the thermodynamic limit [86, 88, 89]. We find that all
phases identified in the weak-coupling analysis extend to finite U . As expected,
the lowest-order sSSF and IDW instabilities survive to finite anisotropy. Still,
the FS mismatch is remarkably efficient in suppressing these instabilities already
at |U | ≈ D, leaving a large domain in the phase diagram of Fig. 4.1 where the
conventional eigenvalues saturate below unity at low temperature, as in the upper
panel of Fig. 4.7, and only p-wave order is present. Points where the saturated
sSSF eigenvalue drops below unity are marked by black circles in Fig. 4.1. Tran-
sition temperatures for the unconventional superfluids are exponentially low for
the range of interactions we can access with our method so we cannot track their
eigenvalues down to temperatures close to Tc as we did for the other channels.
Nevertheless, we are confident that these channels will ultimately diverge for two
reasons: First, we clearly observe the eigenvalues in other channels saturate at low
temperature when the Fermi edges are sharp enough to resolve the anisotropy-
caused mismatch. This leaves only the diverging p-wave SF channels. Second, we
observe the self-energy and the irreducible vertex converge at low temperature. By
extracting Fermi-liquid parameters and pairing eigenvalues on the FS from T → 0
extrapolations we obtain the asymptotic strength of the lnT divergence predicted
by BCS theory. These predictions match our finite temperature data remarkably
well, verifying that we are indeed observing the asymptotic low-temperature be-
havior.

Asymptotic triplet-superfluid eigenvalues

At finite interaction the position of the FS kF,s, the quasiparticle weight Zs and
Fermi velocity vF,s are extracted from the proper self-energy and multiplied with
the irreducible vertex evaluated on the FS Γs,s′ = Γ(ω0,kF,s|ω0,kF,s′). Repeating
this procedure with data for different temperatures we obtain λFS(T ), which is
then extrapolated to T → 0. In contrast to the weak-coupling case, there are
contributions from processes with higher energy, which will freeze out at low tem-
peratures and hence not contribute to the asymptotic scaling. They are accounted
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Figure 4.7: Temperature dependence of the leading eigenvalues at |U | = D for
strong anisotropy α = 0.9 (top) and α = 1 (bottom). Dashed lines are guides
to the eye. The solid lines going through the p-wave data points show the T -
dependence predicted by Fermi-liquid theory based on Fermi-liquid parameters and
eigenvalues of the irreducible pairing vertex on the FS with T → 0 extrapolation;
only a constant offset accounting for high-temperature effects has been fitted to the
finite T data points. The solid line going through the Q = (2kF , 2kF ) eigenvalues
is a linear fit in lnT . The inset shows convergence of the transition temperature
TDW with diagram order N∗. The error bars on DW and sSSF data points at the
lowest temperatures are systematic and dominated by extrapolation in the number
of Matsubara frequencies.

123



4.1 Spin-dependent hopping anisotropy

0.02 0.05 0.10 0.20 0.50 1.00
temperature T/D

0.0

0.2

0.4

0.6

0.8

1.0

1.2
p
a
ir

in
g
 e

ig
e
n
v
a
lu

e

sSSF
sTSF

pTSF

0.0 0.5 1.0
1/N ∗

0.05

0.10

0.15 Tc

Figure 4.8: Superconducting eigenvalues for the isotropic model at |U | = D.
Dashed lines are guides to the eye, the solid line is a second order polynomial
fit in lnT used to determine the transition temperature Tc where the s-wave sin-
glet eigenvalue crosses unity. In the triplet channel the (odd-frequency) s-wave
sector is larger at moderate temperature, but saturates at low T due do the node
at ω = 0. (Inset:) Separately doing the fit for each cutoff order N∗ we obtain
the dependence of Tc on N∗, which we extrapolate to Tc/D = 0.042(12) (black
cross), consistent with DetMC results for similar densities in Ref. [133], which we
interpolate to Tc/D ≈ 0.034(4) (black diamond).

for by fitting a constant offset to the temperature dependence of the full eigenval-
ues calculated by DiagMC. Still, agreement between finite temperature data and
the asymptotic scaling form (4.6) with a zero-temperature extrapolation of λFS
is a non-trivial check that an apparent lnT dependence is indeed the asymptotic
T → 0 behavior.

Singlet-superfluid instability

For the isotropic limit (Fig. 4.8) we find a sSSF transition temperature which is
in quantitative agreement with the transition temperatures found by Paiva et al.
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Figure 4.9: Saturated eigenvalues in the sSSF channel at low temperature for
constant interaction |U |. We find critical anisotropies αc(D/2) = 0.057(10) and
αc(D) = 0.24(4) above which there is no BCS instability at any temperature. The
inset shows αc extrapolations in the cutoff N∗.

[133] with the Determinant Monte Carlo algorithm, which does not suffer from a
sign problem for attractive interactions in the presence of spin inversion symmetry.
As soon as spin symmetry is broken by a finite anisotropy, the Cooper instability
at weak coupling is removed but a sizeable interaction may still drive a transition
at higher temperatures where the FS mismatch is less relevant. We observe the
generic feature that the pairing eigenvalues rise quickly with decreasing temper-
ature until a characteristic temperature T ∗ � D where the mismatch is resolved
and the eigenvalues saturate to a temperature-independent plateau. Varying the
interaction or anisotropy changes this characteristic temperature and, more im-
portantly, the height of the low-temperature plateau, leading to a very sharp drop
of the transition temperature to zero when the saturated eigenvalue drops below
unity. Instead of trying to resolve this extremely steep Tc dependence, we monitor
the saturated eigenvalue well below T ∗ while changing α or U in order to determine
the onset of the sSSF instability. Fig. 4.9 shows this procedure for determining
the critical anisotropy αc at weak and intermediate interaction |U | = D/2, D. At
larger interactions the diagrammatic series converge too slowly for a reliable lo-
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Figure 4.10: Saturated eigenvalues in the sSSF channel for constant anisotropy
α = 0.5 (top) and α = 0.9 (bottom). We find lower bounds |Uc|(α = 0.5) ≥ 1.5D
and |Uc|(α = 0.9) ≥ 2.5D for the onset of a BCS instability.
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Figure 4.11: Leading eigenvalues for strong anisotropy α = 0.9 and interaction
|U | = 1.8D. There is a close competition between density waves with different
ordering momenta. Their error bars are dominated by uncertainties in theN∗ →∞
extrapolation. The inset shows convergence of the different DW eigenvalues with
diagram order N∗ for one temperature.

calization of the onset. Varying the interaction for constant anisotropy, shown in
Fig. 4.10, we can only give lower bounds on the critical interaction |Uc| for strong
anisotropy α & 0.5.

Density wave instabilities

If there is any instability in the sSSF channel at these strong anisotropies it is
most probably preempted by a transition in the particle-hole channel as we show
explicitly for one point at strong interaction and anisotropy (Fig. 4.11). While
this case shows a close competition of density waves with different momenta, we
expect that smaller anisotropies would disfavor momenta related to the 2kF nesting
around extreme anisotropy whereas Q = (π, π) order should be less sensitive to
a change of anisotropy. Therefore we suspect that nearest-neighbor checkerboard
order may dominate for a large range of anisotropies at strong interaction |U | &
1.8D. However, arguments based on FS matching become of course increasingly
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4.1 Spin-dependent hopping anisotropy

moot as the strong coupling limit is approached.

Triplet-superfluid instabilities

While the triplet superfluids dominating the phase diagram at intermediate aniso-
tropy are arguably the most interesting phases, they are also the most challenging
to access numerically due to their exponentially low transition temperatures at
moderate interaction strength and their first appearing at second order in the
diagrammatic series. The highest transition temperatures are to be expected at
anisotropies close to the FS topology change α∗ and at large interaction strength,
i.e. close the onset of sSSF or DW instabilities. In these regimes the p-wave chan-
nels converge only slowly with diagram order, preventing reliable extrapolations.
The qualitative picture, however, is very consistent and independent of the chosen
cut-off order N∗. At the anisotropies studied in Fig. 4.12 the p3 symmetry clearly
dominates over p2 at all orders, in accordance with the weak coupling data. Slopes
of the finite temperature eigenvalues in lnT , which are calculated taking the full
momentum and frequency structure of pair propagator and vertex into account,
agree well with Fermi liquid extrapolations. Higher order diagrams for the irre-
ducible vertex consistently increase λFS, resulting in an exponential growth of Tc.
Given this strong trend towards larger Tc visible in the insets of Fig. 4.12 and the
onset of the competing sSSF phase being only at significantly larger interaction
strength than the |U | = D considered here, it is plausible that these exotic triplet
superfluids could be observable at temperatures several orders of magnitude higher
than the finite-order Tc estimates shown here.

4.1.3 Pairing glue

Having established the existence of the triplet superfluids p2TSF and p3TSF in
spite of the absence of any direct interaction, we now investigate the mechanism
that mediates an effective interaction between identical spins. Going a step beyond
the weak coupling analysis, where the interaction is through a virtual particle-hole
pair, we calculate the irreducible pairing vertex in RPA approximation [148], i.e.
summing the series of all particle-hole bubble diagrams up to infinite order

ΓRPA↑↑ (q = k − k′) =
U2χph↓ (q)

1− U2χph↑ (q)χph↓ (q)
. (4.8)

Quantitatively accurate results cannot be expected from RPA, mainly due to the
complete neglect of quasiparticle renormalizations of propagators and interactions.
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Figure 4.12: Superconducting eigenvalues for intermediate anisotropy α = 0.375
(top) and α = 0.5 (bottom). Due to slow convergence p-wave eigenvalues in the
main plots are for fixed cut-off N∗ = 5. Insets show how the transition temperature
in the leading p3 channel changes with order. Solid lines through p-wave data points
are the low temperature asymptotics with only a constant offset fitted to the finite
T data points. Dotted lines mark the uncertainty in the slopes due to stochastic
errors.
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4.1 Spin-dependent hopping anisotropy

Figure 4.13: Spatial structure of the irreducible vertex in the p2TSF (left) and
p3TSF (right) channels for the anisotropies α1 = 0.375 and α2 = 0.9 calculated by
DiagMC and within RPA approximation. RPA data has been calculated for weak
interaction |U | = 1.8ta and scaled with a constant factor for each channel.

In fact, the RPA expression diverges for larger |U | ∼ D, corresponding to a signif-
icant overestimation of the regime with a DW instability. But by performing the
calculation at a reduced interaction and scaling the resulting vertex by a constant
factor, the spatial structure of the exact vertex is reproduced extremely well and
over a wide range of anisotropy, see Fig. 4.13. As it seems unlikely that processes
of different nature and hence diagrammatic structure would lead to exactly the
same spatial structure, we conclude that the pairing interaction responsible for
both triplet superfluids is predominantly mediated by density fluctuations.

4.1.4 Conclusions

The limited data we collected closer to half filling than the density n = 1.2 cho-
sen above look qualitatively similar; in general we expect the DW(π, π) order to
become more important the closer the system is to the n = 1 point. Farther
away from half filling there are indications of a jump in n(µ), signalling phase
separation towards a completely filled system, which is also observed in world-line
Monte Carlo simulations for the system at full anisotropy and strong interaction
[149]. Generally, we cannot exclude that our diagrammatic approach may miss
or underestimate signs of phase separation. Due to slow convergence of DiagMC
results and strong finite size effects and long autocorrelation times in world-line
Monte Carlo we leave this question for future work.
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The Cooper-pair Bose metal phase was proposed to exist at strong anisotropy
|1 − α| � 1 and interaction |U | ∼ 2D [142] where our results indicate a density-
ordered ground state. While both the IDW and the Bose metal are expected
to have algebraically decaying density correlations with singular features at Q =
(2kF , 2kF ), the IDW has divergent correlations at finite temperature and true long-
range order in the ground state whereas the Bose metal correlations remain finite
and not ordered even at zero temperature. We have presented clear evidence for
the divergence of the DW (2kF , 2kF ) density correlator, implying the presence of
a density-ordered ground state at strong anisotropy from weak to intermediate
interactions. In the regime of strong interactions |U | & 2D we cannot reliably
determine the exact nature of the low temperature phase due to slow convergence
of the diagrammatic series but only ascertain a close competition between den-
sity waves with different wave vectors. It would be rather surprising if strong
interactions replaced the ordered ground state with a metallic one.

4.2 Spin imbalance

We now come back to the much older scenario for obtaining unconventional super-
fluid order by imposing a mismatch between the spin-↑ and spin-↓ Fermi surfaces,
namely a population imbalance between the two spin states. In solid state sys-
tems, such a situation can arise when a superconductor is subjected to a magnetic
field and orbital effects are suppressed, e.g. by orienting the field parallel to the
two-dimensional planes of a layered material, or in coexistence regions of super-
conductivity and ferromagnetism. Just fifty years ago, Fulde and Ferrell (FF)
[137] and Larkin and Ovchinnikov (LO) [138] realized independently of each other
that for strong fields on the order of the Pauli limit, where the Zeeman energy ex-
ceeds the BCS superconducting gap [150, 151], in such an imbalanced setup it can
be favourable to create Cooper pairs with a non-zero centre-of-mass momentum
Q, as opposed to the Q = 0 pairing in the BCS state. Hence superconduct-
ing states with finite linear pair momentum are generally referred to as FFLO
(or LOFF) states, although the actual proposals by FF and LO differ: The former
considered the formation of superconducting pairs with a single momentum, which
leads to a plane wave order parameter ∝ exp(iQ · x) and spontaneously breaks
time-reversal symmetry, but preserves translation symmetry. The latter authors
additionally considered the combination of several momenta with equal modulus
and found these to be more stable. In particular, their analysis for the isotropic
three-dimensional case yielded the combination of two opposite momenta as the
preferred solution, which leads to a modulated order parameter ∝ cos(Q · x), i.e.
the LO state breaks translation but preserves time-reversal symmetry.

Despite these proposals’ age there are still many open questions regarding the
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nature and stability of FFLO phases, both in theory and in experiment. Experi-
mental evidence for such a state in materials has been scarce until some very recent
observations in heavy fermion [152, 153] and organic compounds [154]. During the
last decade, however, there has been a surge of research activity due to the possible
realization of the scenario in cold atom experiments, where a population imbal-
ance, e.g. between two hyperfine states, can be cleanly imposed without material
defects and without the need for an external magnetic field [155, 156]. On the the-
oretical side most authors have resorted to approximate tools, like weak coupling
and mean field theories, and only very few well-controlled results are available –
with the exception of the one-dimensional case, where exact analytical and numer-
ical studies are possible [157, 158], and where finite-momentum pairing is a generic
feature of the spin-imbalanced phase diagram,

The general expectation for an interacting Fermi gas in three dimensions, which
is the most-studied case, is that the ground state phase diagram contains a ho-
mogeneous superfluid at moderate polarization and a paramagnetic normal state
at large polarization, separated by a large patch of phase separation [159]. This
picture is based on mean field theory [160] and corroborated by fixed-node dif-
fusion QMC calculations [161]. Here an FFLO state may only appear in a tiny
sliver between the normal and phase-separated regimes. Several authors, however,
have pointed out that lattice effects may increase the stability of an FFLO state
[162, 163]. Indeed, real-space DMFT calculations for fermions in anisotropic op-
tical lattices see a stable and extended LO phase at zero and finite temperature,
located between a homogeneous polarized superfluid at small polarization and the
normal state at large polarization [164, 165, 166]. On the two-dimensional square
lattice, the ground state phase diagram in mean field theory contains extended LO
phases, too [167]. Next to the type and extent of order, important questions con-
cern the character of the phase transitions. In general the normal–LO transition
might be expected to be of first order due to the simultaneous breaking of U(1)
and translational symmetry, although very weak in the finite-temperature regime
where the FFLO instability first develops. Indeed, studies of the isotropic case
in three dimensions see a weakly first order transition [168]. The corresponding
two-dimensional case, however, is believed to give rise to a continuous transition
[169, 170]. Additional questions concern the stability of the different FFLO states
with respect to thermal fluctuations, particularly in two dimensions: A study of
the BKT mechanism for the FF state in a 2D Fermi gas showed that the fluc-
tuations might completely destroy this state at T 6= 0 [171]. The unidirectional
(striped) LO state under the same conditions, on the other hand, was claimed to
be unstable towards an algebraic nematic phase [172].

With all these open questions some well-controlled numeric results would be
highly desirable, even if they could only shed light on some of these aspects. The
only numerically exact study to date consists of determinantal QMC calculations
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for the attractive square-lattice Hubbard model [173]. The authors find a finite-
momentum peak in the pair momentum distribution, in accord with the FFLO
scenario, in large parts of the polarization–temperature phase diagram. Unfortu-
nately, the study is severely limited by the sign problem, arising as soon as the
spin species are subjected to different chemical potentials, and could not reach
low enough temperatures to check for phase coherence of the pairs. Therefore,
the question whether an FFLO phase with (quasi-) long-range order exists is still
not resolved. In the following we hence employ the DiagMC method to check for
regions in the phase diagram where an FFLO instability arises. It is clear that
this approach has some limitations since we cannot enter the ordered phase: We
will not be able to resolve questions regarding the exact type of order (single-Q
vs. multiple-Q, instability towards nematic phases) and we can only look for con-
tinuous phase transitions. We still expect this study to be useful, even in case the
transition is of first order, because in the region where the instability first develops
the difference between first- and second-order phase boundaries should be small.

4.2.1 Finite momentum pairing

The basic mechanism for FFLO order can be well understood in a BCS-like mean
field picture: Assuming for simplicity an attractive effective interaction U < 0
between ↑ and ↓ particles that is independent of momentum and frequency, a
spin-singlet pairing instability with pair momentum Q arises when the eigenvalue

λQ = −Uχ(Q), χ(Q) =

∫
dk G↓(k)G↑(Q− k) (4.9)

equals unity. The integrand of Eq. (4.9) is dominated by momenta for which both
Green’s function arguments are on the respective Fermi surfaces – if there are
any such momenta. This statement corresponds to the fact that only particles
at (or close to) the Fermi surface are available for pairing by a weak interaction.
In the absence of a magnetic field FS↓ = FS↑ any momentum kF on FS↓ can
pair with −kF , which is necessarily on FS↑ due to spin and parity symmetry,
hence λQ is strongly peaked at zero momentum and in fact diverges at this point
for T → 0. The introduction of a spin imbalance however splits the two Fermi
surfaces such that two momenta from different Fermi surfaces never add up to
zero: k↓F + k↑F 6= 0. Hence the zero momentum peak of λQ is strongly suppressed
and the weak-coupling instability is removed. For some finite momenta Q 6= 0,
however, the condition k↓F = Q − k↑F is satisfied at least for some patches of the
Fermi surfaces, as demonstrated in the example of Fig. 4.14. For a significant
imbalance the eigenvalue λQ can hence have a global maximum at a finite pair
momentum Q∗, which will determine the dominant instability as the interaction is
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Figure 4.14: Finite momentum pairing construction: The colour plot shows the
majority spin momentum distribution n↓(k), the dashed white contour the minor-
ity spin Fermi surface FS↑. A ↓ particle at momentum k pairs with an ↑ particle
at Q−k, which belongs to FS↑. The solid white line indicates the shifted minority
FSQ−k↑F ; where this overlaps with FS↓, particles at the respective Fermi surfaces
can form a pair with momentum Q.

increased and cause a transition to an FFLO state. Note that, in contrast to BCS
theory for a conventional superfluid, this mean field picture does not imply the
existence of an FFLO state in the weak-coupling limit, where the BCS approach
becomes asymptotically exact: For any fixed spin imbalance n↓ − n↑ 6= 0, there
is no divergence in χ(Q) for T → 0 at any momentum. An instability λQ = 1
therefore requires a considerable interaction strength.

In the considered approximation the dominant pair momentum can be straight-
forwardly obtained by numerical optimization of the integral (4.9). In this opti-
mization procedure we use interacting propagators, dressed by the self-energy, in
order to include interaction effects on the one-particle level. Figure 4.15 illustrates
the procedure for two different densities n = n↓ + n↑ = 0.8, 0.1 and a rather large
polarization P = (n↓ − n↑)/n = 0.3. It is clear that the lattice dispersion close
to half filling favours finite pair momenta along the lattice axes by deforming the
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Figure 4.15: Finite pair momenta for densities n = 0.8 (top row) and n = 0.1
(bottom row) with polarization P = 0.3 and temperature T = 0.025. Left panels
show majority spin momentum distribution (colors) and minority Fermi surface
(dashed contour), as well as the latter shifted by the optimal pair momentum Q∗
(solid contour). The other panels illustrate the dependence of the one-particle
propagator product χ(Q) on the pair momentum Q. Brillouin zone plots for
n = 0.1 are zoomed to the central region kx,y ∈ [−0.4, 0.4].

Fermi surfaces to squares, which can be aligned along longer patches. The dilute
system in the lower half of Fig. 4.15, in contrast, is close to an isotropic disper-
sion with circular Fermi surfaces, which can at best touch at one tangential point,
irrespective of the direction of the pair momentum. In summary, χ(Q) has cylin-
drical symmetry in the dilute limit, but for finite filling the optimal momentum is
always found on the coordinate axes, Q∗ = (Q∗, 0) and symmetry-related points.
Figure 4.16 plots the optimal pair momenta obtained in this way for different den-
sities and polarizations. For generic filling there is no closed expression for Q∗, but
one can consider two limiting cases:
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Figure 4.16: Dependence of the optimal pair momentum Q∗, extracted from the
one-particle propagator product χ(Q), on density n and polarization P . Dotted
lines indicate the weak-coupling form for an isotropic dispersion, dashed lines for
a square-shaped Fermi surface.

1. In the isotropic limit of small density, the Fermi surfaces are circles and by
Luttinger’s theorem the respective Fermi momenta are

kσF =
√

4πnσ =
√

2πn(1± P ), (4.10)

so the ↑ and ↓ Fermi surfaces are connected by momenta

Q∗ = k↓F − k↑F =
√

2πn(
√

1 + P −
√

1− P ). (4.11)

2. Close to half filling n ≈ 1 and for small polarization P � 1, on the other
hand, the Fermi surfaces are well approximated by squares whose corners lie
on the coordinate axes at

kσF =
√

2π2nσ =
√
π2n(1± P ), (4.12)

which are connected by

Q∗ = k↓F − k↑F =
√
π2n(
√

1 + P −
√

1− P ). (4.13)
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The estimates (4.11) and (4.13) are indicated by dotted and dashed lines, re-
spectively, in Fig. 4.16. The data obtained by numerical optimization lies quite
consistently between the two extreme estimates. Note that the pair momentum
Q∗ = πnP , associated with the “commensurate” LO state found in the mean field
study of Ref. [167] close to half filling and for small polarization, agrees with (4.13)
to leading order in P and (1− n).

4.2.2 Superfluid instabilities

So far we have explained the emergence of a Fermi liquid instability towards pairing
with finite centre-of-mass momentum and obtained the optimal pair momentum
under the assumption of a momentum- and frequency-independent effective at-
tractive interaction. Now we turn away from this mean-field approach and replace
the constant interaction with the irreducible vertex, i.e. we consider the Bethe-
Salpeter equation instead of Eq. (4.9). Due to the cost of the DiagMC calculations
it is not feasible to search for the best pair momentum in this framework. Instead,
we run one calculation for zero pair momentum and one for the optimal momentum
Q∗ found with the method described above, i.e. including correlation effects in the
self-energy but assuming a constant effective interaction. This estimate is expected
to be reasonable (in contrast to the magnitude of the pairing eigenvalues, which
are strongly overestimated by a neglect of correlation effects in the vertex) because
the irreducible vertex typically has a much weaker momentum dependence than
the propagators. Still, we cannot exclude the existence of stronger instabilities at
different momenta. This means that our phase diagrams will be conservative in
the sense that the regions containing an FFLO instability might become larger
when additional pair momenta are considered.

Studying the temperature dependence of the pairing eigenvalues, as shown in
Fig. 4.17 for the quarter-filled case, we find that a finite polarization strongly
suppresses the superfluid instabilities as soon as the temperature is low enough
to resolve the Fermi surface mismatch: While the transition temperature in the
unpolarized system is roughly Tc/t = 0.15 (cf. Section 3.5.2), a moderate polar-
ization of P = 0.2 may only lead to a transition (in the FFLO channel) at the
lower end of the considered temperature range Tc . 0.025. At larger polarizations
P & 0.3 all eigenvalues seem to saturate below unity, indicating the absence of a
transition in the considered channels at any temperature. Comparing eigenvalues
for zero and finite pair momentum, one may differentiate three regimes: At very
large temperatures the Fermi surfaces are so blurred that the two channels are
basically degenerate. Then, in the region where the effects of the Fermi surface
mismatch are first noticeable, there is a small advantage of the zero-momentum
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Figure 4.17: (left:) Temperature dependence of the leading pairing eigenvalues
with pair momentum Q = 0 (circles connected by dashed lines) and Q∗ (triangles
and solid lines) for polarizations P = 0 . . . 0.3 at U/t = −4, n = 0.5. (right:)
Critical temperature estimates for the same parameters versus diagram order cutoff
N∗. For P = 0.2 most estimates beyond mean field (N∗ > 1) are below the
considered temperature range. For P = 0.3 no finite transition temperature is
found.

eigenvalue over the other.4 Here a configuration where all parts of FS↑ are close
to FS↓, but never intersect, is apparently more favourable than the alternative
with some matching parts and others that are very far apart. At an even lower
temperature, finally, the zero momentum eigenvalue starts decreasing whereas the
finite momentum one continues growing, although with decreasing rate. Depend-
ing on polarization (and interaction), one of three cases can thus happen when the
system is cooled down: (a) For small polarization, the Q = 0 eigenvalue may grow
to unity before it is overtaken by the Q∗ eigenvalue. (b) For larger polarization,
the FFLO eigenvalue will reach unity first. (c) For even larger polarization, all
eigenvalues may saturate below unity. In other words, either of the Fermi liquid
instabilities may develop first, or the Fermi liquid phase may remain stable.

Because both superfluid instabilities are suppressed rather quickly by a finite
polarization, mapping phase boundaries by scanning the temperature dependence
for fixed polarization is suboptimal. In Fig. 4.18 we instead monitor the pairing

4The effect is on the order of our error bars, but appears very consistently over different
simulations and also on the level of our mean-field analysis.
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Figure 4.18: (left:) Polarization dependence of the leading pairing eigenvalues
with pair momentum Q = 0 (circles connected by dashed lines) and Q∗ (triangles
and solid lines) for temperatures T/t = 0.025 . . . 1 at U/t = −4, n = 0.5. (right:)
Critical polarization estimates for the same parameters versus diagram order cutoff
N∗. For T ≥ 0.5 there is no transition at any polarization.

eigenvalues upon reducing the polarization for fixed temperature. For tempera-
tures above the transition temperature of the unpolarized system all eigenvalues
stay below unity. For lower temperatures the eigenvalues in both channels grow
with decreasing polarization, but the zero momentum channel grows more quickly.
By fitting the eigenvalues’ P -dependence we determine the polarization Pc where
they cross unity and give rise to a superfluid instability. As apparent in the case of
T/t = 0.1, the critical polarizations in the different channels may be very similar,
so differences between order-extrapolated Pc estimates would be on the order of
the systematic uncertainty, making it hard to judge which instability is reached
first. We hence additionally compute the difference between the two channels’
eigenvalues for each diagram order and extrapolate this difference. The results of
this procedure, plotted against polarization in the left panel of Fig. 4.19, typically
have a smaller systematic uncertainty because order truncation errors are similar
for different pair momenta, as visible in the order dependence of the Pc estimates.
Considering the Pc estimates indicated on these curves, we not only conclude that
the FFLO instability is reached before the Q = 0 one for T/t = 0.025, but there
is also evidence for this to be the case at T/t = 0.05, despite the large overlap of
the respective Pc error bars.

139



4.2 Spin imbalance

0.0 0.2 0.4
polarization P

0.0

0.1

0.2

λ
Q
∗−
λ

0

0.025

0.05

0.1

0.2

0.5

Q ∗/π

0.0 0.2 0.4
polarization P

0.02

0.10

1.00

te
m

p
e
ra

tu
re

 T
/t

Figure 4.19: (left:) Difference between finite- and zero-momentum pairing eigen-
values for temperatures T/t = 0.025 . . . 0.5 at U/t = −4, n = 0.5. Critical polar-
izations whereQ = 0 andQ∗ instabilities set in are marked on the curves by circles
and diamonds, respectively. The red line indicates the pair momentum magnitude
Q∗ depending on polarization. (right:) Phase diagram summarizing our data for
n = 0.5: Open symbols indicate the sign of the eigenvalue difference λQ∗ −λ0 (red
diamonds/blue circles: finite/zero momentum pairing dominates; black squares:
no significant difference). The black dashed line divides the two regimes. In blue
(red) shaded regions, delimited by blue dashed (red solid) lines, the Fermi liquid
is unstable towards Q = 0 (Q∗) pairing.

The right panel of Fig. 4.19 finally summarizes our findings for quarter filling:
In the region at large polarization where red diamonds indicate a positive sign of
the eigenvalue difference λQ∗ − λ0, pairing with finite centre-of-mass momentum
clearly dominates over conventional pairing. This is in accord with the large region
found in the DetQMC study of Ref. [173] where the pair momentum distribution
function is peaked at finite momenta but there is no superfluidity (somewhat con-
fusingly called “FFLO phase” in that work). Above this line either zero momentum
pairing dominates (blue circles) or the two channels are nearly degenerate (at small
polarization and large T ). Shaded regions indicate instability of the Fermi liquid
towards superfluidity. In the blue region the Q = 0 instability is present, although
not necessarily dominant. In the red part, however, there is only a finite momen-
tum instability. Assuming a second-order (or weakly first-order) transition, the
system undergoes an FFLO transition when entering this region. The FFLO tran-
sition could only be avoided by phase separation replacing at least this red region.

140



Unconventional order by Fermi surface mismatch

After explaining in detail our analysis and findings with the example of quarter
filling, we can quickly present the results for densities n = 0.8 and 0.9 in Figs. 4.20
and 4.21. The results are qualitatively very similar to the case discussed before.
Both superfluid instabilities seem to extend to slightly larger polarizations than in
the quarter-filled case. At the same time, the systematic uncertainties are clearly
larger in the vicinity of the density-wave instability at half filling, in accord with
the spin-balanced situation studied in Section 3.5.2.

4.2.3 Possibility of phase separation

One scenario frequently arising in studies of polarized Fermi systems, especially at
zero temperature and strong coupling, is phase separation [159]. In the simplest
case, the system would separate into an unpolarized (or weakly polarized) conven-
tional superfluid and a normal phase containing the excess fermions. Even though
the two-dimensional case seems to be less susceptible to first order transitions and
the associated phase separation [169, 170], and in particular the mean-field phase
diagram for the ground state of quarter- to half-filled lattices with interactions
|U | ≤ 4 does not contain phase-separated regions [167], this scenario should be
considered. Our study of Fermi liquid instabilities cannot conclusively rule out
the occurrence of phase separation since this would require a comparison of the
free energies of the different phases. We can however still check for signs for the
development of phase separation by inspecting the Fermi liquid equation of state:
The approach to a phase-separated regime may be accompanied by a developing
jump in the nσ(µσ) curves. Considering separation into weakly and strongly po-
larized phases, we hence plot the dependence of the magnetization n↓ − n↑ on the
chemical potential difference µ↓−µ↑ in Fig. 4.22 for lower and lower temperatures.
Apparently the curves converge to a smooth low-temperature form and there is
hence no indication of phase separation. We stress once more that this absence of
an indication for phase separation is not conclusive evidence against the scenario,
because our data lying inside the regions with a Fermi liquid instability must be
considered as an extrapolation of the Fermi liquid behaviour.

4.2.4 Conclusions

In summary, we have presented the first well-controlled numerical evidence for the
presence of a Fermi liquid instability towards FFLO order in the spin-imbalanced
phase diagram of attractively interacting fermions on the two-dimensional square
lattice. For moderate on-site interaction, U/t = −4, the instability is present in an
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Figure 4.20: Superfluid instabilities at U/t = −4 and n = 0.8. From top left
to bottom right: Polarization dependence of pairing eigenvalues; order cutoff de-
pendence of Pc estimates; optimal pair momentum magnitude Q∗ and difference
between finite- and zero-momentum pairing eigenvalues; phase diagram in the
T − P plane with Q = 0 SF instability shaded blue, exclusive FFLO instability
shaded red. See Figs. 4.18 and 4.19 for a detailed explanation of the plots.
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Figure 4.21: Superfluid instabilities at U/t = −4 and n = 0.9. From top left
to bottom right: Polarization dependence of pairing eigenvalues; order cutoff de-
pendence of Pc estimates; optimal pair momentum magnitude Q∗ and difference
between finite- and zero-momentum pairing eigenvalues; phase diagram in the
T − P plane with Q = 0 SF instability shaded blue, exclusive FFLO instability
shaded red. See Figs. 4.18 and 4.19 for a detailed explanation of the plots.
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Figure 4.22: Magnetization vs. field curves for interaction U/t = −4, three different
total densities n = 0.3, 0.5, 0.8 and temperatures varying from T/t = 0.01 to 1.
For better visibility the curves are shifted by an offset equal to the total density.

extended region of the temperature–polarization plane for a wide range of lattice
fillings. The largest temperatures where this instability should be observable are
roughly by a factor of two to three smaller than the BKT transition temperature in
the corresponding spin-balanced system, similar to DMFT results for anisotropic
optical lattices [166]. At large polarization there does not seem to be any singlet
superfluid order. In this case triplet pairing, which is not susceptible to the Fermi
surface mismatch, may emerge at low temperatures, just as in the case of a spin-
dependent hopping anisotropy [1].
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Chapter 5

On the virtues and dangers of
partial diagrammatic summations

We study the two dimensional Hubbard model in the weak-coupling regime and
compare the self-energy obtained from various approximate diagrammatic schemes
to the result of diagrammatic Monte Carlo simulations, which sum up all weak-
coupling diagrams up to a given order. While dynamical mean-field theory provides
a good approximation for the local part of the self-energy, including its frequency
dependence, the partial summation of bubble and/or ladder diagrams typically
yields worse results than the simple second order perturbation theory. Even widely
used self-consistent schemes such as GW or FLEX are found to be unreliable.
Combining the dynamical mean-field self-energy with the nonlocal component of
GW in GW+DMFT yields improved results for the local self-energy and nonlocal
self-energies of the correct order of magnitude, but here, too, a more reliable scheme
is obtained by restricting the nonlocal contribution to the second order diagram.
FLEX+DMFT is found to give accurate results in the low-density regime, but
even worse results than FLEX near half-filling.

This chapter is based on a preprint by Jan Gukelberger, Li Huang, and Philipp
Werner [7]. The many-body perturbation and dynamical mean field theory calcu-
lations have been performed by Li Huang.

5.1 Introduction

Numerically exact approaches for the solution of correlated lattice models such
as the Hubbard model are limited to one dimension [31, 32], small lattices [174],
weak coupling [86], or to models with particular symmetries and fillings. It is
therefore important to develop approximate methods which work in the thermo-
dynamic limit, in more than one dimension, and in the most interesting range
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5.1 Introduction

of interactions and densities. Typically this means interactions comparable to
the bandwidth and densities close to but not at half band filling. One widely
used scheme is the dynamical mean-field theory (DMFT) [41], which corresponds
to the summation of all local self-energy diagrams, via a self-consistent impurity
construction. This approximation becomes exact in the limit of infinite dimen-
sions [39], as well as in the atomic limit and the noninteracting limit. It also
captures strong-correlation phenomena such as the Mott transition. The DMFT
approximation however neglects spatial fluctuations and thus cannot be expected
to capture all the relevant physics in low-dimensional systems. One possibility
is to extend DMFT into a cluster-DMFT formalism [42], which explicitly treats
the correlations within some small cluster. Another possibility is to implement a
diagrammatic expansion around the DMFT solution by computing the impurity
vertex [175, 176]. Both approaches are computationally expensive and hence lim-
ited to small clusters or leading-order corrections. Especially in view of possible
applications to realistic multi-band systems, it is thus desirable to devise simpler,
computationally less demanding schemes.

One strategy, which has been recently explored in simple model contexts [177,
178, 179], is to combine the local DMFT self-energy with the nonlocal compo-
nent of some many-body perturbation theory (MBPT) such as second-order weak-
coupling perturbation theory Σ(2) or the GW approximation [180, 181]. Alter-
native schemes, such as the combination with the nonlocal self-energy from the
fluctuation-exchange approximation (FLEX) [182, 183] or the T -matrix approxi-
mation (TMA) [184], will also be considered in this work. The advantage of such an
approach is that the computational effort is comparable to single-site DMFT and
that the extension to multi-band systems is rather straightforward. The hope is
that the local self-energy contribution from DMFT captures the strong-correlation
effects while approximately correct nonlocal components are introduced by the
weak-coupling approach.

In a sufficiently weakly correlated system, the local DMFT contribution may
not be needed, so that self-consistent re-summations of certain classes of weak-
coupling diagrams, such as bubble or ladder diagrams, provide an adequate descrip-
tion. While some tests of the widely used FLEX [185] or TMA [186] approaches
have been published, we still lack a clear picture about the importance of the dif-
ferent diagram classes, and the beneficial or detrimental effect of self-consistent
partial re-summations.

The purpose of this study is to shed some light on these issues by benchmarking
the approximate self-energies obtained from various MBPT schemes, DMFT and
combined MBPT+DMFT approaches against results obtained in diagrammatic
Monte Carlo (DiagMC) calculations, which take into account all diagrams up to
a certain order. More specifically, we focus on the two-dimensional square lattice
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Hubbard model

H =
∑

i 6=j,σ
tijc
†
iσcjσ +

∑

i

[Uni↑ni↓ − µ(ni↑ + ni↓)], (5.1)

with tij = t for i and j nearest-neighbor lattice sites, and zero otherwise. The
Fourier transform of the hopping matrix is hence εk = −2t(cos kx + cos ky). We
choose the hopping amplitude t = 1 as the unit of energy. Our test calculations
will be limited to the weak-coupling regime U . 4t (half-bandwidth), because in
this regime converged DiagMC data can be obtained. Such a comparison is useful
despite this limitation, since a controlled approximation based on weak-coupling
diagrams, or a combination of weak-coupling diagrams and DMFT, should behave
properly in this limit.

The paper is organized as follows. In Section 5.2, we briefly discuss a num-
ber of established approximations (DMFT, GW , TMA, FLEX) and the DiagMC
method. In Section 5.3, we benchmark the quality of the local DMFT self-energy,
the local and nonlocal MBPT self-energies and various combined MBPT+DMFT
approaches. We also study the convergence properties of partial summations of
different classes of weak-coupling diagrams. Section 5.4 contains a summary and
conclusion.

5.2 Methods

5.2.1 Dynamical mean-field theory

Dynamical mean-field theory [41] maps a lattice model onto a self-consistently
defined quantum impurity model described by the action

SDMFT =

∫ 1/T

0

dτ [Uni↑(τ)ni↓(τ)− µ(ni↑(τ) + ni↓(τ))]

+
∑

σ

∫ 1/T

0

dτdτ ′c†σ(τ)∆σ(τ − τ ′)cσ(τ ′), (5.2)

where T is the temperature and ∆(τ) is the hybridization function. The approxi-
mation which enables this mapping is the assumption of a momentum-independent
self energy Σ(k, iωn) = ΣDMFT(iωn). The DMFT self-consistency condition de-
mands that the impurity Green’s function is identical to the local lattice Green’s
function:

∫
(dk)G(k, iωn) = Gimp(iωn), where

∫
(dk) denotes a normalized inte-

gral over the first Brillouin zone. This condition fixes the noninteracting impurity
Green’s function G0(iωn), or equivalently the hybridization function ∆(iωn) =
iωn +µ−1/G0(iωn), which plays the role of the dynamical mean field. In practice,
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the self-consistent solution is found by iterating the following steps (here formu-
lated in terms of the “mean field" G0):

1. Solve impurity model: given G0, compute Gimp,

2. Extract self-energy ΣDMFT = G−1
0 −G−1

imp,

3. DMFT approximation: Σ(k) = ΣDMFT,

4. Compute Gloc =
∫

(dk)[iωn + µ− εk − ΣDMFT]−1,

5. DMFT self-consistency: G−1
0 = ΣDMFT +G−1

loc.

For brevity, the frequency argument iωn of the Green’s functions and self-energies
has been suppressed. Our DMFT results are calculated using a strong-coupling
continuous-time impurity solver [187] and are thus numerically exact within sta-
tistical errors.

The DMFT self-energy corresponds to the sum of all one-particle irreducible
self-energy diagrams which contain only local dressed propagators Gloc. This ap-
proximation becomes exact in the limit of infinite dimensions [39, 188]. In low-
dimensional systems it is a priori unclear how important the neglected contribu-
tions from diagrams with non-local propagators are, even for the local self-energy.

5.2.2 Weak-coupling approaches

MBPT encompasses several techniques which, motivated by diagrammatic per-
turbation expansions, approximate the electron self-energy Σ at different levels.
Methods like GW or FLEX are frequently considered since they can treat spatial
fluctuations, are easily implemented and appealing on physical grounds. While the
truncation of the weak-coupling series for the self-energy at the first order yields
the Hartree-Fock approximation, which for the paramagnetic Hubbard model just
amounts to a mean-field shift of the chemical potential, the second-order approxi-
mation, displayed in the top panel of Fig. 5.1, includes some non-trivial correlation
effects and creates a non-trivial frequency and momentum dependence in the self-
energy. We will denote the second-order approximation with bare propagators by
Σ(2).

Because a systematic computation of the weak-coupling expansion to high or-
ders requires rather involved and costly numerical computations, and has only
recently become feasible, typical approaches to go beyond second order single out
specific diagram topologies, which may be expected to be dominant in some sce-
narios, and re-sum these diagrams analytically to infinite order by means of Dyson-
like equations. In addition to the choice of topologies to be included, the diagrams
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Σ(2) = +

ΣSGW = + + + · · ·

ΣTMA = + + + · · ·

ΣFLEX = + + + · · ·

+ + + · · ·

+ + + · · ·

Figure 5.1: Illustration of different many-body approximations to the self-energy.
The red wiggly lines represent the on-site interaction U . The blue lines with
arrows correspond to either bare propagators G0, or (in the case of self-consistent
perturbation theory) bold propagators G. The first (“tadpole”) diagram is the
Hartree term. Σ(2) is the second order perturbation theory. ΣSGW is the spin-
dependent GW approximation. The spin-independent GW approximation [189]
in addition contains all the bubble diagrams with an odd number of interaction
lines (not shown). ΣTMA is the T -matrix approximation [184]. Finally, ΣFLEX is
the fluctuation exchange approximation [182, 183].
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can be evaluated with bare propagators G0 or interacting propagators G. If the
self-energy is derived from a functional of the self-consistently computed G, the
approximation can be shown to satisfy certain conservation laws [190]. In prac-
tice, however, bare expansions in terms of G0 are often found to be more reliable
[191, 92].

In the GW approximation [189, 192, 193], the self-energy is given by the prod-
uct of the Green’s function G and the screened Coulomb interaction W , where
only contributions from the bubble diagrams are considered in the calculation of
W . These are particularly relevant in scenarios with long-range interactions where
screening is essential. We consider both the self-consistent GW scheme, where all
propagator lines denote the dressedG, and the “single-shot" approachG0W0, where
the diagrams are evaluated with bare propagators. While most GW calculations
assume a spin-independent interaction, this leads to the inclusion of W diagrams
with an odd number of bare interaction lines, which vanish for the on-site inter-
action of model (5.1). As this effectively removes spin-fluctuations, which can be
expected to be relevant particularly in the vicinity of half filling, we also consider
the spin-dependent GW approximation (SGW ), which retains only the even-order
diagrams, as illustrated in the second panel of Fig. 5.1. The TMA approach, on
the other hand, re-sums the series of particle-particle ladder diagrams (see third
panel), which dominate the diagrammatic series when the typical inter-particle dis-
tance is much larger than the range of the interaction [184]. In the FLEX approach
[182, 183], finally, bubble, particle-particle and particle-hole ladder diagrams are
included (bottom panel), which means that this approximation treats the interac-
tion of electrons via spin, density and pairing fluctuations on equal footing. All of
these approximations have been widely used to study the properties of interacting
lattice models or realistic materials in the weak-to-intermediate correlation regime
[193, 194, 195, 196].

The computational steps for the spin-independent GW approximation are as
follows:

1. Initialize the self-energy ΣGW (k, iωn) = 0.

2. Calculate the Green’s function
G(k, iωn) = 1/[iωn + µ− εk − ΣGW (k, iωn)].

3. Calculate the particle-hole polarization function
ΠGW (k, iνn) = 2T

∑
q

∑
iωn

G(q, iωn)G(q − k, iωn − iνn).

4. Calculate the fully screened interaction
W (k, iνn) = 1/[v−1

k − ΠGW (k, iνn)]. For the Hubbard model, vk = U is the
bare on-site interaction.
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5. Calculate the new self-energy
ΣGW (k, iωn) = −T∑q

∑
iνn
G(q, iωn − iνn)W (k − q, iνn).

6. Go to step 2 until converged results for ΣGW (k, iωn) and ΠGW (k, iνn) are
obtained.

Here, ωn denotes a Fermionic Matsubara frequency and νn a Bosonic Matsubara
frequency, G0 is the non-interaction Green’s function. Note that in practice, we
perform the convolutions in the time domain, which allows an efficient treatment
of the high-frequency components. For the G0W0 scheme only one pass through
steps 1–5 is performed.

When the interaction is considered as spin-dependent, the equation for W in
step 4 should be read as a matrix equation in spin-space with a diagonal polariza-
tion Π and an off-diagonal bare interaction vk = Uσx. Its solution for the diagonal
screened interaction yields

Wσσ(k, iνn) =
U2Π(k, iνn)

1− [UΠ(k, iνn)]2
. (5.3)

Additionally, the factor of two in the definition of the polarization, coming from
the sum over spins, is dropped in the spin-dependent case.

The computational steps for the self-consistent TMA calculation are as follows:

1. Initialize the self-energy ΣTMA(k, iωn) = 0.

2. Calculate the Green’s function
G(k, iωn) = 1/[iωn + µ− εk − ΣTMA(k, iωn)].

3. Calculate the particle-particle polarization function
ΠTMA(k, iνn) = T

∑
q

∑
iωn

G(q, iωn)G(k − q, iνn − iωn).

4. Calculate the T -matrix
T (k, iνn) = −U/[1 + UΠTMA(k, iνn)].

5. Calculate the new self-energy
ΣTMA(k, iωn) = −T∑q

∑
iνn
T (q, iνn)G(q − k, iνn − iωn).

6. Go to step 2 until ΣTMA(k, iωn) converges.

For the non-self-consistent TMA scheme (TMA0) only one pass through the steps
1–5 is performed.

Finally, the procedures for the self-consistent FLEX calculation are as follows:

1. Initialize the self-energy ΣFLEX(k, iωn) = 0.
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2. Calculate the Green’s function
G(k, iωn) = 1/[iωn + µ− εk − ΣFLEX(k, iωn)].

3. Calculate the particle-hole polarization function
Πph(k, iνn) = −T∑q

∑
iωn

G(q, iωn)G(q − k, iωn − iνn). Note that in the
right hand side of this equation there is an additional minus sign in order to
be in accord with the definition in the original literature (see Ref. [197]).

4. Calculate the particle-particle polarization function
Πpp(k, iνn) = T

∑
q

∑
iωn

G(q, iωn)G(k − q, iνn − iωn).

5. Calculate the charge susceptibility
χc(q, iνn) = Πph(q, iνn)/[1 + UΠph(q, iνn)].

6. Calculate the spin susceptibility
χs(q, iνn) = Πph(q, iνn)/[1− UΠph(q, iνn)].

7. Calculate the effective interaction for the particle-hole channel
Vph(q, iνn) = U2 [3/2χs(q, iνn) + 1/2χc(q, iνn)− Πph(q, iνn)].

8. Calculate the effective interaction for the particle-particle channel
Vpp(q, iνn) = −U2Πpp(q, iνn) {1/[1 + UΠpp(q, iνn)]− 1}.

9. Calculate the new self-energy

ΣFLEX(k, iωn) = T
∑

q

∑

iνn

[Vph(q, iνn)G(k − q, iωn − iνn)

+ Vpp(q, iνn)G(q − k, iνn − iωn)].

10. Go to step 2 until ΣFLEX(k, iωn) converges.

For the non-self-consistent FLEX scheme (FLEX0) only one pass through the steps
1–9 is performed.

Note that in all the above calculations the chemical potential µ has to be
adjusted self-consistently to ensure convergence at the the desired density. In our
calculations the k sums are discretized in the first Brillouin zone on a 80×80 grid.
Furthermore, we include the Hartree term in the chemical potential rather than
the self-energy. In other words we redefine the chemical potential and self-energy
as

µ′ =µ− Un/2, Σ′ =Σ− Un/2 (5.4)

and start all calculations with a “bare” propagator

G0(k, iωn) =1/[iωn + µ′ − εk] (5.5)
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(a) + + · · ·

(b) + +

+ · · ·

(c) + + · · ·

Figure 5.2: Examples of diagram topologies not contained in any of the expansions
shown in Fig. 5.1. (a) Self-energy insertions on internal propagator lines. [These
are accounted for in self-consistent schemes which use an expansion in terms of
the interacting propagator.] (b) Ladders with crossed rungs. (c) Topologies with
more complex vertex corrections.

which includes the mean-field effects of the interaction. This choice is mostly rel-
evant for one-shot calculations and corresponds to the practice in ab initio GW
calculations, which commonly start from a Hartree-Fock or density functional so-
lution [192, 193].

5.2.3 Diagrammatic Monte Carlo

The DiagMC technique [86, 88, 89] evaluates a weak-coupling expansion for the
self-energy Σ(k, iωn) up to relatively high orders by means of stochastic sampling.
In contrast to the approximate schemes discussed above, all diagram topologies
are included. A few examples of diagrams neglected in the previous schemes are
shown in Fig. 5.2. While at least FLEX includes all topologies occurring up to
third order, the majority of fourth-order diagrams is already neglected. For higher
orders, only an exponentially small fraction of the diagrams at a given order is
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included in approximate methods such as GW , TMA or FLEX.
Both the sums over diagram orders and topologies, and the integrals over in-

ternal variables are sampled using a Monte Carlo procedure. By restricting the
sampling process to one-particle irreducible diagrams the self-energy is computed
directly and can then be inserted into Dyson’s equation to obtain a single-particle
propagator G(k, iωn) corresponding to an infinite number of diagrams, composed
of arbitrary combinations of the explicitly sampled self-energy diagrams. The
only systematic error consists in a cutoff of the diagrammatic series at order N∗,
i.e. the weak-coupling diagrams are generated for orders N ≤ N∗. Such a cutoff
must be introduced because the average sign in the Monte Carlo sampling van-
ishes exponentially with growing diagram order. By varying N∗ and monitoring
the convergence of the self-energy, the accessible parameter regime can be deter-
mined and the errors can be controlled. We use an expansion in terms of bare
propagators which is typically found to converge towards the correct solution in
the weak-coupling regime U . D, wherever numerically exact benchmarks are
available [89, 92].

5.3 Results

In the following we compare the self-energies obtained from DMFT, several weak-
coupling approximations and combined MBPT+DMFT schemes to the accurate
and well-controlled DiagMC self-energy. We concentrate on the non-trivial part of
the self-energy, Σ′, i.e. after subtraction of the Hartree contribution.

5.3.1 Local self-energy

We start by benchmarking the local self-energy obtained within DMFT. Fig-
ure 5.3 plots the lowest Matsubara frequency component of the local self-energy
Σ′loc(iω0) =

∫
(dk) Σ′(k, iω0) calculated by the DiagMC method up to order N∗ = 7

and compares it to ΣDMFT(iω0) for two different fillings n = 0.4 and 0.8 and inter-
action strengths U = 2 and 4. We find that both the real and imaginary parts are
quite accurately reproduced by DMFT: ImΣDMFT(iω0) agrees with the DiagMC
result within error bars, while ReΣDMFT(iω0) deviates by less than 10%.

While the momentum-dependence is neglected, DMFT can capture a nontrivial
frequency dependence of the self-energy. Figure 5.4 shows the comparison of this
frequency dependence to the DiagMC results for the same parameter sets. We see
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Figure 5.3: Convergence of the weak-coupling series for the local self-energy with
diagram order N∗ and comparison to the DMFT self-energy (solid horizontal lines).
Shown are the real (black circles) and imaginary (blue squares) parts at the lowest
Matsubara frequency ω0 = iπT for two different fillings n = 0.4, 0.8 and two values
of the interaction strength U = 2, 4. The temperature is T = 0.1 in both cases.

that DMFT also predicts the correct frequency dependence of the local self-energy,
with maximum relative deviations of less than 10%.

We next consider the local component of the self-energy obtained from different
weak-coupling approximations. Figures 5.5 and 5.6 show the comparison of the
Σ(2), GW , SGW , TMA and FLEX results to DiagMC, for the same parameters
U = 2, 4 and n = 0.4, 0.8. While none of the weak-coupling approximations are
as accurate as DMFT, the Σ(2) (and to a lesser extent the SGW ) approximation
reproduces the exact result rather well. FLEX gives reasonable estimates for the
real part but can significantly overestimate the imaginary part, especially near
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Figure 5.4: Frequency dependence of the local self-energy from DiagMC (black
and blue dots for the real and imaginary parts, respectively) and DMFT (solid
lines) for the same systems as in Fig. 5.3. DiagMC error bars cover the results
with the three largest cut-off orders N∗ = 5, 6, 7.

half-filling. GW and the TMA yield poor estimates of either the real or imaginary
part. Not surprisingly, the quality of the TMA decreases with increasing inter-
action strength and away from the dilute limit. The GW approximation, on the
other hand, tends to strongly overestimate the self-energy for weak interactions –
presumably due to the inclusion of bubble diagrams that violate the Pauli prin-
ciple. Based on these results, we must conclude that schemes involving partial
summations of diagrams are less reliable than the simple Σ(2) approximation.

Here and in the following we concentrate on the self-consistent versions of
MBPT – except for the simple Σ(2) approximation for which we show the one-shot
result. In the parameter regime considered here, the difference between one-shot
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Figure 5.5: Frequency dependence of the real part of the local self-energy in the
Σ(2), GW , SGW , TMA and FLEX approximation compared to the same DiagMC
results as shown in Fig. 5.4.

and self-consistent calculations is small for n = 0.4, while there can be signifi-
cant differences for n = 0.8. An explicit comparison between one-shot and self-
consistent results for the data of Fig. 5.5 is shown in the appendix of Ref. [7].

In view of these results, the idea of replacing the local component of the MBPT
self-energy by the more reliable DMFT self-energy appears to be reasonable. But
before we investigate how this replacement affects different self-consistent schemes,
we take a look at the nonlocal components of the self-energy.
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Figure 5.6: Frequency dependence of the imaginary part of the local self-energy
in the Σ(2), GW , SGW , TMA and FLEX approximation compared to the same
DiagMC results as shown in Fig. 5.4.

5.3.2 Nonlocal self-energy

Since in the weak-coupling regime considered here the nonlocal self-energy Σij

decays rapidly with the distance |i − j|, and it is computationally expensive to
obtain DiagMC data with small error bars, we restrict the tests of the nonlocal
components to the nearest-neighbor contribution Σnn and the next-nearest neigh-
bor contribution Σnnn. Figures 5.7 and 5.8 show the frequency dependence of these
components, again for U = 2, 4 and n = 0.4, 0.8. Both the real (black) and imag-
inary (blue) parts are plotted in the same panel, and the error estimates of the
DiagMC result are indicated by the grey and blue shading. We have estimated the
systematic uncertainty on the DiagMC data by considering the results for the four
largest cutoffs, while the stochastic uncertainty is estimated from 64 independent
runs.
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Figure 5.7: Frequency dependence of the non-local self-energy for nearest neighbor
sites ∆r = (1, 0) in the Σ(2), GW , TMA and FLEX approximation compared to
DiagMC results. The shaded bands cover stochastic 1σ errors around the DiagMC
results with the four largest cutoff orders N∗ = 4, . . . , 7.

By comparing the y-axis scales in Figs. 5.7 and 5.8 to the corresponding plots
for the local component of the self-energy (Fig. 5.5,5.6) we see that the Σnn and
Σnnn are at least a factor of ten smaller. While the weak-coupling approximations
produce nonlocal components of the correct order of magnitude, the relative errors
are large. None of the weak-coupling approximations gives reliable results for both
the real and imaginary parts. While FLEX seems to work well for the imaginary
part of Σnn, it gives poor results for the real part and for Σnnn. GW and the TMA
do not produce very inaccurate results but they are not systematically better than
Σ(2). To avoid overcrowding the figure, we have not plotted the SGW results,
which are typically between those of GW and FLEX. As for the local self-energy,
we conclude that there seem to be no obvious benefits from partially summing
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Figure 5.8: Frequency dependence of the non-local self-energy for next-nearest
neighbors ∆r = (1, 1) in the Σ(2), GW , TMA and FLEX approximation compared
to DiagMC results.

diagrams beyond the second order.

5.3.3 Combinations of DMFT with weak-coupling approxi-
mations

Since the DMFT approximation provides a good description of the dominant local
part of the self-energy, and weak-coupling perturbation theories produce at least
a reasonable estimate of the nonlocal components, it is tempting to combine the
two approaches. Indeed, such methods have been proposed many years ago, in
particular the combination of Σ(2) and DMFT [180] and the combination of GW
and DMFT [181]. These methods have been designed in particular to treat models
with long-ranged Coulomb interactions, based on an extended DMFT (EDMFT)
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formalism [198, 199, 180, 178], and because of recent methodological advances re-
lated to impurity problems with dynamically screened interactions [200, 201], there
has been a revival of interest in these approaches [177, 178, 202]. The same tech-
niques can also be applied to model (5.1) with only an on-site Hubbard repulsion.
We will consider here the Σ(2)+DMFT, GW+DMFT and FLEX+DMFT schemes,
in which the lattice self-energy is approximated as

ΣMBPT+DMFT
ij (iωn) =ΣDMFT

ii (iωn)δij

+ ΣMBPT
ij (iωn)(1− δij). (5.6)

We have also implemented TMA+DMFT, but will not show these results, because
they do not change the main conclusions. Note that there are various ways of
preventing the double-counting of diagrams. Equation (5.6) corresponds to the
simplest approach, the removal of all the local MBPT self-energy diagrams. This
double-counting scheme also removes diagrams with non-local propagators, which
are not included in the DMFT self-energy. An alternative way of combining the
DMFT and MBPT diagrams is

ΣMBPT+DMFT
ij (iωn) = ΣDMFT

ii (iωn)δij

+ ΣMBPT
ij (iωn)− ΣMBPT

ii [Gii](iωn), (5.7)

where ΣMBPT
ii [Gii](iωn) denotes the subset of ΣMBPT

ii diagrams which contains only
local propagators Gii. We have tested both double counting schemes, but for the
parameter sets considered, the differences are rather small. We will show the results
for the self-energy (5.6), and comment in the text on the effect of the alternative
scheme (5.7), where appropriate.

Because the MBPT+DMFT calculations are done self-consistently, it is not
easy to identify the subsets of diagrams summed up by these schemes. However, as
can be seen in Fig. 5.9, the local Σ in the GW + DMFT approximation reproduces
the DiagMC result very well. The imaginary part agrees with DiagMC within error
bars, and is thus even more accurate than the DMFT result (Fig. 5.4), while the
accuracy of the real part is comparable to DMFT. Since the real part is very
sensitive to the value of the chemical potential, some of these differences may be
explained by the uncertainty in the self-consistent calculation of µ.

In Refs. [178, 202] it was found that the combination of GW and extended
DMFT (EDMFT) makes the system more correlated, compared to EDMFT. This
conclusion was based on an extended Hubbard model calculation at half-filling,
with U = 8t and nearest neighbor Coulomb repulsion V ≥ 0.8t. Comparing
Figs. 5.9 and 5.4 we find the opposite effect in the Hubbard model calculations
away from half-filling: the imaginary part of the self-energy is slightly reduced
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Figure 5.9: Frequency dependence of the local self-energy obtained by Σ(2)+DMFT
(solid lines), GW+DMFT (dashed lines), and FLEX+DMFT (dotted lines) com-
pared to the same DiagMC data as in Fig. 5.4.

by adding the nonlocal GW self-energy, which means that the system becomes
less correlated. This difference may be due to the fact that we consider here a
less correlated system, a system away from half-filling, or it may indicate that the
enhanced correlations in the GW + DMFT study of Ayral et al. result from a
nontrivial interplay between the nonlocal self-energy and nonlocal screening. In
any event, it seems that the addition of the nonlocal GW self-energy can both
increase or decrease the local correlations, depending on the parameter regime.

FLEX+DMFT gives improved local self-energies compared to DMFT for U =
2, and for U = 4, n = 0.4, but the result for U = 4, n = 0.8 is significantly less
accurate than the DMFT prediction. (With the alternative double counting scheme
(5.7), the real part of the self-energy is improved at low Matsubara frequencies,
but the imaginary part is overestimated.) Apparently, close to half-filling, the
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Figure 5.10: Frequency dependence of the nearest-neighbor self-energy obtained
by the Σ(2)+DMFT (solid lines), GW+DMFT (dashed lines) and FLEX+DMFT
(dotted lines) schemes compared to the same DiagMC data as in Fig. 5.7.

feed-back from the inaccurate non-local FLEX self-energy has a detrimental effect
on the local self-energy.

While the differences to GW+DMFT are not very significant, the simple Σ(2)+
DMFT scheme yields the most accurate estimates of the local self-energy, for both
interactions and fillings.

Figure 5.10 compares the non-local self-energy component Σnn obtained from
the Σ(2)+DMFT, GW+DMFT and FLEX+DMFT calculations to the DiagMC re-
sults. The comparison between the MBPT results and MBPT+DMFT are shown
in the appendix of Ref. [7]. These results illustrate how the self-consistent feedback
of the DMFT self-energy into the MBPT scheme affects the nonlocal self-energy.
In the case of Σ(2)+DMFT and GW+DMFT, the change with respect to the
nonlocal Σ(2) and GW self-energy is small and there is no systematic improve-
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ment of the nonlocal components. For FLEX+DMFT, the conclusion is similar
in the case of U = 2 and U = 4, n = 0.4, while for U = 4, n = 0.8 the com-
bined FLEX+DMFT is significantly less accurate than FLEX. (While the double
counting scheme (5.7) improves the result somewhat, both the real and imaginary
parts of Σnn are still significantly overestimated.) Hence, in the parameter regime
where MBPT is not too inaccurate, the local self-energy is apparently improved
in the combined MBPT+DMFT approach, while the non-local components of Σ
are almost unchanged, and do not systematically benefit from the additional local
self-energy diagrams in the non-local propagators. If the MBPT result deviates
strongly from the correct solution, as is the case with FLEX in the intermedi-
ate coupling regime close to half-filling, then the self-consistent combination with
DMFT has detrimental effects on both the local and nonlocal components of the
self-energy.

5.3.4 Relevant diagrams

As discussed in Section 5.2.2, a basic assumption underlying approximate schemes
such as GW and FLEX is that specific diagram topologies with a rather simple
structure contain the relevant physics, at least in certain parameter regimes, such
that the summation can be restricted to a tractable subset. In order to test this
assumption and possibly identify the relevant subsets, we have implemented a
classification scheme for the sampled diagrams in our DiagMC code. This allows
us to check, order by order, the respective contributions from GW -type bubble
diagrams or the particle-particle (pp) and particle-hole (ph) ladders included in
the TMA and FLEX approximations. In addition, we consider the class of ladder
diagrams with crossed rungs (“X-ladders” for brevity), some examples of which are
displayed in Fig. 5.2 (b).

Here, we concentrate on the case U = 4 and study the evolution of Σloc(iω0)
with increasing diagram order. We first focus on the bare expansion in terms of the
non-interacting propagator G0. The left panels of Fig. 5.11 show data for n = 0.4,
with the solid black curve corresponding to the DiagMC result which sums up all
diagram topologies. The other curves correspond to the above-mentioned families
of diagrams and their combinations. We note that the bubble diagrams correspond
to those included in a spin-dependent G0W0 calculation and the pp-ladder to a one-
shot TMA0 scheme, while the bubble+ladders curves contain exactly the topologies
included in a one-shot FLEX calculation. We indicate the results of these one-
shot calculations (with the same chemical potential as used in the corresponding
DiagMC simulation) with colored arrows on the Y-axis.

We see that both the bare particle-particle and particle-hole ladders start to
deviate significantly from the exact result for orders ≥ 3, albeit in opposite ways.
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Figure 5.11: Convergence of the local self-energy with diagram order for the full
series, sampled in DiagMC, and various subclasses of diagrams. See main text
for an explanation of the different diagram classes. The upper (lower) row shows
the real (imaginary) part at the lowest Matsubara frequency iω0 = iπT . The left
and center columns correspond to the bare series at two different densities, while
the right column shows the skeleton series for the same parameters as the central
panels. The black arrows in the right panel show the converged DiagMC result,
as estimated from the bare series.

The bare bubble series seems to be slightly more well-behaved although it tends to
worsen rather than improve the second-order result, in agreement with the findings
for the SG0W0 approximation. While the combination of the particle-particle and
particle-hole ladders does not help much, the inclusion of diagrams with crossed
rungs in X-ladders does improve the result. This finding is consistent with the
intuition of Bickers and White [197], who suggested that ladders with crossed
rungs should strongly renormalize the particle-particle and particle-hole ladder
contribution, and argued that one should therefore work with a renormalized U .
(It should be kept in mind that the X-ladder class of diagrams cannot be summed
analytically via a Dyson equation.) At least for n = 0.4, the sum of bubbles and
X-ladders yields a self-energy which is relatively close to the the exact result for
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the diagram orders considered here.
The situation gets worse closer to half-filling (n = 0.8, see middle panels in

Fig. 5.11). Here, the bubble+X-ladders result deviates strongly from the full se-
ries, at least for the real part of the self-energy. Also the other diagram families
either converge to wrong values or show no sign of convergence up to the seventh
order. This instability is also evident in the FLEX calculations, which need to
be initialized with a chemical potential corresponding to a lower filling in order
to avoid diverging susceptibilities in the first iteration. Consequently, there are
no FLEX0 results indicated in the central panels. Overall, it is clear that none of
these families of diagrams yields a systematically better approximation of the local
self-energy than the second-order Σ(2) contribution. Apparently, the cancellation
effects among higher order contributions are so subtle that essentially all diagram
topologies must be considered, and the restriction to a subset of ladder or bubble
type diagrams cannot be justified. This is further corroborated by the observation
that all the subclasses converge, if at all, far less regularly at large orders than the
sum of all topologies. Even the X-ladders class, which grows exponentially with
diagram order, exhibits seemingly erratic kinks beyond the fifth order, which are
apparently canceled by other diagrams, since they are not visible in the sum of all
diagrams.

One may wonder whether the situation can be improved by considering only
two-particle irreducible skeleton diagrams and replacing the bare propagators G0

by self-consistently computed interacting Green’s functions G. In order to check
this hypothesis we conducted a DiagMC sampling of skeleton diagrams where the
propagators are dressed with the self-energy obtained from a previous sampling of
the bare series up to sixth order. While such self-consistent calculations sum up
more diagrams, the right panels of Fig. 5.11 show that the boldified diagrammatic
series converges more slowly than the bare series. For the shown parameters the X-
ladders result is close to DiagMC, but this good agreement appears to be accidental
since the corresponding curves at other frequencies significantly deviate from each
other, with the X-ladders seemingly converging to incorrect values (not shown).

5.4 Conclusions

We have performed a systematic study of the accuracy of various approximate di-
agrammatic schemes for the solution of the 2D Hubbard model. By comparing the
self-energies obtained from widely used MBPT approaches and DMFT to the well-
controlled DiagMC result we were able to assess the quality of the approximations
in the weak-coupling regime. We have also measured order by order the contribu-
tion of different diagram classes in order to track their convergence properties. The
main conclusion is that none of the conventional schemes like GW , TMA or FLEX,
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which sum up bubble and/or ladder diagrams provide a systematic improvement
over the simple Σ(2) approximation, and in fact often yield considerably less ac-
curate results. The systematic bias and/or the erratic convergence properties of
these schemes with diagram order indicate that the corresponding small subclasses
of diagrams do not capture the dominant contributions to the self-energy, and that
the corrections from the neglected diagrams are significant. Even by considering
additional diagram topologies such as X-ladders, we were not able to identify a ‘rel-
evant subset’ of diagrams. It thus appears that in general, the partial summation
of ladder or bubble type diagrams is not a valid approximation, because essentially
all diagram topologies are relevant. At least in the weak-coupling regime, stopping
at the second order (Σ(2)) is more reliable than performing uncontrolled summa-
tions. While we cannot access the intermediate and strong-coupling regime with
DiagMC, it seems unlikely that a weak-coupling based MBPT approach which is
found to be unreliable in the weak-coupling regime can be trusted in the more
strongly correlated regime. Our findings thus put a question mark behind the
use of GW or FLEX (both the one-shot and self-consistent variants) in studies of
lattice models or materials with substantial correlations, such as transition metal,
lanthanide or actinide compounds.

On the other hand, for the local part of the self-energy, the DMFT approxima-
tion, which is nonperturbative and sums all diagrams made from local propagators,
provides a good approximation. This class of diagrams can however not be summed
by a simple Dyson-type equation, but requires a self-consistent impurity model cal-
culation. At least in the weak-coupling regime, where the nonlocal components of
the self-energy are small, and as we have shown are reasonably described by many-
body perturbation approaches such as Σ(2) or GW , it makes sense to combine the
two approaches by adding the nonlocal component of, e.g., the GW self-energy
to the local DMFT self-energy. We have tested several MBPT+DMFT schemes
and found that for Σ(2)+DFMT and GW+DMFT the feed-back from the nonlocal
component in the self-consistency loop improves in particular the local self-energy,
which becomes very accurate. The nonlocal components are not systematically
improved compared to the pure MBPT result, but of comparable accuracy. In
FLEX+DMFT, the inaccuracy of the FLEX contribution near half-filling can lead
to self-energies which are significantly less accurate than the DMFT prediction.

While GW+DMFT has been found to underestimate the k-dependence of the
self-energy in the intermediate coupling regime [178, 202], compared to cluster
DMFT calculations [203, 204], this result is not really surprising. The GW method
has been primarily designed to capture the effect of screening from long-ranged
Coulomb interactions. This is very important for the proper description of materi-
als, but does not play a role in the Hubbard model with purely on-site interactions
considered in this study. The main target for GW+DMFT and related approaches
is thus the realistic simulation of (three-dimensional) compounds, where the k-
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dependence can be expected to be small, while the effect of dynamical screening
may be significant. Our results have shown that MBPT+DMFT schemes can pro-
vide a fairly accurate description in the weak coupling regime, so that one may
hope that they correctly capture at least the local physics of correlated compounds,
at moderate computational expense.
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