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Abstract

Porous structures frequently arise in nature and belong to the preferred materials
studied in materials science. They are encountered in a myriad of shapes and structural
variations. Among the examples of natural porous media we find rocks, soils, sponges or
biological tissuc and the most prominent porous basic materials being concrete, ceramics
or foams. It is therefore not surprising that since the seventies of the last century porous
media have belonged to the core focus of interdisciplinary rescarch. They arc of intcrest
not only to the mathematician, geo-physicist, biologist and chemist but - not least in
consideration of the sheer mass of data to be handled - also for the computer science
and image-processing communities. Due to the fast-paced development of synchrotron
technology, high-resolution images of three-dimensional porous specimens have finally
become available in recent years. The Institutc for Terrestrial Ecology at the Swiss
Federal Institute of Technology (ETH) and the Paul-Scherrer-Institut (PSI) in Villigen are
involved in the making of such high-resolution images for sand soils of various granularity
which by courtesy they made available to us for use in the present thesis.

The geometrical structure of the pore space is known to have a major impact on the
flow- and transport-properties in porous media such as permeability. Unfortunately
neither the specific nature of this impact is presently known nor which exactly are the
decisive characteristics of the pore space responsible for this impact. In this thesis we
mainly concentrate on a certain simple class of geometrical characteristics, the so-called
Minkowski-functionals. They comprise well-known clementary geometrical quantities
such as volume (of the pore and also the solid phase), surface (of the boundary between
pore and solid phase), the integral of mean curvature and the Euler-characteristic, the
latter being an important connectivity-measure well-known in differential topology. The
use of Minkowski-functionals to summarize the information content of a porous specimen
can be theoretically justified by the famous Hadwiger-Theorem.

For thc modelling of porous media in this thesis we avail oursclves of the methods of
stochastics. Hence the goal we pursuc cannot be the exact artificial reconstruction of
a natural porous structurc but rather the analysis of its stochastic propertics. This
will allow us to quantitatively compare different realizations of the same stochastic
model with respect to their geometrical properties and analyse their variability. Qur
basic procedure is as follows: We first measure the properties of interest (mainly
the Minkowski-functionals) and then fit a stochastic model such that in average the
realizations of the model reproduce the measured valucs for those characteristics. In
this thesis, we basically concentratc on three simple stochastic models, which are the
germ-grain typc Boolean Model, the Truncated Gaussian Fields and the Gibbsian Model.
Our focus regarding the selection of stochastic modecls to consider was more on analytical
tractability of a specific model than on its power to generate realistic artificial reproduc-
tions of porous structures. This is the main reason why we did not consider in this thesis
the morc complicated realistic models of the hard-core type (such as the cherry-pit model).

ix
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The main goals of our project were to investigate whether we can generate artificial
random structures with predetermined Minkowski functionals and to examine to which
extent the Minkowski functionals are able to summarize the geometrical information
inherent in a porous structure. We had to develop algorithins to fit these simple models
to real data which can cope with the enormous data sizes and at the same time keep
processing time reasonably low. Together with the Institute of Terrestrial Ecology of ETH
we have further investigated whether our artificially generated random media exhibit
liquid transport- and flow properties comparable to their rcal world counterparts. The
present thesis is structured as follows:

An introductory chapter deals with the abstract modecl-independent description of
the basic modclling process we use to generate artificial random porous media with
predetermined Minkowski-functionals. This procedure is then adapted in later chapters to
the specific models. Furthermore in this introductory chapter we present the synchrotron
sand data we have used all the time to test our algorithms on.

The second chapter is devoted to the theoretical foundations nceded to understand
this thesis. We give an introduction to Brunn- Minkowski-Theory where we introduce
Minkowski-functionals on the convex ring and discuss their basic properties. Special
attention is given to the Euler-characteristic from which all the other Minkowski func-
tionals can be derived by means of the Crofton-formulae. To discuss these formulae
we also give a brief introduction into the subject of integral geometry. Furthermore
the chapter deals with the question how to mcasure or estimate the specific Minkowski
functionals of a porous structurc from a pixel image. To do this we use the so-called
Ohser-Miicklich estimators which arise from discretizing the integral geometric expressions
of the Crofton formulae. So far all the concepts introduced arc purely deterministic.
Towards the cnd of the chapter we demonstrate how stochastics can be incorporated into
this gecometrical framework. This leads us to the basic concepts of stochastic geometry
which we also introduce briefly. The focus here lies on point and particle processes and
also random sets in general. The chapter is concluded by listing some of the most fre-
quently used geormetrical characteristics for modelling porous media discussed in literature.

The third chapter dcals with the Boolean germ-grain model. We interpret the Boolean
Model as a particle process and demonstrate how the results of point process theory
combined with integral geometry can be combined to derive explicit expressions for the
specific Minkowski functionals for the Boolcan Model. We discuss which values for the
specific Minkowski functionals arc attainable within the limits of the Boolcan Model and
describe algorithms to generate two and three dimensional Boolean structures with sphe-
rical or ellipsoidal grains and predetermined Minkowski functionals. In the results section
we display two- and three-dimensional images generated according to these algorithms
and conclude the chapter with a discussion of sensitivity of the Boolean structurcs with
respect to variation of a single Minkowski characteristic while keeping the others constant.

In the fourth chapter we treat the Thresholded Gaussian Field Model. Binary images can
be obtained from a Gaussian Random Field by painting a pixel black whenever the Gaus-
sian random variable associated with this pixel exceeds a certain threshold and keep it
white otherwise. Also for the Gaussian Model explicit formulae for the specific Minkowski
functionals are known. We show that in the Gaussian sctting the Ohser-Miicklich
estimators are asymptotically unbiased if we let the spacing of the pixel grid tend to zero
and provide explicit expressions for the bias of these estimators. Furthermore we consider
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a certain class of general surface estimators based on the two-point covariance function.
We prove asymptotical unbiasedness in the Gaussian Modecl also for estimators of this
more general class and again give cxplicit cxpressions for the bias. In the one-dimensional
case we additionally consider the variance of these estimators and prove asymptotic
normality. We provide algorithms how to generate two- and three-dimensional artificial
structures with predetermined specific Minkowski functionals in the Thresholded Gaussian
Model and show results from our experiments which share their Minkowski-functionals
with the synchrotron sand-data shown in the introduction. Recent experiments at the
Institute of Terrestrial Ecology have proved that our artificial Gaussian structures arc
able to mimic the flow- and transport properties of their real world counterparts quite well.

The fifth chapter is devoted to the Gibbsian Model known from statistical mechanics. We
discuss the cquivalence of neighbourhood-Gibbs-Fields with Markovian Random Fields
given by the Hammersley-Clifford Theorem and describe how the Gibbs-potential must
be chosen to generate artificial structures with predetermined Minkowski functionals.
Next we deal with the variational principle of statistical mechanics which characterizes
the Gibbsian modecl as the one maximizing entropy for a given energy. This makes
the Gibbsian Model a natural choice to generate porous structures arising in nature.
We also describe the equivalence of ensembles which states that in the thermodynamic
limit (on large lattices) the Gibbsian distribution with a suitably chosen potential is in
tact equivalent to thc uniform distribution on the set of images with the same specific
Minkowski functionals. This result will be useful later on to simulate from the Gibbsian
model without having to estimate any paramcters at alll The rest of the chapter deals
with simulation within the Gibbsian Model. We discuss the well-known Gibbs sampler
and describe how it can be used to efficiently simulatc from the Gibbsian distribution
even on large lattices due to the Markov property. We describe methods how those
parameters of the Gibbsian distribution which correspond to the predetermined values
for the Minkowski functionals can be estimated and provide a method to simulate
from the Gibbsian Model with predetermined Minkowski functionals which gets along
without any parameter-cstimation at all. This works because due to the equivalence
of ensembles we can simulate from the uniform distribution of images with the desired
specific Minkowski functionals instead of the Gibbsian distribution. To simulate from
this uniform distribution we use a combination of the Gibbs-Sampler with the Simulated-
Annealing-technique for optimization. With this Simulated-Annealing-method we arc
able to generate artificial random structures which not only share the same specific
Minkowski functionals with their rcal world counterparts but also (at least in principle)
the same values for arbitrarily many additional geometrical characteristics. At the end of
the chapter we show two-dimensional Gibbsian realizations whose Minkowski functionals
agree with those of sclected cross-sections taken from the synchrotronized sand-imagcs.

Finally some concluding remarks are given in chapter six. The appendix contains the
proof of asymptotic normality for general surface cstimators in the continuous Markovian
on-off-system. This example is meant to be an introductory example for the same proof
for Thresholded Gaussian Fields presented in chapter four. It can be used as a first
approach to the concepts of chapter four in an casily tractable setting. The appendix
contains further the proofs of some fundamental theorems used to outline the basic theory
which were omitted in the main text and also contains alternative proofs to some of our
own results.

Maik Berchtold Zurich, November 2007






Zusammenfassung

Pordse Strukturcn treten in der Natur und den Materialwissenschaften sehr haufig und
in den mannigfaltigsten Ausprigungen auf. Beispiele aus der Natur sind etwa Gesteine,
Bodenstrukturen, Schwamme, oder biologisches Gewebe, Zu den porosen Werkstoffen
zahlen Zement, Keramik und Schéume. Es ist daher kaum verwunderlich, dass das
Studium der porésen Medien schon seit geraumer Zeit, insbesondere aber scit den 70cr
Jahren des letzten Jahrhunderts grosses interdiszipliniires Interesse geniesst. Nicht nur
fir Mathematiker, Geophysiker, Ingenieurwissenschaftler (Material-und Werkstoffwis-
scnschaften) Biologen und Chemiker ist die Modellierung poréser Medicn von Interesse,
sondern nicht zuletzt aufgrund der gewaltigen Flut zu bearbeitender Datenmengen
auch fir Informatiker und die Community der Bildverarbeitung., Dank der rasanten
Entwicklung der Synchrotron-Technologic sind in den letzten paar Jahren hochaufgeléste
Darstellungen von dreidimensionalen Proben solcher Medien verfliigbar geworden. Das
Insitut fiir terrestrische Okologie der ETH Ziirich und das Paul Scherrer Institut (PSI)
in Villigen sind in die Herstellung solcher Bilder fiir Sandbodenstrukturen verschiedener
Granularitat involviert und haben uns diese, fur die vorliegende Doktorarbeit freundlicher-
weise zur Verfiigung gestellt.

Die geometrische Struktur des Porenraums beeinflusst wesentlich dic Fliess- und Trans-
porteigenschaften von Fliissigkeiten, wie etwa die Permeabilitit in pordsen Medien. Dabei
ist es allerdings noch weitgehend unklar, welcher Art diese Beeinflussung ist und welche
geometrischen Charakteristika des Porenraums entscheidend sind. Wir konzentricren uns
in dicser Arbeit hauptsachlich auf eine bestimmte cinfache Klasse solcher Charakteristika,
die sog. Minkowski-Funktionale. Zu ihnen gehéren die elementaren geometrischen
Grossen Volumen (des Poren- bzw. Komplementirraums), Oberflache (der Grenze
zwischen Poren- und Komplementdrraum), das mittlere Kriimmungsintegral (dieser
Grenzfliche) und die Euler-Chararkteristik. Letztere ist einc wichtiges Mass aus der
Differentialtopologie, welches den Grad des Zusammenhangs einer Struktur misst. Es gibt,
eine theoretische Rechtfertigung dafiir, dass Minkowski-Funktionale gut dafiir geeignet
sind, die in einem Bild vorhandene geometrische Information zusammenzufassen. Diese
wird durch den fundamentalen Satz von Hadwiger gelicfert.

Zur Modellierung der porésen Strukturen bedienen wir uns in dieser Arbeit der Stochastik.
Unser Ziel ist es daher nicht, eine gegebene natiirliche Struktur zu reproduzieren, sondern
nur ihre stochastischen Eigenschaften. Dies hat den Vorteil, dass wir verschiedene
Realisierungen eines Modeclls beztiglich ihrer geometrischen Eigenschaften miteinander
vergleichen und ihre Variabilitdt untersuchen kdnnen. Wir gehen dabei wie folgt vor:
Wir messen dic geometrischen Eigenschaften (vorwiegend die Minkowski-Funktionale)
ciner gegebenen Struktur und bestimmen dann die Parameter eines statistischen Modells
s0, dass dessen zuféllige Realisierungen im Mittel dieselben geometrischen Eigenschaften
haben wic die gegebene porose Struktur. Wir betrachten hauptsichlich drei einfache
stochastische Modelle: das Boolesche Keim-Korn Modell, trunkicrte Gausssche Zu-
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fallsfelder und das Gibbs-Modell aus der statistischen Mechanik, Bei der Auswahl der
Modelle war uns wichtig, dass die betrachtetcn Modclle bis zu einem gewissen Grad
analytisch zuganglich sind, wohlwissend, dass zur Modellierung poroser Medien oft
realistischere Modelle, wie etwa das Kirschkern-Modell (cherry-pit, Hardcore-Type)
vorgezogen werden, die fiir analytische Betrachtungen aber weit weniger geeignet sind.
Die Hauptziele der vorliegenden Arbeit waren herauszufinden, in welchem Mass wir
mit diesen einfachen Modellen kiinstliche Strukturen mit vorgegebenen geometrischen
Charakteristiken erzeugen kénnen und inwicweit dicse kiinstlichen Realisierungen sich
trotz iibereinstimmender Charakteristiken von der gegebenen natiirlichen Struktur unter-
scheiden. Desweiteren mussten Algorithmen cntwickelt werden, die mit der betrachtlichen
Grosse der zu verarbeitenden Datenmengen umgehen kénnen, um diese einfachen Modelle
den Daten anzupasscn, und wir haben diese Algorithmen anhand der hochauflosenden
Synchrotron-Sandbilder getestet. Zusammen mit dem Institut fiir terrestrische Okologie
der ETH Ziirich haben wir ferner untersucht, ob unsere kiinstlichen Realisierungen
ahnliche Fluss- und Transportcigenschaften aufweisen, wie die realen Sandstrukturen.

Im Detail gliedert sich die vorliegende Arbeit wie folgt:

In einem Einfithrungskapitel wird kurz der allgemeine Modellierungsprozess beschrieben,
den wir im Rest der Arbeit fiir die spezifischen Modelle adaptieren und es werden die
Synchrotron-Sanddaten, die wir zum Testen unscrer Algorithmen verwenden, vorgestellt
und analysiert.

Das zweite Kapitel beschéftigt sich mit den theoretischen Grundlagen, die wir in
dieser Doktorarbeit benétigen. Es beginnt mit einer Einfithrung in die Brunn-Minkowski-
Theoric, wo Minkowski-Funktionale auf dem Konvexring eingefiihrt und ihre Eigenschaften
diskuticrt werden. Ein besonderer Fokus licgt dabei auf der Eulercharakteristik, aus
welcher sich die anderen Minkowski-Funktionale ableiten lassen. Dics ist i wesentlichen
die Bedeutung der Crofton-Formeln, die wir in der anschliessenden Einfiihrung in die
Integralgcometrie diskutieren. Desweiteren beschreiben wir, wie sich die spezifischen
Minkowski-Funktionale einer pordsen Struktur aus einem Pixelbild approximicren lassen.
In der ganzen Arbeit verwenden wir dabei die sogenannten Ohser-Miicklich-Schitzer,
welche sich direkt aus der Diskretisierung der Integrale in den Crofton-Formeln ableiten
lassen. Nach diesen rein deterministisch-geometrischen Betrachtungen folgt eine kurze
Einfithrung in die stochastische Geomctric, wo vor allem die Konzepte der Punkt- und
Partikelprozesse und allgemciner der zufilligen Mengen crlautert werden. Das Kapitel
schliesst mit einer Zusammenstellung derjenigen geometrischen Charakteristiken, die
nebst den Minkowski-Funktionalen in der Literatur sur Beschreibung pordser Strukturcn
am haufigsten verwendet werden.

Das dritte Kapitcl ist dem Booleschen Keim-Korn-Modell gewidmet. Wir fassen das
Boolesche Modecll als einen Partikelprozess auf und zeigen, wie sich die spezfischen
Minkowski-Funktionale im Booleschen Modell aus den Bezichungen der Integralgeometrie
ableiten lassen. Wir diskutieren, welche spezifischen Minkowski-Funktionale iiberhaupt
mit dem Booleschen Modell erreichbar sind. Dann widmen wir uns der Simulation
von zwei und dreidimensionalen Booleschen Strukturen mit vorgegebenen spezifischen
Minkowski-Funktionalen. Wir geben Algorithmen an fiir das Boolesche Modell mit
sphérischen und ellipsoidalen Kdrnern und zecigen zwei und dreidimensionale kiinstliche
Boolesche Strukturen aus unsercn Experimenten mit denselben spezifischen Minkowski-
Funktionalen wie die Synchrotron-Sandbilder. Zum Schiluss dieses Kapitels diskutieren
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wir die Secnsitivitit der Booleschen Strukturen, wenn einzelne spezifische Minkowski-
Funktionale variiert werden.

Das vierte Kapitcl widmet sich hauptséchlich dem Gaussschen Zufallsfeld-Modell. Wir
koénnen binare Bilder erzeugen, indem wir bei ciner belicbigen Schwelle trunkieren. Auch
im Gausschen Modell sind cxplizite Formeln fiir die spezifischen Minkowski-Funktionale
bekannt. Wir zeigen, dass die Ohser-Miicklich-Schatzer asymptotisch erwartungstreu
sind, wenn die Gitterkonstante gegen null geht. Wir geben auch explizite Ausdriicke fiir
den Bias dicser Schiitzer an. Desweiteren betrachten wir eine allgemeinere Klasse von
Oberflachenschitzern, die auf der Kovarianzfunktion des Zufallsfeldes basieren. Auch
hier beweisen wir asymptotische Erwartungstreue und geben den Bias explizit an. Im
eindimensionalen Fall herechnen wir auch die Varianz solcher Oberflichenschatzer und
beweisen asymptotische Normalitdt fiir das trunkierte Gausssche Zufallsfeld-Modell.
Desweitcren geben wir Algorithmen an, wie man in zwel und drei Dimensionen im
Gaussschen Zufallsfeld-Modell Realisicrungen mit vorgegebenen spezifischen Minkowski-
Funktionalen erzcugen kann und zeigen solche zwei- und dreidimensionale Realisierungen
aus unscren Experimenten mit denselben spezifischen Minkowski-Funktionalen wie die
Synchrotron-Sandbilder. Neue Experimente am Insitut fur terrestrische ékologie haben
gezeigt, dass unsere Gauss-Realisicrungen, die Fluss- und Transporteigenschaften des
realen Mediums sehr gut wiedergeben kénnen.

Im fiinften Kapitcl verwenden wir das Gibbssche Modell aus der statistischen Mechanik,
um zufallige Strukturen mit vorgegebenen Minkowski-Funktionalen zu crzeugen. Am
Anfang des Kapitels arbeiten wir die Aquivalenz von Gibbsschen Feldern mit Nach-
barschaftspotentialen und Markkovfeldern heraus (Hammersley-Clifford-Theorem). Wir
beschreiben, wie das Gibbspotential gewéhlt werden muss, um vorgegebene spezifische
Minkowski-Funktionale zu erzeugen. Dann beschéftigen wir uns mit dem Variationsprinzip
der statistischen Mechanik, welches das Gibbs-Modell als dasjenige mit der maximalen
Entropie auszeichnet und es deshalb als Modell fur natiirliche Porenstrukturen gecignet
erscheinen lisst. Als néchstes gehen wir auf die Aquivalenz von Teilchenensembles ein,
die besagt, dass sich im thermodynamischen Limes (grosse Gitter) die Gibbsverteilung
mit gecignetem Potential als dic Gleichverteilung auf der Menge aller Bilder mit den
vorgegebenen Minkowski-Funktionalen herausstellt. Diese Erkenntnis kann spiter zum
Simulieren, ohne vorher Parameter schitzen zu miissen, verwendet werden. Als niichstes
wenden wir uns der Simulation von Gibbs-Modellen zu. Wir diskutieren den Gibbs-
Sampler, der die Simulation von der Gibbs-Verteilung dank der Markov-Figenschaft
schr einfach macht. Dann wenden wir uns dem Problem der Parameterschiatzung zu
und diskutieren verschiedene Methoden, wie man diejenigen Paramecter im Gibbs-Modell
schatzen kann, die den vorgegecbenen Minkowski-Funktionalen entsprechen. Schliesslich
diskutieren wir auch eine véllig parametorfreie Methode. Dank der Aquivalenz der
Teilchenensembles konnen wir statt von der Gibbs-Verteilung von der Gleichverteilung
auf der Menge aller Bilder mit den vorgegebenen Minkowski-Funktionalen simulieren.
Dies erreichen wir durch eine Kombination des Gibbs-Samplers mit der Simulated-
Annealing-Optimierungstechnik. Diesc Simulated-Annealing-Methode erlaubt es uns,
Gibbs-Realisierungen zu crzeugen, die nicht nur vorgegebene Minkowski-Funktionale
aufweisen, sondern zusdtzlich vorgegebene Werte fiir (zumindest im Prinzip) bclicbig
viele andere gcomctrische Charakteristiken. Wir schliessen das Kapitel ab mit zweidi-
mensionalen Bildern aus unscren Experimenten, welche in verschiedenen geometrischen
Charakteristiken mit den Synchrotron-Sandbildern iibereinstimmen. '



xvi Zusammenfassung

Das abschliesscnde sechste Kapitel enthélt einige Schlussbemerkungen. I Appendix
findet man den DBeweis der asymptotischen Normalitit der verallgemeinerten
Oberflichenschiitzer fiir das stetige Ein-/Ausschalt-Markovmodell.  Dieses Beispiel
ist als Einfiihrungsbeispiel fiir denselben Beweis aus Kapitel vier fiir das Gausssche
Zufallsfeld-Modcll gedacht und eignet sich fiir eine erste Anndherung an dic im Kapitel
vier verwendeten Konzepte in einem einfach behandelbaren Rahmen. Weiter befinden
sich im Appendix die Beweise zu einigen der im Aufbau der Theorie benétigeten Sitze,
die wir im Haupttext ausgelassen haben. Der Leser findet dort auch alternative Beweisc
zu einigen unsercr cigenen Resultate.

Maik Berchtold Ziirich, im November 2007



Chapter 1

Introduction and Problem
Formulation

1.1 General Introduction

1.2 General Problem Formulation

In this section we try to formulate the general problem one faces when trying to model
two-phasc porous structures by means of Minkowski functionals. Any details and exact
definitions can be found in later chapters. The general modelling problem can be
summarized into three basic steps:

Step 1: Measuring Minkowski Functionals for the Structure to Simulate: The
Ohser Miicklich-Estimators

Usually one starts out with the analysis of a d = 2 or d = 3 -dimensional real data
sample D. Because the porous structures we are interested in consist of two phases, we
must always specify whether we calculate the Minkowski-functionals for the solid phase
P (black or l-values) or for the pore phase (white or O-values). When we talk about
Minkowski-functionals V;(P), j € {0,...,d} associated with a sample D in the following,
we always mean the Minkowski-functionals of its associated solid phase P. Of course
one could also concentrate on the pore phase instead, different choices merely represent
different rescarch questions of interest. For example in soil flow physics where one is
interested in modelling the fluid flow through a porous medium or in percolation theory
the focus is more on the pore phase. As far as the choice of models is concerned, it turns
out that this distinction is more than just a matter of taste. Sometimes models that
work well for the solid phase might perform poorly when modelling the pore phase and
vice versa although the (specific) Minkowski functionals of a set and its complement are
closely related if both are defined.

The main goal for us is to generate an artificial porous structurc $ which has the same
Minkowski functionals as the solid phasc P of the given sample D, hence our farget values
v; the Minkowski-functionals of § should have are v; := V;(P). To work with such a
sample it has to be available in a digitized version as a binarized pixel image. For such a
binarized image representation Minkowski-functionals must be measured. For this purpose
usually the cuboidal graph I' whose vertices are the image pixels is considered. Using T, a
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continuous graph approximation P! of the solid phase P is constructed according to the
following construction rules:

Algorithm 1.2.1. (Construction of the Graph Approximation Set)

e A cubic voxel of T' belongs to P if and only if all its 8 pixcl vertices belong to the
solid phase P of D.

o A voxel face belongs to P! if and only if all its four pixel vertices belong to P.
o A graph edge belongs to P! only if both its pixel vertices belong to P.
e All isolated pixel vertices belong to PT.

Of course the resulting set PU is only a rough approximation of the solid phase P of D.
Especially if P is not convex, the line connecting two pixel vertices in the solid phase
belongs entirely to P! but not necessarily to the solid phase P itself. It is therefore
obvious that V;(P") # V;(P) in general and the differences may be substantial. Another
reason for this discrepancy is the fact that Minkowski functionals of P are closely
related to curvature quantities for the interface between the two phascs in D, while the
boundary of P! is following the voxel boundaries in the cuboidal graph I' and therefore
is rather rough. Thus instead of really measuring V;(P) all we can hope is being able
to estimate V;(P) as V;(PT). Ohser and Miicklich have developed estimators which
make it possible to estimate the Vj(PP) accurately only by counting pixel configurations
in local neighborhoods of the vertices in P! (see sections 2.3.1 and 2.3.2 for a detailed
discussion of these estimators.) This fast and easy estimation is possible by discretizing
the so-called Crofton formulae (discussed in section 2.2.1) from integral geometry. The
Crofton formulae give representations of the Minkowski functionals V;(P) as certain
spatial and rotational averages of simple quantities which can can locally be evaluated by
pixel counting. The continuous spatial and rotational averages are replaced by averaging
over directions that are defined by the voxel vertices in a pixel lattice. Hence a further
approximation error comes in, which obviously doesn’t need to vanish if the grid-spacing
becomes small.

Some models such as the Thresholded Gaussian Field Model on a Lattice and the Gibbsian
Model arc discrete which means that they don’t attempt to model the (continuous) solid
phase of P but only its digitized version PT directly. Of course the images S gencrated
with these models are nevertheless interpreted as continuous images according to the
above construction rules.

Sometimes the target Minkowski values v; are not given by real data samples but set
artificially. This is mainly the case if one wants to investigate whether a specific set of
predetermined Minkowski values v; can be achieved within a specific model or when one is
interested in how the properties of an artificially generated structure change with respect
to changes of their Minkowski functionals. Such an analysis is performed in (Lehmann,
Berchtold, Ahrenholz, Toélke, Krafczyk, Flihler and Kiinsch n.d.) where together with
soil-physicists we investigated how the permeability and fluid transport properties of a
porous medinm depend on the Minkowski functionals within a stationary and isotropic
Boolean Model with clliptical grains.
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Step 2: Connection between Data and Stochastic Models: The Basic Mo-
delling Equation

To create such an artificial structure which has predefined Minkowski-values v; per unit
volume, we usc stochastic models. Concretely we construct an (infinitely extended) sta-
tionary and isotropic random set © in Euclidean space R? and choose an extract ©W of it
which has the same size and form as the given data sample D. The stochastic interpreta-
tion is as follows: The random set © is observed through a so-called observation window
W where the set W is a compact (and for technical reasons also convex) subsct of R% of
the same form and size as D. ©% is then given by ©W = O N W. Because © and hence
also ®W are random, every realization ©" (w) will have different Minkowski-functionals
V;(®W(w)). Because of this stochastic modelling approach we cannot expect to find a
rcalization which ezactly fulfills v; = V;(@W(w)), we must rather find a way to express
the Minkowski functionals per unit volume of the random set © as a whole independent of
both specific realizations and the observation window W we chose. This is provided by the
specific Minkowski-functionals V;(©) which involve taking expectation of the Minkowski
functionals per unit volume over all recalizations of ©". The connection between the
measured or predefined Minkowski values per unit volume v; and the specific Minkowski
functionals V;(©) of the stochastic model is given by the following requirement which we
call Basic Modelling Equations:

v = V;(0), je{0,....d}. (11)

This means that because of the stochastic nature of our modelling approach we will only
be able to match the predefined Minkowski values v; in expectation and for a specific
realization the specific Minkowski functionals will slightly differ from the preset valucs.
For most modcls the right hand side of equation 1.1 can not analytically be calculated
and nothing about the variance of the Minkowski functionals per unit volume is known.
However therc arc cxceptions such as the Boolean Model or the Thresholded Gaussian
Field Model which we investigate in the following chapters.

Step 3: Choice of Distributions and Determination of Parameters

The right hand side of the cquation system 1.1 usually contains the model paramcters
which determine the flexibility of a specific model. If all model parameters arc simply
numbers or vectors and if the equations in 1.1 can be solved for these model parameters
analytically, the determination of a right set of parameters leading to a random set which
fulfills the basic modclling equations is straightforward, otherwise they must be solved
numerically and another approximation error cnters the scene. The parameter set may
also include distributions, eg. the grain distribution @ in the case of the Boolean Model.
In such a case, one usually chooscs a suitable parametric class of distributions and uses
the parameters of this class instead of the distribution itself. The final parameter sets
often contains more than only d + 1 parameters which means that the equation system
1.1 is under-determined. This phenomenon is referred to as indeterminacy and choosing
different solutions makes it possible to generate a wide range of random artificial structures
with rather different structural properties and which all share the same set of Minkowski
functionals per unit volume within the same model.
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1.3 Data

Nowadays the imaging power of modern X-ray synchrotrons is on such an advanced level
that the resolution of a sample cube with voxel size as small as 10um may distinguish
far more than 10° pixels. Thus the resulting data sets arc of massive size which makes
their sheer handling a non-trivial task. Especially data-storage issues may arisc. Usually
it it impossible to load such an image into the memory of an ordinary workstation as a
whole and still be able to manipulate it in reasonable time even if a pixel is represented
by a just a single bit. The consequence for displaying such 3D geomectries on a screen is
that one can only display relatively small extracts of the whole structure at a time or
one has to reducc resolution. From the computational point of view one must always
be aware that standard algorithms applied to such data sets must be adapted, eg.
the images be split up in smaller pieces and loaded into memory one by one, which
may affect performance hcavily. We therefore decided to write all our programs in a
low-level language and chosc the C programming language. This had the drawback that
functionality from powerful statistical software packages such as R were available only in
a reduced amount or via special interfaces. For displaying three dimensional structures we
used the extremely powerful module-based AVS Software (Advanced Visual Systems 2006).

The data we usc in this thesis was kindly made available to us by courtesy of the Institute
of Terrestrial Ecology (ITO) at the Swiss Federal Institute of Technology (ETH). The
data consists of a collection of 3D binary images of cubic sand samples generated using
X-ray technology at the Hamburg synchrotron laboratories (HASYLAB) in Germany.
There arc two types of sands present in the samples with different granularity (”coarse”
and "fine”). The images are 8003 pixels in size and the size of an single voxel is 11 pym.
The binary coding is such that the value 1 is attributed to pixcls in the solid phasc
whereas the pixels in the pore phase are denoted by 0. Two cxamples are shown in figure
1.1.

We now shortly describe the results of a basic image analysis for these data. We calcu-
late the specific Minkowski functionals, the two-point-covariance function and the chord-
length-distribution function for both sand samples. The following table shows the esti-
mated specific Minkowski functionals for the solid phase which werc estimated accor-
ding to the Ohscr-Miicklich-procedure presented in subsections 2.3.2. In three dimensions
Minkowski functionals are up to proportionality volume v, surface area s, integral of mean
curvature M and Euler-characteristic x. A detailed discussion of the latter two geometrical
characteristics is given in subsections 2.1.5 and 2.2.4 below. We indicate here the esti-
mated specific Minkowski quantities, i.e. the quantities per unit volume of W since this
will allow us convenient comparison with the artificially gencrated structures later. For
completeness also the cstimated Minkowski quantities for the pore space arc given.

coarse / solid I’ | coarse / pore P¢ | fine / solid P | fine / pore P°
o(.)/v(W) 0.6043 - 109 0.3968 - 107" [ 0.5981-10-7 | 0.4068 - 107
S(.)/v(W) 0.6870 - 101 0.7089 -1071 | 0.1061-107° | 0.1074-107°
M()/v(W) 0.1174-107% |  —0.1288-107% | 0.1204-10~2 | —0.1338 - 102
xX()/o(W) | —02112-107" | -0.2188.10"" | —0.1165- 1073 | —0.1210 - 10~3

Table 1.1: Minkowsk: functionals per unit volume for the sand sample from figure 1.1.

The values for both the solid and the pore phase are provided.
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Figure 1.1: Two 256°-pirel-sized cubes taken from the 8003 -pizel-sized samples of the
HASYLALD synchrolron sand data with side length = 11pm.  The left image shows a
sand-type wilh coarse granularity whereas the image on the right displays o sand type with.

fine granularity.

The comparison between the values for the solid and pore space in table 1.1 reveals
the approximation crrors when estimating Minkowski-functionals of a continuous image
from a grid approximation via the Ohser-Miicklich procedure. Obvious equalitics such
as v(P)/o(W) +o(P)/v(W) = 1 or $(P)/v(W) = s(P°)/o(W) are only approximately
fulfilied by the estimators for both sand types. Tor the integral of mean curvature we
expeet a sign flipping when changing from P to P¢ whereas in three dimensions the
Euler-characteristic of a set /2 and its complement, P¢ agree. (llowever be aware of
Theorem 2.1.13).

Figure 1.2 shows the cmpirical two-point-correlation-function and the cmpirical chord-
length-distribulion for the solid phase of the two data samples in figure 1.1. For a
definition of these functions see subscetion 2.5.

The data we use in our 21) experiments are square 800%-cross-sections from the HASYLAR
samples in figure 1.1. These were taken parallel to sides of the sample cubes, cg. parallel
to the xy-, xz- or yz-planes. Figure 1.3 shows an example for each of the three directions.
These cross-scctions were taken from the center of the sample.

Figure 1.3 shows that the data samples exhibit a high degree of homogeneity and isotropy,
hence the approach to model these structures with stationary and isotropic models
seems Lo be quite reasonable.  Another justification for stationary modelling can be
given by investigating how Minkowski-lunctionals in equally-sized subcubes of the 800°
samples are distributed. If the variation in Minkowski-values among these subeubes is
sufficiently small, this constitutes another indication for a high degree of stationarity.
The boxplots in figures 1.4 and 1.5 show the distributions of Minkowski-functionals
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function (right) for the coarse and fine data sample in figure 1.1.

among 1000 partly overlapping subcubes of size 2563 for the coarse as well as for the
fine data sample. Examples for such subcubes for each sand type are displayed in figure 1.1.

Mean value and standard deviation from the subcube-analysis are collected in table 1.2:

v s M X
coarse, mean | 0.6032 - 1070 | 0.6897 - 10~1 | 0.1212- 1072 | —0.2134 - 10~ ¢
coarse, sd | 0.1081-107! | 0.1150-1072 | 0.1016-1073 | 0.2262-10~%
fine, mean | 0.5983-10~% | 0.1061-107° | 0.1235-10~2 | —0.1167 - 103
fine, sd 0.4193-10~2 | 0.1267-1072 | 0.1321 - 1073 | 0.5041-107°

Table 1.2: Mean and standard deviation (sd) for the specific Minkowski functionals
7,5,M, X of 1000 partly overlapping 2567 -pixel sized extracts of the coarse and fine sand

samples in 1.1
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cross~section coarse, z = 400 cross—section coarse, y = 400
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Figure 1.3: The first three cross-sections are taken from the full 8007 -pizel-sized
coarse-sand-sample in figure 1.1, They represent the mid planes of the coarse-sand-sam-
ple-cube in z-,x- and y-directions. The last three images display the corresponding cross
scctions for the 8003 -pizel-sized fine-sand-sample-cube from figure 1.1.
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Figure 1.4: Boxplots of Minkowski functionals from 1000 partly overlapping subcubes of
size 2563 taken from the coarse sand sample in 1.1
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Figure 1.5: Boaplots of Minkowski functionals from 1000 partly overlapping subcubes of
size 256° pizels taken from the fine sand sample in figure 1.1.



Chapter 2

Preliminaries

2.1 Definition and Properties of Minkowski -Functionals

This first chapter is dedicated to the exposition of the theoretical background for this thesis
and also to fix the notation. The material collected in this chapter concerns facts from
various disciplines in geometry such as convex geometry, integral geometry and stochastic
geometry. In our presentation we closely follow standard works of reference from these
disciplines among which the most important are (Schneider and Weil 1992 , Schneider and
Weil 2000) and (Stoyan, Kendall and Mecke 1985).

2.1.1 The Steiner Formula

The Minkowski-functionals arise quite naturally from the study of a basic question in
convex geometry. Let K be the collection of all convex bodies, i.e sets that are convex and
compact in R%. The collection K can be equipped with the Hausdorff-metric dg which
leads to the metric space (K,dy) . For each K € K and p > 0 we definc the parallel
set K, = {zr+yl|lc e K,y € Bg(O)} where B%(0) is the d-dimensional ball centered at
0 with radius p. Is it possible to determine the volume V4(K,) of the parallel set K, for
arbitrary p > 0 using only information about the convex set K itself? The answer is yes.
The volume V4(K,) can even be expressed as a polynomial of degree d whose coefficients
depend on the original convex body K only. This assertion is provided by the famous
Steiner-Formula:

Theorem 2.1.1. (Steiner-Formula) There exist unique functionals Vi, : K — R, m =
0,...,d such that for K € K and p > 0

d
Vd(Kp) = Z pd“mﬁ'd—m : V'vm(K))

m=0
where kg 1= Vy(B?) is the volume of the unit ball in dimension d.
The Steincer-Formula gives rise to a first definition of the Minkowski-functionals as follows:
Definition 2.1.2. (intrinsic volumes and Minkowski-functionals)

e i) Form €0,...d the coefficients V;,(K) : K — R in the Steiner-Formula are called
intrinsic volumes of the convex body K.

o i) The functionals Wy, : K — R, m = 0,...,d which are scaled versions of the
intrinsic volumes Vi, (K) such that km - Vi_m(K) = (:rll) - Wi(K), are called the
Minkowski-functionals of a convez body K.
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To which of the two sets of functionals preference is to be given is just a matter of taste.
The choice is often motivated by the aesthetics of relevant formulac. We will use both
sets of functionals in the following, whenever the one is more convenient than the other,
under the tacit assumption that all theorems, properties and techniques could also be
stated for the other functional-set respectively.

Becausc the basic definition of Minkowski-functionals is essentially based on Theorem 2.1.1
a proof of the Steiner-Formula following (Schneider 2004) will now be given. The same
reference was consulted for most of the integral-geometry related theorems of this chapter.

To motivate the idea of the proof, look at the case where d = 2 and the set K is sufficiently
simple, eg. a triangle A. The area of the parallel set A, for this triangle then consists of
the area of the triangle A itself plus the area of three rectangles along the three sides of
the triangle (area = length of the triangle side times p) plus the area of the circle with
radius p (split into three sectors at each of the three vertices of A). This exactly reflects
the expansion for the volume of the parallel set A, as a polynomial of order d = 2 given
by the Steiner-Formula. The following proof generalizes this idea for arbitrary convex
polytopes and shows that Theorem 2.1.1 holds for general K € K by approximation of K
by means of convex polytopes.

Proof. (Theorem 2.1.1) We first assume that K € K is a convex polytope P and p > 0.
For m € {0, ...,d} we denote by F,, (P) the set of all m-dimensional faces of P and F(P) =
UdmZU.F,,L(P) is the collection of all faces of P. Further Vm € {0,...,d — 1}, F € F,, and
x € relintF let N(P, F) stand for the normal cone of P at F which is the closed convex
conc of outer normal vectors corresponding to supporting hyperplanes to P supporting
at the point z. Note that N(P, F) is independent of the choice of . We now define the
external angle of a face F of P as

o(F,P) = Ad—m(N(P,F) N Bd(O))’

Rd—m

where Ay, is the d-m dimensional Lebesgue measure. As a convention we use a(P, P) =1
and a(f, P) = 0. Because for every x € R? the nearest polytope point p(P,z) lies in the
relative interior of a unique face of P we can decompose the parallel sets P, as follows into
disjoint componcnts:

P,= |J P,np(P,-) " (relintF).
FeF(P)

For m € {0,...,d — 1} and F € F,, every such component can be written as a direct
orthogonal sum:

P, N p(P,-) " (relint F) = relintF @H(N (P, F) N pB4(0)).

and an application of Fubini’s Theorem leads to:

Na(PoNp(P, )" (relint F)) = Am(F)-Ag—m (N (P, F)\pBY(©0)) = Am(F)p* ™ Kg-mar(F, P).
Defining the intrinsic volumes for convex polytopes as

Va(P)i= > An(F)o(F,P) (2.1)
FeFm(P)
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we can write:

d o
‘/d(Pp) = Z pd_mﬁldwm.‘[m(P)v (22)
m=0

which proves the Steiner-Formula for polytopes.

For a general K € K and the uniqueness part we use equation (2.2) for p = 1,...,d+1
which produces a system of d+1 lincar equations for d+1 variables V,,,(P),m € {0,...,d}.
The determinant of this linear system is Vandermonde and therefore a solution exists
which can be written as

d+1
Vin(P) = am,Va(P,), for m=0,...,d.
r=1
Because the coefficients a,,, are independent of the polytope P the following definition of
the intrinsic volumes for a general convex body K € K makes sense:

d+1
Vin(K) = Z am Va(Ky) (2.3)

v=1
Because the volume mapping Vy(.) is continuous with respect to the Hausdorff metric
du, the functional V,,(.) is also continuous with respect to dg on K for m € {0,...,d}.
Approximation of K by convex polytopes proves the theorem. O

Note that whereas the expression for general K in equation (2.3) is less useful, for
polytopes the intrinsic volumes are expressed quite explicitly by equation (2.1). We
can get a hint for a more intuitive interpretation of the intrinsic volumes (and thus the
Minkowski functionals) if we consider equation (2.1) for some instructive instances which
are m = d,d— 1 and m = 0. We rediscover that Vy(P) is the volume functional for
convex polytopes but furthermore we see that 2 - V;_; (P) corresponds to the surface area
and Vp(P) = 1 which we call the Euler characteristic x of the convex polytope P. (The
Euler characteristic is defined to be 1 for every convex body. For a definition of x on more
general set classes sec Definition 2.1.11 below.) It is truc that these correspondencies
between Minkowski functionals and intuitive geometrical quantities still hold for general
convex bodies K € K. We will come back to this point later in section 2.2.2.

2.1.2 Properties of Minkowski Functionals

From Theorem 2.1.1 and its proof a whole list of properties for intrinsic volumes can be
derived. We summarize the most important ones in the following theorem.

Theorem 2.1.3. (Properties of Intrinsic Volumes) The intrinsic volumes Vp,(.) :
K—R, me{0,...,d} have the following properties:

i) Vi is invariant under rigid motions.
i) Vi ts Hausdorff-continuous.
i#4) Vi is homogeneous of degree m, i.e Vp,(c- K) = ™V, (K) for ¢ > 0.

iv) Vi is independent of the dimension of the surrounding space.
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v)
vi)

Vin is increasing under set inclusion, i.e K1 C Ko = Vi, (K7) < Vi (K?2).

Vin s additive, i.e. V(K1 U K3) = Vip (K1) + Vin(K2) — Vi (K1 N Ky) VK1, Ky €
K with K1 U Ks € K.

vii) Vi is non-negative, i.e. Vio(K) > 0,K € K.
Proof. (Theorem 2.1.3)

i),ii).

iii).

Parts i) and ii) follow directly from the corresponding properties for V4(.) and equa-
tion (2.3).

First note that (a- K), = a- K. Applying equation (2.3) and the Steiner-Formula
- we have:
d+1 d+1 d v
V'vm,(a ' K) = ad Z] aml/vd(K—Z-) = ad Zl ZO a’mu(a)dmsﬁd—s‘/s(K) - O{me(K),
V= =1 8=

iv).

v),vii).

vi).

where d-homogeneity of the volume V;(.) is assumed to be obvious.

This follows essentially from (2.1). Let P a convex polytope P in a k—dimensional
affine subspace Ej of R? and F € F,, an m-face of P. (m < k). Then we have that
the k—m—dimensional normal cone N®)(F, P) corresponds exactly to the projection
of the d—m—dimensional normal cone N@(F, P) onto the k—dimensional linear
subspace V}, associated with E} and therefore the external angle is independent of
the dimension of the surrounding space:

Ad-m(ND(F,P) N BY0)) _ Me-m(N®(F, P)NBH0) _

Rd—m Kk—m

oD (F,P) = (F, P).
Assertion iv) trivially holds for Lebesgue-measure Ap,(.) and thus formula (2.1) esta-
blishes assertion iv) for polytopes. Then the usual approximation argument is used
for general K € K.

For these points we need the theory of section 2.2. The statements are most easily
scen from a so-called Crofton-formula (Theorem 2.2.2). However, v) for polytopes
also follows from equation 2.1 because external angles are non-negative. For general
K the result follows from polytope-approximation.

Let K, Ky € K. First one proves the following equality for indicator-functions:

L((k,UK3),) T H(KinKS),) = (K1), + 1(K2),-

The only case where the statement is non-trivial is for those z € R? where
1((kyUKy),) = 1 and 1k nK,),) = 0. Then without loss of generality there exists a
y€ KiNK§and z € pB%(0) such that © = y + 2. Assume now that Lig,), = 1.
Then we find similarly § € Ko N K and 2 € pB%(0) such that © = § + 7 and y # §.
But because K U K3 is convex, the whole line [y, 3] C K; U K». Because K ,K; are
closed there must exist § € [y, 9] with § € K1 N K3 and 2 := |z — | < p which is a
contradiction. Thus we must have 1 g,y = 0.

Integration with respect to Lebesgue measure shows that the above equation also
holds for the volume functional V4(.). Finally applying the Steiner-Formula and
comparing coefficients of p™ establishes the claim. O



2.1. Definition and Properties of Minkowski -Functionals 13

It is needless to say that these properties (except of course iii) and iv)) also hold for
the Minkowski-functionals Wy, (.). These properties are all most welcome for a functional
used to describe information stored in an image of a porous structure, we would even
cxpect these properties from a reasonably natural and intuitive summary statistic. But
unfortunately porous structures can be very complicated and in general certainly do not
belong to K. If we want to use the Minkowski functionals for our purposes, their definition
needs to be extended to a broader range of sets. In fact we will see that an extension to
sufficiently general sets to describe complex porous structures is possible in such a way
that the above propertics are conserved (see 2.1.4 for details).

2.1.3 The Hadwiger Characterization Theorem

The second important question we can ask in this context is how large the class of functio-
nals on K which share the properties of Theorem 2.1.3 might be and what these functionals
look like. The surprising answer is that properties i) (motion-invariance), i) (continuity)
and vi) (additivity) already suffice to characterize such functionals as linear combinations
of Minkowski-functionals. If one considers the properties of Theorem 2.1.3 as indispensable
for a summary statistic of an image of a porous medium, then there is no need to go beyond
the d+1 Minkowski-functionals. Therefore the following famous theorem due to Hadwiger
is the main justification for describing images of porous media using Minkowski functionals.

Theorem 2.1.4. (Hadwiger’s Characterization Theorem for Intrinsic Volumes)
Let ¢ : K — R an additive, motion-invariant and Hausdorff-continuous functional, then
there exist constants ¢y, ..., cq such that:

d
$(K) =) tm-Vam(K) VK €K.
m=0
The proof of Theorem 2.1.4 is simple as soon as one has the following quite involved lemma
(which is proved in (Klain 1995)) at hand:

Lemma 2.1.5. Let ¢ : KX — R an additive, Hausdorfl-continuous and motion-invariant
functional that vanishes on lower dimensional sets and on unit cubes. Then ¢ = 0.

The proof of this Lemma is done inductively with respect to dimension d. It is so interesting
that we provide here at least its basic skeleton. The case d = 1 is simple because convex
bodies are just closed segments. For d > 1 the induction hypothesis is used to prove that
¢ vanishes on right (convex) cylinders, next cutting an arbitrary cylinder in two halves
in such a way that they can be glued together again to form a right cylinder shows that
¢ vanishes on arbitrary cylinders. Next one considers sums of polytopes P and segments
S. A decomposition of P + S into P and cylinders can always be found which reveals
¢(P + S) = ¢(P). Then an induction argument is used to prove this equality for sums of
polytopes and finitely many segments, i.e. ¢(P) = ¢(P + Sy + ...+ Sp). Sums of finitely
many segments are called zonotopes. The same equality therefore holds for Hausdorff-
limits of sequences of zonotopes. Such sets are called zonoids and again by continuity
P can be replaced by an arbitrary convex body K to find ¢(K + Z) = ¢(K) for Z a
zonoid. Next one uses that for a (sufficiently smooth) centrally symmetric convex body K
one always finds two zonoids Z1, Z such that K + Z; = Z,, which establishes ¢(K) = 0
for (sufficiently smooth) centrally symmetric convex bodies. This last result is used in a
smart construction to show that ¢(A) = 0 for arbitrary simplices A. Approximating an
arbitrary convex body K by polytopes P and these polytopes again by simplices finally
establishes the lemma.
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Proof. (Theorem 2.1.4) The assertion is proved inductively in dimension d. For d =0
there’s nothing to prove. For d > 0 let H be a hyperplane and consider the restriction
¢|g. This functional is of course additive, continuous and invariant under motions of
H into itself. Therefore ¢(K) = ;in_;lo cm - V(K) VK € K, dim(K) < d for some
constants cg, ..., ¢, independent of the hyperplane H. Consider now the new functional
H(K) = (K)— 2% _, cm - Vin(K) where ¢, is chosen such that ¢ vanishes on an arbitrary
fixed unit cube. Then ¢ fulfills the assumptions of Lemma 2.1.5 and therefore vanishes
which proves the Theorem. |

2.1.4 Extended Definition of Minkowski Functionals

In this subsection the definition of Minkowski Functionals is extended to the conver ring
R, a set-class rich enough for mathematical modelling of porous structures and an even
farther reaching extension of the definition of Minkowski functionals is mentioned. Proofs
for the theorems used here can be found in the appendix.

Definition 2.1.6. (convex ring) The set-systern consisting of all finite unions of convex
sets is called the convex ring R. A set R € R has a representation of the following form:

n
R=|JK; forneNK; € K.
i=1
Sometimes the elements R € R are called polyconvex sets.
Note that because of the additivity property (Theorem 2.1.3, part vi)) for intrinsic volumes

Viu(.), there is no freedom in choosing their functional values on R. In fact they are
dictated by the inclusion-exclusion-formula:

Theorem 2.1.7. (inclusion-exclusion-formula) Every additive functional ¢ : K — R
(or more generally with values in an abelian group) satisfies

G(K1U.. UKy) =Y (=)™ 3" ¢(Kin...NKi,).
m=1 11 <ol

Proof. (Theorem 2.1.7) additivity of ¢ and induction in n.

Remark 2.1.8. It would be tempting to use Theorem 2.1.7 to cxtend the definition of
Vin(.) to the convex ring R. Unfortunately this only specifies the values of V;,,(.) for a
particular representation of a polyconvex set R. To make this extension sensible one must
make sure that the extension leads to the same value V,,(R) for all representations of R
as a finite union of convex sets.

Remark 2.1.9. Because the convex ring R is closed under finite unions and finite in-
tersections the assertion of Theorem 2.1.7 makes sense also for functionals ¢ : R — R.
In fact, the same induction argument used in the proof above also works to extend the
theorem to such functionals (and therefore holds for V,,(.) on R once this extension is
well-defined.)

The following theorem guarantees the well-definedness of the unique domain-extension for
intrinsic volumes onto R according to Theorem 2.1.7:

Theorem 2.1.10. (Well-definedness of intrinsic volume extension) Let ¢ a
Hausdorff-continuous, additive mapping from K — X where X 1is a topological space, then
¢ has a unique additive extension to the convex ring R. The values ¢(R) for R € R\ K
are given by Theorem 2.1.7.
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For a proof of this theorem see the appendix, section 7.2. We summarize the results from
this section in the following definition:

Definition 2.1.11. (intrinsic volumes and Minkowski functionals on the convex
ring)

o Let R =|J;_, K; a representation of a d-dimensional polyconvex set R € R. Then
the intrinsic volumes for R are defined as:

Va(R) =Y (-1)F1 >~ Vio(Ki,N...NKy), m€0,...d,

k=1 11 <<l

where the Vo (K;, N...NK;,,) are defined according to the Steiner-formula (Definition
2.1.2).

o The functionals Wy, : R — R,m =0,...,d which are scaled versions of the intrinsic
volumes Vi (R) such that Ky, - Vi—m(R) = (%) - Win(R) are called the Minkowsksi-
Junctionals of o polyconvex set R € R.

The properties of Minkowski-functionals on K stated in Theorem 2.1.3 carry over
to R (which is obvious for all of them except ii), v) and vii) from Theorem 2.1.7).
Monotonicity and Hausdorff-continuity are lost while extending the functionals to the
convex ring. This can be seen with the following instructive example: Consider the unit
circle B4(0) € K. Of course we have Vo(B%(0)) = 1. Now consider a sequence of sets
Kp == B%0) N hZ c B%0). Then K; € R, Vh, Vo(K}y) > 1 for h small enough and
Vo(K}) strictly increasing as h | 0. Furthermore limp_0 K = B%(0). That negative
values for V,,(.) can show up on R is clear from Definition 2.1.11. Non-negativity is
therefore not preserved.

Just for completeness we would like to mention here that Minkowski functionals are
special cases of so called generalized curvature measures which arise as coefficients in local
versions of Steiner-type formulae expressing the volume of local parallel sets. It is possible
to go beyond the convex ring R and define curvature measures on more general (but also
more abstract) classes of sets. The only such class we mention here is the class of sets of
positive reach P. This class contains nonempty, closed sets P with reach(P) > 0. The
reach of P € P is defined as the smallest number 7, such that Vo € R¢ with d(x, P) < r
there exists a unique nearest point in P. For K € K we have reach(K) = co. An example
for a set P with reach(P) = 1 is the unit circle. The set that consists of two intersecting
segments is not of positive reach (because in every neighborhood of the intersection point
there exists a point on the bisecting line which has two closest points).

For details about generalized curvature measures consult (Schneider and Weil 1992) or
(Schneider 2004) which contains an exccllent bibliography for many introductory topics
in integral geometry.

2.1.5 The Euler Characteristic

We have seen from the proof of the Steiner formula in section 2.1.1 that the functional
we call Buler characteristic Vo(.) (usually denoted by x) is equal to 1 for every convex
polytope P. By Hausdorff-continuity we also have x(K) = 1 VK € K. Being trivial on K
this functional becomes much more interesting for general polyconvex sets on R where it is



16 Chapter 2. Preliminaries

no longer constant. An alternative definition of the Euler-characteristic due to Hadwiger
can be given recursively for arbitrary dimension d. This recursive definition will allow us
to derive the Ohser-Miicklich-estimators for x described in sections 2.3.1 and 2.3.2. For
this purpose let w € S9! denote an arbitrary direction and E, ., a hyperplane with unit
normal vector w and distance vector y in the orthogonal complement of Eg,,. Then the
recursive definition of the Euler-characteristic can be stated as follows:

Definition 2.1.12. (Hadwiger recursive definition of the Euler-characteristic)
Lt ReER, we S,

X(B)= Y lim [X(RN Eyo) = X(RN Eysaw)]. (2.9)
YeE; .,

Please notc that for R € R this sum is well defined because only finitely many summands
are different from zero. Furthermore this definition is independent of the choice of the
“screening direction” w also for non-isotropic sets.

For convex sets K € K and arbitrary w € S% ! we can always find a pair of parallcl
supporting hyperplanes to enclose the set and exactly one of those gives a unit contribution
to equation 2.4. Hence the Hadwiger definition for convex sets coincides with our former
definition x(K) = 1, VK € K. Also note that equation 2.4 is additive and therefore the
recursively defined x coincides with V4 also on R. By means of the Hadwiger-Definition
the Euler-characteristic can also be defined for the (closed) complement R¢ of a set R € R.
Although the set R¢ is unbounded, there are still only finitely many points which contribute
to the sum in equation 2.4. For example this leads immediately to x(R?) = 0, d > 0.
Furthermore in d = 2 for a set K € K with inner points, application of equation 2.4
gives x(K¢) = —1 = —x(K). In fact, screening the set K¢ from the opposite direction
than when screening K gives a contribution for the same hyperplane E, ,, in both cases
but with opposite sign. In d = 3 screening K¢ from the opposite direction again gives a
contribution for the same hyperplane but this time with the same sign. This argument
can be used inductively and proves the following important consistency relation for the
Euler characteristic x which can immediatecly be carried over to the convex ring R by
additivity as long as onc cnsures that the set R € R has a representation R = U , K; for
which none of the K; have lower dimensional intersections (and thus could possibly enter
the calculation for the Euler-characteristic of the complement with the wrong sign).

Theorem 2.1.13. (Consistency of the Euler-characteristic) Assume a set R € R
in & dimensions has inner points and a representation R = U™, K;,K; € K such that
intersections K;, N...K;,, v €2,...,n are either empty or have inner points, then:

X(Re) = (=)' x(R),
where x(R¢) is defined by equation 2.4.

Proof. (Theorem 2.1.13) For more details see (Ohser, Nagel and Schladitz 2002), Theo-
rem 1. -

The definition of the Euler-characteristic may be extended beyond the Hadwiger-definition.
For the following generalization of the concept we use (Adler 1981). For the rest of this
section we denote by E} a regular k-plane which is a k-dimensional affine subspace of R%
which is generated by k vectors parallel to & of the unit-vectors {ey,...,e4}. Furthermore
we call a compact set B € R? a basic set, whenever its intersections with regular k-planes
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BN Ej are simply connected. The class of all basic sets is denoted by B. Note for example
that K C B. Next we define the class of basic compleres CB to represent finite unions of
basics such that any intersections of these basics remain in B:

AeCBs A= |JBiand B,,N...N B, €Bfork=1,...n.
m=1
The sets p(A) = {Bx, ..., By} form a partition of A and we call n the order of the partition
p(A). To give examples for sets contained in CB note that R C CB and E,NA € CB,VA €
CB. We can now define:

Definition 2.1.14. (Euler-Poincaré-characteristic for basic complexes) The
Euler-Poincaré-Characteristic x for a basic complex A € CB is

x(4) =" (-1)m! Yoo X(Bny N...N B, ) otherwise

where {B1,...,B,} is an arbitrary partition of A.

Please notc that this definition is in accordance with the definition from convex geometry
above on R. The definition is sensible because of the following Theorem:

Theorem 2.1.15. (unique extension of Euler-Poincaré-characteristic to CB)
Let A € CB and p(A) a partition of A. Then the quantity x(A,p) =
Yome O™ X(By,N...NB,,,) is independent of the partition p and additive

m=

on CB.

We give the proof of this theorem because it provides a constructive extension of the
Hadwiger recursive definition 2.1.12 to basic complexes which is a set-class containing
most subsets of R? which are of interest in differential topology.

Proof. (Theorem 2.1.15) The proof proceeds by induction in d. If d = 1 basics are
closed intervals, isolated points and the empty set. Then x(A,p) is the number of disjoint
intervals and isolated points in A and therefore independent of p. Additivity is obvious.
Set ¢ (A) := x(A,p). For d > 1 choose one of the unit vectors e ; and Vz denote by E* the
hyperplane z; = . Let A € CB% and p(A) = {Bi,...,B,} an arbitrary partition. Then
the cross-sections E® N A (projected on Ep) are in CB% ! and the induction hypothesis
guarantees that there exists a partition-independent functional ¢, defined on {ANE,, A €
CBd} and we can define the partition-independent function f(4,z) := ¢, (AN E*). By the
induction hypothesis we have:

n

fA,z) = (=)™t Y @B, N...NB, NE).
m=1 V1< Vg
Note that ¢4~V (B, N...NB,, NE") is a 0-1-function and because B, N...NB,, is a basic
(and therefore connccted) there exist a,b € R such that ¢~D(B, N...N B, NE®) =
l{a<e<p}- Hence f(A,x) is a stepfunction with only a finite number of discontinuities.
Therefore the right-hand limit f(A, %) := lim,), f(4,y) always exists. Now we define:

¢ D(A) =) f(Az) - f(4,z7). (2.5)

zeR

Note that there are only finitely many summands different from 0 on the right hand side
and therefore the sum is well-defined. To show that ¢(@ = y(@ we note similarly as above
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that for a basic B € B\ §) there exist a,b € R such that f(B,x) = 1{,<z<p}- The only
contribution to the sum on the right hand side of equation 2.5 is therefore in z = b and
cquals 1. Equation 2.5 trivially holds for B = (). Now let A, B, AU B, AN B all be basic
complexes in dimension d. Then the projections onto E° of the intersections of these sets
with E¥ are basic complexes in dimension d — 1 and therefore:

f(AuB,z) = f(A,z)+ f(B,z) — f(AnB,z) ,Vx € R.

The same relationship holds for = replaced by z* and thercfore also after summing over
X

o D(AU B, z) = 69D (A, z) + 6D(B,z) — 9D (AN B,z) ,Vz € R.

This proves both the additivity and the equality of ¢4 with x on CB. Because the right
hand side of equation 2.5 is partition-independent the theorem follows. O

Note that cquation 2.5 is cxactly the recursive Hadwiger definition of the Euler-
characteristic which extends definition 2.1.12 to CB. But note that on CB the possible
screening directions in 2.5 are limited to the directions of the coordinate axes because
non-convex basics in general don’t need to stay basics when rotated. 2.5 can also be
seen as an alternative to definition 2.1.14. In the following we will not distinguish
anymore between the Euler-characteristic from convex geometry and the Euler-Poincaré-
characteristic from topology and call the functional simply Euler-characteristic.

We are now in a position to calculate the Euler-characteristic for very general sets
including surfaces and submanifolds of RZ. To give a few simple examples, note that
x(B%) = 1,vd (by convexity) but x(S%) = 1+ (=1)%1. For d = 2 partition the unit
circle into four arcs delimited by the 4 intersection points with the cartesian coordinate
axes. Then each of these arcs is a basic. (Partition in only two arc would not be feasible
because the intersection of thesc arcs would not be a basic!) It follows by additivity that
x(S') = 4 —4 = 0. A similar construction in d = 3 works by partitioning the sphere
for example into 8 basics delimited by the equator and two meridional great circles
intersccting each other at a right angle in north and south pole (all circles parallel to
the coordinate planes). Each of the 8 faces of this partition contributes one unit to x
whereas each of the 12 cdges contributes —1. Finally the contributions of each of the 6
vertices are —2 + 4 — 1. Therefore x(S%) = 6 — 12 + 8 = 2. Of course this can be more
easily seen using the Hadwiger recursive definition (where one gets a contribution of +1
at north and south pole). For a torus 7' in R® the Hadwiger-recursive definition 2.5 gives
x(T) = 0 and if we consider a three-dimensional ball with | disjoint handles attached
its Euler-characteristic is 1 — I. This can be seen by decomposing the set into the ball
and [ tori and noting that the intersections of ball and tori are topologically cquivalent
to a right cylinder which is convex. An interesting remark is that this last result holds
independent of dimension.

That the Euler-characteristic is a topological-invariant quantity becomes clear from the
following reasoning due to (Hadwiger 1957). Let Ay, A3 two sets in CB and Bi,... B} a
partition of Ay into basics. If we now are able to find a partition B?,..., B2 for Az of the
same order n and if we can identify each basic B} with a basic B2 such that

B, N...NB, #0& B2 N...NBJ #, (2.6)
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then definition 2.1.14 ensures that x(A1) = x(Az2). So far we have developed the
concept of the Euler-characteristic in convex geometry. and generalized it to basic
complexes. But there are also truly topological definitions of the Euler characteristic.
In geometrical topology the so-called Euler-Poincaré-Characteristic is known to be a
topologically invariant quantity of a closed surface. It is true that the topological notion
of Euler-characteristic and the one from convex geometry we have used so far in this text
coincide for sets where both are defined.

The topological definition of the Euler-characteristic starts from the the famous Euler-
polyhedral-formula that provides a relationship between the number of vertices V, the
number of edges E and the numbcer of faces F of a polyhedron P in space which is
homeomorphic to a sphere. The Euler-polyhedral-formula states:

V-E+F=2 (2.7)

Proofs for this formula can be found widespread in literature. (I have have found at
least 19 different ones by research in the world wide web...). The simplest one notes that
an incidence-structure of a polyhedron homeomorphic to a spherc is always cquivalent
to a finite, connected planar graph and uses a trivial induction in the number of graph
vertices, edges or faces to show the formula for planar graphs (which are graphs that can
be drawn on a sphere without intersections).

For a general polyhedron P in d-dimensions the topological Euler-Poincaré-characteristic
is defined as

d
X(P) =Y _(-1)™|F™(P)|. (2.8)

m=0

where again F,,, denotes the set of m-faces of the polyhedron.

This topological definition of the Euler characteristic can be generalized in several
directions. After triangulation, a polyhedron can be understood as a realization of the
abstract concept of a simplicial complez.

Definition 2.1.16. (Simplicial Complex) A (finite) abstract simplicial complez is
a finite collection ¥ of nonempty subsets of a finite set with the property that if o € ¥
and T C o is a non-empty subset of o, then also 7 € ¥. FElements o of cardinality n + 1
are called n-simplices and the dimension d of X is the largest n for which there are
n-simplices contained in .

For finite simplicial complexes the Euler-Poincaré-characteristic is defined according to
equation 2.8, where now F™ denotes the number of m-simplices within X. A further
generalization defines the EC-characteristic in the same way for so-called CW-complezes.
The Betti-numbers by, are the ranks of the kth homology group of the CW-complex under
consideration. The Euler-characteristic is then defined as the alternating sum 5, (—1)*by.
That this last definition comprises the one for simplicial complexcs follows from the
Hopf-Trace- Theorem. The homology-definition of the Euler characteristic has the advan-
tage that it allows to prove quite easily that the Euler-characteristic is a topologically
invariant quantity. Please refer to a standard differential-topology book for further details.
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Since the Euler-Poincaré-characteristic is topologically invariant, the topological definition
of Euler-characteristic for simplicial complexes comprises the convex-geometry-definition
in three-dimensions: Any triangulation of the surface of a K € K can be interpreted as a
simplicial complex. And by topological invariance a combination of formulae 2.7 and 2.8
leads to x(K) =1,VK € K.

In three dimensions, for compact, closed two-dimensional manifolds, the Euler-
characteristic is given by the famous Gauss-Bonnet-Theorem. In arbitrary dimensions
for compact subsets S C R? whose boundary is a d—1-dimensional C2-manifold the Euler-
characteristic x(5) can be calculated using the Morse-Cairns- Theorem.

Theorem 2.1.17. (Gauss-Bonnet-Theorem) Let Z be a compact, boundaryless two-
dimensional Riemannian manifold, the Euler-characteristic x(Z) is:

1

x(2) = 5-K(2)

where K(Z) is the integral of total curvature (see definition 2.2.5 for a definition of K(Z)).

Proof. (Theorem 2.1.17) The proof for Z = 0K where K convex is given in the
derivation of equation 2.19 below. For the genecral case consider a basic textbook in
differential geometry.

Theorem 2.1.18. (Morse-Cairns-Theorem) Let Z a compact subset of R¢ bounded
by a regular d-1-dimensional C*-manifold. Let further f(t) : RY — R a C2-function which
has no critical points on 0Z and such that the critical points of the restrictions f|Z and
fl0Z are all non-degenerate. Then:

d d-1
X(2) =D (=1)Fme + (1),
k=0 k=0

where:

my, := the number of critical points of f|Z for which the Hessian a—z%%

Figenvalues (k=0,...d).

has k negative

my, := the number of critical points of flOZ~ for which the Hessian 6,—&% has k negative
Eigenvalues (k= 0,...d — 1), and where 0Z~ is the submanifold of Z of points
T in which the derivative of f in direction of the outer normal vector of OZ in x is
negative.

Proof. (Theorem 2.1.18) The proof requires extensive knowledge of algebraic homotopy
theory and can be found in (Morse and Cairns 1969), Theorem 10.2’.

To establish the Ohser-Miicklich-estimators in sections 2.3.1, 2.3.2 we need to know how
to calculate the Euler-characteristic of a porous structure from discrete approximations.
The Hadwiger-Definition will not help us much if we note that in general exchange of limit
and sum in equation 2.4 is not permitted and may lead to wrong results. For examples
refer to (Ohser and Miicklich 2000). But this means that definition 2.1.12 is useless for
implementation on a computer which can only deal with finite resolutions. However in
(Ohser and Nagel 1996) conditions can be found for which this exchange is possible and
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therefore a recursive procedure for calculating the Euler-characteristic can be derived
which is suitable for implementation on a computer and leads directly to estimators for y
from pixel images (see sections 2.3.1 and 2.3.2). To describe these conditions we need to
have a closer look at the basic morphological operations opening and closing.

Definition 2.1.19. (Morphological operations) Let A and B two arbitrary sets and
B the image of B under reflection at the origin.

o The set Ad B, A dilated by B, is the set

A®B={r+y,z € Ayc B}
o The set AS B, A eroded by B, is the set

ASB-= ﬂ(Aer)

yeRB

¢ A morphological opening of A by B is performed as an erosion of A by B
followed by a dilation by B:

AoB=(AcB)®B.

e A morphological closing of A by B is performed as a dilation of A by B followed
by an erosion by B: ~
AeB=(A®B)oB.

o A set A is called morphologically open with respect to B if A= Ao B.

o A set A is called morphologically closed with respect to B if A= Ae B.

The set B is usually called the structuring element. Opening is used in morphology
to separate two sets which are connected by tiny capillary bridges whereas closing is used
to remove and fill up tiny holes in a set.

The exchange of limit and summation in equation 2.4 is possible for sets which are both
morphologically open and closed which is shown in (Ohser and Nagel 1996). Once this is
shown, it is easily possible to provide a version of Hadwiger recursive definition for y which
is suitable for computer implementation. To state the corresponding theorem we need to
extend the notation used in definition 2.1.12 slightly. Let R € R. Denote by —(y,w) the
vector of the same length as y pointing in the direction of —w and Y, ,, = (E, N R)_(yuw)
the set By, N R shifted back to the hyperplane parallel to E,,, through the origin, then
we have:

Theorem 2.1.20. (recursive calculation of the FEuler-characteristic) Let w €
8§41 A > 0. Consider R € R that is morphologically open and closed with respect to
the structuring element B := —(A,w), ie. R = Ro B = Re B, then the following integral
geometric representations of the Euler-characteristic x(R) hold:

X(R) = %/[X(Yy,w U Y;;+A,w) - X(Yy,w)] dy. (2'9)

B = 5 [ V) = X N V)] (2.10)
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Proof. (Theorem 2.1.20) The proof is due to (Ohser and Nagel 1996). The derivation
of cquation 2.9 can be found in the appendix. Equation 2.10 then immediately follows
from 2.9 by exploiting the fact that in the second integrand y may be replaced by y + A
and then applying additivity. '

For w € S 'and A > 0 let now Ej, := Ea ., be a sequence of fized parallel hyperplanes.
The following rather surprising corollary reveals that the integration in equation 2.10 can
be replaced by a sum over subsequent pairs Ey, Exy; without changing the value of the
Euler-characteristic x: This means that the usual approximation of integrals by sums in
the Riemannian sense still gives the exact value in this case!

Corollary 2.1.21. Let R € R. Under the conditions of Theoremn 2.1.20 the following
representations of the Euler-characteristic x(R) hold:

XAR) =" (x(Yia U ¥esya) — x(Yea)) (2.11)
k

X(R) = Z (x(Yea) — x(Yea N Y(i1)a)) (2.12)
k

This corollary confirms that the Euler-characteristic is a truly topological quantity and
not dependent on the metric of the underlying space at all.

Proof. (Corollary 2.1.21) The proof of Theorem 2.1.20 can be literally translated by
replacing + [ with }~,. For details see (Nagel, Ohser and Pischang 2000).

As already mentioned, we will use Corollary 2.1.21 to derive the Ohser-Miicklich-
estimators for the Euler-characteristic in two and three dimensions. We will always
assume in the following that the specimens of porous-media which we examine are
topologically open and closed with respect to the unit lattice vectors such that corollary
2.1.21 can be recursively applied (see sections 2.3.1 and 2.3.2). However we will see that
Corollary 2.1.21 is useless if we approximate a two-dimensional set on a hexagonal graph
instead of a cuboidal onc. In image analysis, if only a pixel image of the set A C R
is available, the value x(A) is often estimated by the Euler-characteristic of a set A
which is formed by intersecting A with a hexagonal graph whose vertices are the pixels
of the image. A consists of the union of all triangles which have all three vertices in A
plus all edges with both vertices in A plus all graph vertices contained in A. Note the
implicit assumption that whenever two vertices of the hexagonal graph are contained in
A, then the whole edge joining these vertices belongs to A and similarly if the three edges
bounding a triangle belong to A, so does the whole triangle which of course doesn’t need
to be correct for non-convex A.

Essentially from definition 2.1.12 it follows that in 2-dimensions the Euler-characteristic
of a set x(A) can be interpreted as #(connected components) — #(holes). A similar
relationship also holds for the 3-dimensional case where in addition the number of
completely enclosed cavities must be added.

The Euler-characteristic x(A) can then be calculated because A ¢ CB and the decompo-
sition into basics is naturally provided by the hexagonal graph. Hence in principle one
could use definition 2.1.14 to calculate x(A), but here we give a graph-theoretical result
from (Serra 1982) which again coincides with the definition of 2.8:
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Theorem 2.1.22. (Euler’s relation for hexagonal graphs) Let A C R? and A its
representation on a hexagonal graph. If we denote:

=  number of connected components in A,
number of holes in A,

number of triangles in A,

number of edges in A,

= number of vertices in A,

1

[ s S N
il

then: x(A)=n—h=v+t—e. (2.13)

Proof. (Theorem 2.1.22) The proof proceeds by induction in the number of graph
vertices. For v = 0 the statement reads 0 =0 and forv =1 wehave 1 —-0=14+0-0=1.
Now assume equation 2.13 holds for v = k vertices. It remains to show that adjunction of
a further vertex and associated edges does not change equation 2.13. This in in fact true,
since for each of the (modulo hexagonal rotation) 14 possible neighbourhood configurations
of the added vertex the balance is kept. Exemplarily consider the configuration where the
six neighbours belong alternatingly to the graph or not. ‘Adding a vertex means Av = 1,
At =0, Ae = 3. Hence, the change in the right hand side of equation 2.13 is —2. On the
left hand side, three different situations are possible. Either the three neighbouring graph
vertices belong all to the same connected component, then An = (0 and Ah = +2 or two
of them belong to the same connected component, but then An = —1, Ah = +1 or all of
them belong to different connected components, then An = —2 and Ah = 0. Therefore in
either case also the left hand side changes by —2 and equation 2.13 is preserved. For the
other neighbourhood configurations the same argument is even easier. A detailed listing of
all possible configurations and the above argument for each such configuration is provided
in (Serra 1982, p. 185). O

2.2 The Crofton and the Kinematic-Formula

To be able to work comfortably with Minkowski functionals we need more explicit repre-
sentations. A basic prercquisite for modelling porous media using Minkowski functionals
is being able to compute their values for a pixel image of such a porous structure. The
porous media we are investigating are always assumed to be sets from the convex ring
R but definitions 2.1.2 and 2.1.11 are inappropriate for computing purposes. But luckily
integral geometry can provide us with integral expressions for the Minkowski functionals
that can be discrctized in a straightforward manner and will allow us to (at least approxi-
mately) compute values for Minkowski functionals of polyconvex sets from pixel images.
A second advantage of these integral representations is that they will provide us with a
more intuitive geometrical understanding of what Minkowski functionals really are. This
section is devoted to the derivation and interpretation of these integral expressions. Again
we follow (Schneider 2004).

2.2.1 The Crofton Formula

Let SOy be the usual orthogonal group in RY. It has the structure of a compact topological
group when equipped with the usual topology by reprcsenting elements § € SO4 with
orthogonal matrices R € R* (after choice of an arbitrary orthonormal basis). It is well
known that (locally) compact topological groups carry an up to a proportionality constant
unique measure defined on the Borel-o-algebra which is regular and invariant with respect
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to group multiplication. This measure is called the Haar measure and we denote the Haar-
measure of SOy4 by v, normalized such that it becomes a probability measure. Let further
L denote the collection of g-dimensional linear subspaces of R%. If we fix an arbitrary
L € L% we can define a rotation-invariant probability measure on L} as the image measure
of v under the mapping R — R - L. This measure we denote by v,. Because of rotation-
invariance this measure is independent of the choice of L. Similarly £7' denotes the space
of ¢-dimensional affine subspaces of R? (space of g-flats). We can define a measure p, on
Eg as the image measure of \y_, X v under the mapping (z,R) —» R- (L +z), € L*,
where Ag is k-dimensional Lebcsgue-measure. With these definitions at hand, it makes
perfect sensc to consider the following integral:

/ Vi(RN E)py(dE) for R € R.
£d

The solution of this integral involving an intrinsic volume is again a (scaled) intrinsic
volume, a fact which is the content of the Crofton-formula. We will first give the result
for K € K and then extend it to the convex ring R. Because the Crofton-formula is the
basis for all the estimators for Minkowski-functionals we use in later sections, we include
the proofs here.

Theorem 2.2.1. (Crofton-formula for convex sets) Let K €¢ K. Forqe1,...,d—1

and j < g we have

[(L)P (=452
P(HEHT(%Y)

| itk 0 Eyug(aE) - Vicgss(K).

q

Proof. (Theorem 2.2.1) The proof is a direct conscquence from the Hadwiger charac-
terization Theorem 2.1.4. Consider the integral as a functional ¢ on K:

H(K) = /8 V(K N E)yig(dE) VK € K.

¢ is motion-invariant, additive and Hausdorff-continuous. According to Theorem 2.1.4 it
must have the following representation:

d
¢(K) = Z cm Vi (K). (2.14)

m=0

Writing ¢ a little bit more complicated,

o) = [ [ VKN @+ o gomlan)

one learns that ¢ is homogeneous of degree d—g+j because A4_, is d— g-homogeneous
and Vj is j-homogeneous. But then only the ¢q_g;Vy—q+;(K)-summand in (2.14) can be
different from 0.

The value of the constant can be found by choosing K = B4(0). The Steiner-formula 2.1.1
completely determines all intrinsic volumes for the ball:

. . d d
D gV (BYO) = Va(BY0) + p5Y0) = (14 e = 3 (1 Yo

m=0 m=0
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4
which implies V;(B%(0)) = %I)—N(-l Finally observe that:
d—j

i Vimgs (B0 = [ Vi(BUO) 0 E)ug(d)

_ / Vi(BY0) N R(L + 2))Aa_y(dz)v(dR)
S04 JLL

()ra

Kg—j

= / (1~ [[2]*)?72V3(B40) N L)Aaq(de) = / (1= Nlzl*Y/*Xg—g (d),
LtnBd ILinBd

and the last integral is of the beta-type and can therefore explicitly be done. |

The extension of the Crofton-formula to the convex ring R is now easy thanks to Theorem
2.1.7. To simplify notation we denote A(n) := 211"\ ) and set K4 := K;; N...N Kij 5
Then the assertion of Theorem 2.1.7 can be written more concisely as:

KLU UKy = Y (1) g(Ky), (2.15)

AcA(n)

wherc ¢ is an additive functional on K.

For R € R we choose a representation R = | J;;,_; Km, K € K and then we calculate:

[ V@0 Bg(aB) = [ V(| (om0 E)itldE)
g m=1
= WAV (K 4 N E)py(dE)
/'1 Aegn) \467(:_1
(4T (e (2t (dgtitl
- AEZA: )( )l F?%l e :"1) deq-i-j(KAﬂE): F:()%l)r(d%l) Viegs(R)

S0 that we can summarize:

Theorem 2.2.2. (Crofton-formula for polyconvex sets) Let R € R. For q €
1,...,d =1 and j < q we have

| _ (e
Jeg IR = R,

Vd—q+j (R) .

For compressed and easily readable information about more general local versions of the
Crofton-formula and other fundamental integral geometric relationships involving genera-
lized curvature measures see (Schneider 2004).

2.2.2 Basic Consequences from the Crofton-Formula

Due to the Crofton-formula are now able to get a little bit more insight in the nature
of the Minkowski functionals and gain some geometrical intuition about them which we
have already conjectured before from their explicit representation for convex polytopes
(equation 2.1). Setting j = 0 in the Crofton-formula (Theorem 2.2.1) above reveals:
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Corollary 2.2.3. (Integral geometric representation of intrinsic volumes) For
m € {0,...,d} and R € R the intrinsic volumes can be written as

ViR =l [ xRN B y(a), (2.16)

—q

For convex sets K € K the value x(K N E) is simple: x(K N E) = ligniyey- Therefore:

For convex sets K € K, the intrinsic volumes Vi(K) are equal to the
(normalized) measure of the set of d—q-flats intersecting K.

From corollary 2.2.3 the missing points v),vii) in the proof of Theorem 2.1.3 are now
obvious. :

For convex sets K € K, equation (2.16) can be further simplified to:

V() = [ dlpa(KID)wi(aL), (2.17)

where p(.|L) denotes projection onto L.

From equation (2.17) we immediately derive a handy geometrical interpretation for the
intrinsic volume V(K) for convex bodies when setting ¢ = 1. Up to a constant it is equal
to the mean breadth b(K) of K. Another gcometrical interpretation for V;(K) on K
when the boundary of a convex set K is a C?-hypersurface will be given in section 2.2.4.

2.2.3 The Principal Kinematic Formula

To be able to give explicit expressions for the Minkowski functionals in Chapter 3 we need
to state another important integral geometric theorecm. Whereas the Crofton formulae
describe how to calculate averages of intrinsic volumes for convex bodies over spaces of
flats, the so-called iterated kinematic formula describes how to calculate such averages
over the whole group of rigid motions G4. Again we follow (Schneider 2004). For K € K
we denote gK its image under the rigid motion g € G4, Similarly as for flats the Haar
measure g on G4 can be described as the image measure of Ay x v under the mapping
(z, R) — g, where gy = Ry + x for y € R%. Then the following theorem holds:

Theorem 2.2.4. (principal and iterated kinematic formula) Let n > 2. Further-
more Ky,...,Kn €K, g2,...,9n € Gg,j €{0,...,d}. Then:

i)

d
' Mk, (d —m + ) Kg_mai
/ Vi (K1 M gaKa)u(dg) = ) al T dl Nia Vi (K1) Vi—m; (K2).
Ta = Jlkjdlkg
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ii)

/ Vi(K1NgeKan...NgnKn)u(dge) ... u(dgs)
Gg Gy

d

— Mk, g K,
- Z .7'”‘] (d!”\?d)nml V'rn.1 (Kl) T V:’nn. (KTL)-

mi,...,Mp=3
mi+..+mp=(n—1)-d+j

Proof. For a proof see the appendix, section 7.2.

2.2.4 Curvature Integrals and Minkowski-Functionals

In this subsection we restrict our attention to three-dimensional Fuclidean space R3. We
will see that for convex scts with suitably regular boundary the intrinsic volume Vi(.)
coincides up to proportionality with the integral of mean curvature which leads to a useful
second interpretation of this functional and as a side-product establishes a connection
between the integral of mean curvature and mean breadth. Furthermore we will see that
2V5(.) plays the role of the surface area. We will follow an easy argument from (Santalé
2004). Let us assume that K € K and 0K has the regularity of a C2-surface. This
ensurcs that Vo € 0K the two principal curvatures pi(a), pa(x) exist. Recall that principal
curvatures denote the inverse radii r1, r2 of the largest and smallest osculating circle in z
respectively. Then we can make the following definition:

Definition 2.2.5. (integral of mean and total curvature) Let K a C?-surface in
R? and Vz € OK denote by p1(z), pa(x) the principal curvatures in x. If furthermore do
denotes the area element on 0K, then

e the quantity

is called integral of mean curvature of the conver set K.
e the quantity
K(K) = [ p@pa(e)dox()
oK
18 called integral of total curvature of the convex set K.

These definitions can readily be generalized to higher dimensions and larger set classes.
Details follow at the end of the section. The product p1(x)py(z) is the well-known Gauss-
Kronecker-curvature which relates the area element dog to the Hausdorff-measure Hs on
52 in the following sense:

»(2)pe(z)do = dHa.
This relationship can now be used to describe the area clement do g, for the parallel body
K, of K. Because the curvature radii r;(z) are expanded during the dilation process to
ri(z) + p we get:
dCIKp = (7"1 (.T) + p)(’l‘g(ﬂ,‘) + p)ng

This allows us to calculate the surface area s of the parallel body:
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) = [ o= [ @@t p [ @ @i+ [
8K, J sz 82 Js2

= [ dox+2p / pi(@) £ pale)
aK BK 2
= s(K)+20M(K) + p°K(K).

dok + / p*p1(2)pa(z)dok
oK
(2.18)

The volume v of K, can now be calculated in two different ways. The first method is a
dircct application of the Steiner formula 2.1.1;

. 4
v(Kp) = Va(K) + 20Va(K) + mp* Vi (K) + = p*Vo(K),

but we can also usc cquation 2.18 above to get:

P 1
o(Ep) = v(K) + [ s(R,)dp = oK) + ps(K) + o7 ME) + 5P K(K),
0
Comparing coefficients (and using equation 2.17) finally establishes:

s(K) = 2V3(K), K(K) = 4rx(K),

which nicely connects all intrinsic volumes with geometric quantities. The same argu-
ment can be applied for other dimensions as well. The last equation proves the Gauss-
Bonnet-Theorem (Theorem 2.1.17) from subsection 2.1.5 in the case of convex K with
C%-boundary. If the boundary of K is not C?, then curvature integrals can be defined as:

M(K) = nVi(K) = 2mb(K), (2.19)

M(K)zlimOM(Kp), K(K)= lir%K(Kp).

p— p—

The geometric quantities s(.), M(.) and K(.) are additive which allows us to carry over
the geometric interpretations of the Minkowski functionals to the convex ring R.

For the rest of this thesis we restrict our attention to dimensions d = 2,3. Hence in the
following there are only four Minkowski-functionals to consider for all of which we have
an intuitive geometrical interpretation:

geometric characteristic notation | functional in d = 2 | functional in d = 3
area/volume v Vo =Wy Vi =Wy
boundary length/surface area | s 2V = 2w, 2V = 3W,
integral of mean curvature M — 7V = 3W,
Euler characteristic X Vo = %Wg W = %Wg

Table 2.1: intrinsic volumes Vi,(.) and Minkowski-functionals W, (.) in two and three
dimensions together with their geometric interpretations.

In the following we don’t make a difference between the Minkowski-functionals or intrinsic
volumes and the geometrical characteristics they represent. We will take the freedom and
call all those quantities simply Minkowski-functionals. It will be clear from the context
what particular quantity is addressed.

For arbitrary dimension d, definition 2.2.5 can be generalized as follows:



2.3. Ohser-Miicklich-Estimators for Minkowski-Functionals 29

Definition 2.2.6. (n*" general integrals of mean curvature) Let S be a C2-
hypersurface in RY.  Then the n*® general integral of mean curvature is defined
forne{l,...,d—1} as:

M08 = (1) [t Yo (s),

where {pi,,...,p:,} denotes the nth-elementary symmetric function of the d — 1 principal
curvatures. .

Analogously as we did above, relationships between the Minkowski-functionals in d dimen- -
sions and the curvature integrals of definition 2.2.6 can be established. For details refer
to (Santalé 2004).

2.3 Ohser-Miucklich-Estimators for Minkowski-Functionals

Because the specimens of porous media we examine in this thesis are available to us only
as digitized pixel images on a computer, we need a method for approximate calculation
of Minkowski-functionals from pixel images. Because we always assume that the porous
media under consideration consist of a single homogeneous two-phase-material, their solid
phase can be represented by a subset S C RY, where d = 2,3. As a technical restriction,
we always assume that the sct S is an element of the extended conver ring S, ie. SV :=
SNW € R, VW € K. The collection § is the right class to consider because this allows us
to understand the porous structures under investigation as infinitely extended which will
be convenient in the following for mathematical reasons whereas in practice of course we
can only observe bounded specimens of the porous medium, ie. we observe the compact set
SW. Usually W is assumed to be a convex body W e K which we call observation window.
In most cases for convenience W is a rectangle (d = 2) or a cuboid (d = 3). For example
in two dimensions W could play the role of the computer screen. The pixcl image of SW
can be interpreted as the intersection S&fh) = SW NT(h) where T'(h) is a cubic lattice
I'(h) = hZ%. We call h the lattice spacing which is used to control the resolution of the
pixcl image SV (h). Other lattices would also be possible (eg. cuboidal), but for the sake
of simplicity of formulae we restrict ourselves to the cubic case. It will be convenient later
on to interpret the sets SV and S} as mappings SV (z) and S¥ (2) which are defined as
the restriction of the R%-indicator function for § to W and W N T'(k) respectively:

SW(x): W — {0,1} S (h)(z) : W N L(h) — {0,1}
V() = 15(2) S (@) = 15(z)

The whole information about a pixel image S} (k) is stored in a binary string consisting
of the values of the map bsw (ny (defined below) along with an indication about the
dimension of the image and the number of pixels per dimension. A further convenient
technical restriction we make in the following is that for our chosen observation window
W the set SV is morphologically open and closed with respect to all edges, face diagonals
and spatial diagonals (only d = 3) of a unit I-lattice cell.

The set W N L(h) is partitioned into quadratic (or cubic) lattice cells, Ohser and Miicklich
(Ohser and Miicklich 2000) have developed formulae which give accurate estimators for
the Minkowski-functionals V;,(.) of continuous porous specimens SW from discrete ap-
proximations S}il(/ k) on the lattice SWNL(h). These estimators depend only on the vertex-
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configurations of lattice cells and reduce the workload to simple pixel counting. The esti-
mators can therefore easily be implemented on a computer. The next two subsections are
devoted to the description of these estimators and how they are derived from the Crofton-
formula-representation (Corollary 2.2.3). First we discuss the Ohser-Miicklich-cstimators
for the two-dimensional case and then describe the formulae for the three-dimensional
situation. In section 2.4 we will represent porous media specimens S as realizations of sta-
tionary random sets © with values in §. Such sets are are of infinite extent by definition
and for unbounded S € S usually extensions of Minkowski-functionals (if they exist) lead
to Vi (S) = co. On the other hand the values V;,(S") are finite and rigorously defined
in our framework. However, they depend heavily on the choice of the observation window
W. Therefore we need expressions for the Minkowski functionals which are independent
of the size of the observation window W. Note that it makes perfect sense if we formulate
the Ohser-Miicklich-estimators for the Minkowski-functionals per unit volume,

o owy . Ym(SY)
a definition which will be generalized in definition 2.4.3 for the mean values of Minkowski
functionals for random sets with values in S. The functional 7 = Vj is usually called
porosity or volume-fraction. Please bc aware that the expressions defined in equation 2.20
arc indeed independent of the size but not on the shape of the observation window W (see

also subsection 3.2.1 below).

2.3.1 Ohser-Miicklich-Estimators for d = 2.

In two dimensions there are only three Minkowski functionals to consider, namely the
porosity 7, the boundary length per unit volume § and the Euler-characteristic ¥ per unit
volume.

Each vertex z € T'(h) belongs either to SF¥' (k) or [S¥ (h)]¢ depending on the binary value
of S% (z). Therefore to every quadratic lattice cell Too(h) = {zo,z1 =29 — h - €y, 22 =
To+h-eg,x3 =19+ h-e, — h-e,} which we index by the upper left vertex xy following
the nomenclature in (Ohser and Miicklich 2000) and where e, and e, are unit vectors in
the directions of the coordinate axes, we can assign a unique vertex configuration number
bgw (wo) = S22 0S¥ (x;) - 2 by binary coding. An example is illustrated in figure 2.1.

)] X3
C

)
X] X3

Figure 2.1: A lattice cell T, (h) with baw (z0) = 6.

The only information needed to construct the Ohser-Miicklich estimators involves the
summary statistic hgw (@) = Zmoel"(h) Lib w (z0)=i}>t € 0...15 which simply counts the
s

occurrences of the 16 different vertex configurations throughout the image.
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The most natural estimator for the porosity o trivially counts a lattice cell whenever it
contains a vertex in S¥. Only occurrences of one of the four vertices (here xg) have to
be counted because the other three (x1,x2,x3) are accounted for by neighbouring lattice
cells. Therefore we have simply:

7
- 1 .
H(SY) = - > hew (2i+1), (2.21)
=0

where ng denotes the total number of lattice-cells in I'(h). Of course this estimator doesn’t
depend on the lattice spacing h at all. Note that this estimator can be understood as a
discretized Crofton-integral. Setting ¢ = d in the formula of Corollary 2.2.3 we obtain a
representation for the volume (or area) per unit volume:

H(SW) = Vy(SW) = U_(1W_) /W (S 1\ {z})dz. (2.22)

If we discretize equation 2.22 on the lattice I'(h) N W, we immediately get the Ohser-
Miicklich-estimator of equation 2.21 for the porosity .

For the boundary length 5(S") we use the Crofton-formula-representation from Corollary
2.2.3 while setting g =d — 1 = 1 to get:

SW B SW T 2m o0 W d(b
5 =2V, = S Nepp)dr —, 2.23
(") =20(s") = o= [ [ sV nengar g2 (2.23)
where e, 45 denotes the straight line with angle ¢ to the z-axis and distance r from the
origin. The quantity x(S% N er,) counts the number of chords, ie. pieces on the line e, 4
which lie completely in %W .

The simplest way to discretize the integral in equation 2.23 is to consider the 8 prominent
directions v € 1,...,8 dictated by the 2D-quadratic lattice. These are those directions, for
which counting chords is easy, namely the 4 directions along the lattice edges and the 4 di-
agonal directions. For an illustration of the rose of relevant directions, see figure 2.2 below.

nu=1

Figure 2.2: The prominent directions in a 2D quadratic-lattice.

Once a direction v is fixed counting chords on lines pointing in this direction is easy
because instead of counting the chords themselves we can count the number of transitions
from S% to [SV]°. The estimator for 5 can now be written as follows:

7 15
ES Wy ™ ]- .
s(Sr) = z(:) - Z{; hsw (1) Loy, restt " Hogy st b (2.24)

8-n
0=
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where ng is again the total number of lattice cells in I'(h), further g;(v), g2(v) for every
direction v denote the vertex index according to our specified nomenclature of the initial
point and the endpoint of the corresponding arrow in figure 2.2 and 7(v) = |z g,y — 24, (1)
stands for their Euclidean distance. Please note that the dependence of the estimator on
the lattice spacing h is given via r,, e.g. 7o = V2 h.

Finally we describe the Ohser-Miicklich-estimator for the Euler-characteristic . For this
purpose we denote the points of our quadratic lattice I'(h) by z;; := {(ih, jh)|i,j € Z}.
Furthermore we denote by Y; := S¥ n €{y=jh}_(;n, the intersection of SY¥ with the line
y = jh shifted back to the z-axis. A two-fold rccursive application of equation 2.12 first
in y—, then in z-direction reveals:

X(SV) = Y (x(Y5) = x(¥; NYjp1))
J
= Z (1,9;‘/ (zij) — Low (fz‘j)lsg"(%((wl)j)) - (1S,‘:V($ij)lsl‘i‘/ (@i(j+1))
ij

— Low (i) Low (Tij 1)) Lsw (@ (i11):) Lsw (x(i+1)(j+1))) )

= > Lgw(®i) = Low (@) Lgw (@(1);) — Low (i) Low (wij)
ij
Flgw (€i) Low (2i(j+1)) Low (2(i+1),) Law (T (+1)i+1))
= | —vertices in SF'| — |T —edges completely in SY |
+|T" —cells completely in S¥|. (2.25)

where summation can be restricted to the observation window W. Note that we have
used here that the set S" must be morphologically open and closed with respect to
cdges and diagonals of the unit cell. Note also that in this case 2.1.21 guarantees that
this estimator gives the ezact value of x(SW). Furthermore equation 2.25 confirms the
relation between the Hadwiger and the topological definition of the Euler characteristic.

Instead of counting vertices, edges and cells we can count vertex configurations h Sw( )
There are several possibilities to translate equation 2.25 into a formula for vertex conhgu—
rations because for a given lattice cell we are free to choose one of the cell vertices, one of
the horizontal edges and one of the vertical edges to count. If we choose for example the
vertex x; and edges xox; and z,72 the translation of equation 2.25 reads:

X(St") = hgw (2) + hgw (6) — hgw (11).
After choosing all other possible collections of clements to count which corresponds to
interpreting equation 2.25 from different directions (positive and negative z—, as well as
positive and negative y—direction) and averaging over the rose of directions we get the
final Ohser-Miicklich estimator for the Euler-characteristic per unit volume:

K(SF) = — hz.(zhbw ZhSW 15— 21+ 2. (hSW( )+hS¥V(9))). (2.26)

1=0

This provides us with another very natural intcrpretation of the Euler characteristic which
might not be obvious at first glance. The first summand counts exactly the number of
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convex vertices in SY whereas the second one counts the number of concave vertices in
S¥ . In fact the topological Euler-Poincaré- characteristic can be defined in two dimensions
as the difference between the number of convex and concave vertices. The appearance of
the third part of the sum which we call ezcess Euler characteristic is rather unexpected.
In fact, if the set SV is topologically open and closed with respect to a sufficiently small
structuring element the configurations of the third term will not show up. The excess-
term, which we refer to as excess Fuler-characteristic in the following, should be treated
separately as we have done in our experiments with the Gibbsian Model (see section 5.9).

2.3.2 Ohser-Miicklich-Estimators for d = 3.

We now describe the Ohser-Miicklich-estimators for the three-dimensional situation. In
three dimensions the relevant Minkowski-functionals per unit volume are the porosity o,
the surface arca per unit volume 3, the integral of mean curvature per unit volume M
and the Euler-characteristic ¥ per unit volume.

The lattice I'(h) which is used to collect information about the porous structure to calculate
the Ohser-Miicklich-estimators now consists of cubic lattice cells I'y,, (k) which are indexed
by the front lower left vertex zg. The vertex nomenclature is again chosen to be as in
(Ohser and Miicklich 2000) where it is as follows:

Izo(h) ={zo,z1 =20+ h-eq,zo=z0+h ey z3=x0+h-eg+h-ey,za=x0+h-e,,
zs=xo+h-e;+h-ey,z6=20+h-e,+h-e,z7=h-e,+h-e;+h-e},
| (2.27)

where e.,e,, ¢, denote the Cartesian unit vectors. Depending on the binary values of
the underlying field SW (a;) at the cell vertices z; the vertex configuration numbers
bew = SO0 SW (x) - 2¢ associated with a lattice cell T'y,(h) in the binary image S) arc
now between 0 and 255. An illustration is given in figure 2.3.

Figure 2.3: A 3D-lattice cell I'zy(h) with bgw (z0) = 103.

Again the Ohser-Miicklich-estimators are determined by the summary statistic
hsl‘i"(i) = Emoer‘(h) l{bslk"(m”):"'}"i € 0...255. The exact formulae for most of these
estimators are difficult to present in a concise way although all they do is counting
occurrences of specific configurations h(7) and weighing them appropriately analogously
as in the 2D-case above for which the formulae are precisely stated. For the 3D case we
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will content ourselves with giving the global structure of the estimators which suffices
to understand the proof of the 3D-convergence results in Chapter 4. For exact formulac
please refer to (Ohser and Miicklich 2000).

For the porosity ¢ there is not much to say because equation 2.22 holds independent
of dimension. The 3D-Ohser Miicklich estimator for the porosity p is therefore a trivial
generalization of the two-dimensional case. We only count lattice cells for which a specific

vertex (here z() belongs to the binary approximation S;‘(/ n) of the porous phase SV, where

we recall that SV = {z ¢ W |SW(z) = 1} and W is the observation window:

127
- 1 :
BSH) = oD hp (26 + 1)
i=0
where ng is the total number of lattice cells in I'(h).

For the surface area § pecr unit volume we refer once more to the Crofton-formula-
representation from Corollary 2.2.3 but this time with d = 3 and ¢ = 2 which leads
to:

5(8W) = - (év) /; ] /R ] x(S™ N ey )dy %‘:-, (2.28)

where e, denotes the straight line with direction w € $? and (two-dimensional) distance
vector y from the origin.

For discretization we note that the number x(S% Ne, ) still counts chords on lines e,
so we can set up the estimator in principle as for d = 2. It is again a directional average
over contributions to the estimator that now come from 26 prominent directions (3 cell
edges, 6 face diagonals and 4 spatial diagonals each in both directions) which are shown
in figure 2.4.

Figure 2.4: Half the rose of relevant directions for the 3D-specific surface estimator 5.

The estimator then becomes:

25 2

- 4 c

g W o J— —U 7Y . .

sSr) = o ZO 2 st ) Mgy estty Legest'y (2:29)
= 71—

where again ng is the total number of lattice cells in T'(h), and g¢1(v),g2(v) for each
direction v denote the vertex index according to our specified nomenclature of the initial
point and the endpoint of the corresponding arrow in figure 2.4 and r(v) = [Ty, ) — T4, ()]
stands for their Euclidean distance. The contributions of the prominent directions v to
the estimator are now weighted by the relative area ¢, of the corresponding voronoi-cell
on the unit sphere which is associated with each direction. Let v, denote the unit vector
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attached in the unit cubes’ center of gravity G and pointing in direction v. Then the
points G + v, lie on the unit sphere Vv. The voronoi-cell on the unit sphere S? associated
with a direction vp is then V,, = {z € $? ||z — (G + vy,)| = min, |z — (G +v,)|}, ie. V,,
consists of all the points x € S? which are closer to the point G + v, than to any other
point G + v,. The ¢, can be calculated relatively easily for a regular cubic grid. The
exact values can be learned from (Ohser and Miicklich 2000, pg. 116).

The next estimator we want to describe here is the one for the specific integral of mean cur-
vature M. One more time referring to the Crofton-formula-representation from Corollary
2.2.3, this time for d = 3 and ¢ = 1, reveals:

_ 27 > dw
w w
M = E — 2.30
(S ) ’1)(”7) Lz [ X(S N y,w)d?/ Ar’ ( )
whelje E, , is the plane with normal direction w and distance vector y.

Whereas for the specific surface cstimator 5 the contributions came from lines
(g, (v)s Tga(v))s the contributions from (S N Ey.) to M are associated with prominent
planes, namely cuboid faces, diagonal rectangles and diagonal triangles. An example for
each of the three types of planes is given in figure 2.5.

A cuboidal face which A diagonal rectangle Two diagonal triangles
contributes to M which contributes to M which contribute to M

Figure 2.5: The prominent planes involved in the calculation of the estimator for the
3D-specific mean curvature M.

In total, the 26 planes prominent for the cubic lattice I' are exactly those associated with
the vectors G + v, in the sense that these vectors are the normal directions to the planes
under consideration. If we denote by g1(v),...,g4(v) functions that for every normal
direction v return the vertices of the corresponding plane (in a fixed but for our purposes
unimportant order) then contributions P, to the estimator from the quadrilateral planes
(faces and diagonal rectangles) can be written as:

7D’/quad =
1 255
no 4y 2’15;" ®) Yonwmesty Yoy #s¥t Hag, @58} " g, o8y ~
i=
255

; hSrW (7’) ' l{wgl(u)GSrW} ’ l{wgz(u)esl‘f"} ’ l{xg:i(y)ESrW} ’ 1{$g4(u)¢S¥V} 9 (23]‘)
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where a, denotes the area of the planes, i.e. h% or v/2 - h? respectively. In principle on
rectangular grid the Euler-characteristic x(S" N E,.) can be calculated directly using
Corollary 2.1.21 and equation 2.25. But the rectangular grid leads to a slightly more
complicated expression for the rectangular contributions than the above. It is easy to
sce that the rectangular contributions take the simple form of equation 2.31 if one adds
one of the (facial or spatial) diagonals to the edge graph on which the two-dimensional
Euler-characteristic of the quadrilateral prominent planes is estimated. Please note that
an application of Corollary 2.1.21 is no longer possible because the corollary doesn’t give
us a hint how to calculate the Euler-characteristic x(S" N E,.) on a triangulated graph.
But fortunately this calculation can be done thanks to Theorem 2.1.22. Analogously
for the contributions from the triangular plancs an application of Corollary 2.1.21 is not
fruitful. Using Theorem 2.1.22 to calculate x(S" N E, ) it is straightforward to see that
the contributions from the triangular planes are as follows:

255
1 )
PVtrig g - Ay ‘ 2; hSF/ (Z) - 1{1391(,,)ESI‘1V} ) 1{:ny2(,,)¢Sl‘LV} | 1{:”93(“)¢SIW} -
i—
255
Z hSF/ ([I) ) l{mgl(—u)esl‘y} ) 1{w92(—u)esrw} ) 1{wg3(_u)¢SrW} ’ (232)
=0

where —v denotes the direction which is opposite to v (this direction belongs to the
second of the two triangles) and a, is the sum of the two involved triangles’ areas.
Again one recognizes the lower dimensional Euler characteristic that is used to build
up the contribution. It is important to note that because we have to resort to 2.1.22
to calculate both the contributions of the triangular planes and the simple form for the
contributions of the quadrilateral planes given in equation 2.31, these contributions arc
not exactly the lower-dimensional Euler-characteristics. On the hexagonal graph we have
to approximate the Euler characteristic of the set A := SW N E,,, by x(A) where 4 is
the graph representation of A introduced in subsection 2.1.5 above. Hence an additional
approximation step is involved here. This additional error could be avoided for the
quadrilateral contributions by replacing equation 2.31 by a slightly more complicated one
but there is no easy way around it for the triangular contributions.

Performing the directional weighing according to the voronoi-weights ¢, the final estimator
M which is a discrete analogon of cquation 2.30 is then:

25
M(SF) =21 e, Py (2.33)
v=0

It thus remains to describe the estimator for the 3D-specific Euler-characteristic. With a
threefold recursive application (once in each dircction of the cartesian coordinate system)
of equation 2.12 the identical calculation as in equation 2.25 shows:

x(S¥) = |P—vertices in S| — I —edges completely in S¥| 4 |I'—faces completely in S |
—|T'—cells completely in S|
Again we have x(S¥') = x(S") only in the case where §¥ is morphologically open and

closed with respect to all edges, face diagonals and spatial diagonals of the unit cell.
Therefore the estimator x becomes simply:
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255 .
R 1
P : .
X(5r) = o I3 ‘X;hsy (4) - (1{muesgv} ~1peswy Laeswy = Laoes?y  Liaaesy )~
7,:

Livoespy  Ymaesty T Ymoes¥) " Vares?) * Lmeswy * Lizgesyy T+
Livoes?t Lunestt LasesWy  Yazgest + UaoesW) " Lmes¥) * Vaaes?y * VasesW) —

Livoesty " Yeesty  Yeesty Lases?) LzaesW) * Laseswy " Lissesy) - 1{x7esm)

The estimator can be made more accurate by applying this formula from different
directional perspectives (which is equivalent to selective permutation of the vertex indices
in the above formula) and averaging over the directional contributions.

One can find other techniques for estimating the Minkowski-functionals in the literature.
An especially appealing approach where all Minkowski-functionals are estimated simulta-
neously is given in (Schmidt and Spodarev 2005).

2.4 Random Sets and Particle Processes

In this chapter we want to introduce the stochastic framework we are using to model
porous media. Because a specimen of a porous medium can be seen as a loosely connected
aggregation of geometrical shapes placed into space with a certain degree of randomness,
the concepts and techniques of stochastic geometry prove to be the right tools for our -
purposes. We mainly concentrate on the notion of a random set in the following but
also briefly mention some basic concepts from point process theory because the Boolean
model which we introduce in Chapter 3 can be interpreted as a so-called particle process.
This is a point process whose "points” are random sets. Among the many books about
point processes I like (Daley and Vere-Jones 2002) the best. An excellent text devoted to
random sets is (Molchanov 2005), as a summary also (Stoyan et al. 1985) and (Schneider
and Weil 2000), the last of which we take once more as a guideline also for this section.

2.4.1 Random Sets

We describe the theory for Euclidean space R? although the concept of random sets can
also be defined on general LCHS-spaces, ie. locally compact, second-countable Hausdorff-
spaces. We restrict our attention to random closed scts but one could develop a theory
for random open sets as well. The family of all closed subsets of R? is denoted by F.
Furthermore C refers to the collection of all compact subsets of R%, and the family of open
subsets of R is called G. Usually F is equipped with the so-called Fell-topology sometimes
called topology of closed convergence. A subbasis for the Fell-topology is provided by:

Fe={FEFIFNG#0} VG eGand F = {F e FIFNC =} YC € C,

where we have introduced the two pieces of common notation F4 and F4 for A C R¢
respectively. It can be shown (Schneider and Weil 2000, Thm 1.1.1.) that the collection
F equipped with the Fell-topology is a compact space with a countable basis and hence
can be metrized according to the Urysohn-Lemma. Continuity for functionals on F can
therefore be tested by considering sequences. The Borel-o-algebra on F with respect to
the Fell-topology is denoted by B(F). It is not hard to see that B(F) is generated by each
of the collections {F¢ : G € G}, {FC : G € G},{Fc : C € C},{FC : C € C}. Furthermore
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K,R and § are all clements of B(F). On C besides the induced Fell topology another
natural topology is often used, namely the one induced by the Hausdorff-metric. The
two topologies are comparable, the Hausdorff-topology being strictly finer, thus having
less converging sequences but more continuous functionals. We can now define the crucial
object in this section:

Definition 2.4.1. (random closed set) Let (2, A, P) a probability space. A random
closed set O is a measurable mapping O : (0, A, P) — (F,B(F)).

The trivial examples of random closed sets are the singleton © = {£} and © = (—0, €]
where £ is an R- valued random variable. Much more important for us in the following
is the fact that for a real-valued stochastic process (£;),cge With a.s. continuous sample
paths, the excursion set © = {z € RY|¢, > u} is a random closed set Yu € R. This
can trivially be seen as follows: Because second-countable spaces are separable for C € C
we can find a dense countable subset (k;);eny of C and note that because of continuity
{0 € FC} = {supyec&s < u} = {supy, &; < u}. Finally use that the supremum of
sequences of measurable functions are still measurable. A broad variety of random sets
can be constructed by using simple geometrical set operations. The topology and o-algebra
on F have been chosen such that all elementary set operations are mcasurable. Hence if
©) and O are random closed sets, then also ©1 U O3, ©1 N Oy, ¢l (61 + O3), 804, 1B,
cleonv(©1), a®1,a > 0, g01,g € G4 are still random closed sets (see Schneider and Weil
2000, Thm 1.3.4, p.23 for proofs). If we denote Py := © o P the distribution of © we can
use familiar concepts as independence, stationarity and isotropy for random sets as well.
The invariance properties of random sets are of special importance for us. We therefore
recall them briefly:

Definition 2.4.2. (ITnvariance properties of random sets)
i) A random set © is called stationary if Po = Poy, Yz € R%,
ii) A random set © is called isotropic if Po = Pre VR € SOy.

In the following we usually assume the random sets © we use to model porous media
to be both stationary and isotropic. It is intuitively obvious that a nonempty stationary
random closed set must be unbounded (see Schneider and Weil 2000, Th.1.3.5 for a rigorous
proof). Hence calculating Minkowski-functionals for realizations of such sets is impossible.
However we will only work with random sets whose rcalizations belong to S. For such ©
the concept of specific Minkowski functionals can be introduced. Because we can observe
realizations of such a random set only through a compact and convex observation window
W, Minkowski functionals V; can be calculated for W = O(w) N W ¢ R. Because
we are looking for a quantity which characterizes the random set © as a whole and not
only single realizations, a reasonable quantity to look at is E [V}(@W)], but with the
drawback that because of the monotonicity of Minkowski functionals on X (Theorem 2.1.3
the quantity V;(©"(w)) and thus also E [V;(©")] depends heavily on the size of the
observation window W. A natural choice to overcome this problem is considering the ratio
E [V;(0%)] /V4(W) as we already did for deterministic S-sets in equation 2.20. However,
in general this does not solve the problem since this ratio still depends on the geometry
of the chosen obscrvation window. For example this can be seen in the case where © is a
stationary and isotropic Boolean Model from equation 3.2 below. The remedy that works
generally is to take an increasing sequernce of observation windows r-W (r > 0 is a scaling
factor) and consider the limit of the Minkowski quantities per unit volume for r — oo:
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Definition 2.4.3. (Specific Minkowski Punctionals) Let W be a compact and convex
observation window and © a random set with values in 8. Then the specific Minkowski
Functionals V;(©) are defined as

7(0) — lim ELV(O™)]

where r is a scaling factor and ©K .= O N K for K € K.

The quantitics V; are in fact independent of the sequence of windows chosen as can be
seen below in Theorem 3.2.1 for the stationary and isotropic Boolecan model. For general
random S-sets we can rely on the following theorem which shows that definition 2.4.3 is
sensible even in a much wider context:

Theorem 2.4.4. (Ezistence of Specific Limit and Independence on the Sequence
of Observation Windows) Let © be a stationary random set with values in S and
¢ : R — R additive, translation-invariant and conditionally bounded, ie. ¢ is bounded on
the sets Cx = {K'|K' C K} for K € K. Then YW € K with V3(W) > 0 the limit

o E[pO™)
#(0) = lim —~emwy

exists and satisfies:
#(0) =E [p(0 N If) ~ (0 n o+ 1],
where I is the d-dimensional unit cube and OFIg its upper left boundary.

Proof. (Theorem 2.4.4) see (Schneider and Weil 2000, Thm 5.2.4).

To estimate the specific Minkowski functionals V;(©) for a single realization S := O(w)
of a stationary random set ©, all we can do is to use the estimator of equation 2.20.

Similarly as in ordinary probability theory where it is well-known that the characteristic
function determines the distributional propertics of a random variable uniquely, there is
a functional which uniquely determines the distribution of a random set. We give the
definition of this functional and the relevant theorem for R? but an analogous result
holds for general LCHS spaces:

Definition 2.4.5. (Capacity functional) Let © be a random set. Then the functional
To : C — R is defined as To(C) =P [©NC # Q). To is called the Capacity-functional
of ©.

We conclude this subsection with a theorem which is at the heart of the theory of random
sets:

Theorem 2.4.6. ((Choquet-Theorem) If two random sets Oy, 0, have the same capa-
city functional Tg, = Ta, then they are equal in distribution ©, 4 O5.

Proof. (Theorem 2.4.6) The theorem directly follows from the standard measure-
theoretic extension theorem. See (Schneider and Weil 2000), section 2.2, for details.
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2.4.2 Point and Particle Processes

A prominent subclass of random sets is given by the simple Point Processes. They are
especially well studied and they have a well developed theory on their own and cxtensive
literature devoted to them, eg. (Daley and Vere-Jones 2002) and (Schneider and Weil 2000,
Chapter 3). Similarly as for general random sets we will only need a minimal extract from
this theory which we develop in this subsection. We denote the set of all locally finite
point patterns 5 in R¢ by N. Locally finite means that in every compact subset C € C
the point pattern has only a finite number of points. Such a point pattern n can also be
interpreted as as a locally finite counting measure on (R, B(R%)), hence the condition of
local finiteness can be written as n(C') < oo, YC € C. A convenient c-algebra on N which
we denote by N is the one generated by the counting functions W 4 : n — n(A) which for
every A € B(R?) give the number of points, the point pattern n contained in A.

Definition 2.4.7. (Point Processes) A point process X is a measurable mapping
from a probability space (2, A, P) into (N,N'). The point process X is called simple if
almost surely X takes values in the set {n|n({z}) <1 Vz € R4}.

We will concentrate on simple point processes in the following. The connection between
point processes and random scts is the support-function supp : N — F which removes
the (possible) multiplicity of points from the counting measures, hence the result is an
ordinary closed subsct of R%: '

supp(n) = {z € R?|n({z}) > 0}.

The support function is obviously measurable since supp™ (F%) = {n|¥c(n) = 0}. Hence
simple point processes are random sets in the sense of definition 2.4.1. It is therefore not
surprising that the measurable spaces of simple locally finite counting measures and locally
finite closed sets are indeed isomorphic (Schneider and Weil 2000, Theorcm 3.1.2.), hence
the results for random sets can be used for simple point processes and vice versa locally
finite random sets can be interpreted as simple point processes. Therefore it is clear how
the invariance properties given in definition 2.4.2 carry over to point processes. Important
quantities used to characterize a point process are given by the (factorial and non-factorial)
moment measures. Their definition relies on the fact that since a point process X can be
thought of as a random locally finite counting measure it is perfectly finc to consider the
m!* product process X™ = X ® ... ® X, where the product is over m instances of X.

Definition 2.4.8. (Moment measures)

o Let X be a point process. Then its m*® -moment measure v : B(RY)™ — R for

a set A of the product Borel o-algebra is defined as the expected number of points
vm(A) == E[(X®...® X)(A)] the product point process has in A. Especially
important is the case m = 1. The measure v(Y) is called the intensity measure of
the point process X.

o Let Rg& = {(zy,...,2q) | @i # x; fori # j}. Then for Ay x ... X Ap, € B(Rd)
the m*® -factorial moment measure x™ of the point process X is defined as
X (AL X ... An) :1«3[()@3...@3){)(,41 x ... xAmngé)].

For a concisc discussion of general moment measures, see for example (Stoyan et al. 1985,
Chapter 4.3).
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For the discussion of the Boolean Model in Chapter 3 we need to introduce an especially
important class of point processes:

Definition 2.4.9. (Poisson-Processes) A simple point process X is called a Pois-
son Process if VA € B(R?) (with v(A) < o) the random variable X (A) has a Poisson
distribution, ie. X(A) ~ Pois(v(A)).

Remark 2.4.10. In literature often one finds the additional condition that for a sequence
of pairwise disjoint Borel sets Aj, A, ..., the random variables X (A1), X(A2),... must be
independent if X is to be a Poisson-process. However for atom-free intensity measurcs
this can be shown to follow from definition 2.4.9 (Schneider and Weil 2000, Thm. 3.2.3).
Using the fact that simple point processes which fulfill the condition of definition 2.4.9 are
always atom-free (Schneider and Weil 2000, Lemma 3.2.1), including the independence
condition into the definition is superfluous.

It is easy to make plausible that Poisson-Processes exist. For an increasing sequence of
compact sets C; T R? consider the point processes given by X; = Z;i] dg: where the £§ are
independent and uniformly distributed on the C;. Then the X;(A) are of)viously binomial
random variables with success parameter p;, = A(C; N A)/A(C;) where X is the Lebesgue
measure. Letting n; tend to infinity in such a way that the ratio n;/A(C;) stays finite
should lead to a limit process X which is Poisson. A theorem in the appendix (Theorem
7.2.4) reveals even that for every locally finite and atom-free measure v on B(R?) an a.s.
unique Poisson process exists. (The uniqueness is obvious from Theorem 2.4.6). If a point
process X is stationary or isotropic respectively then its intensity measure is invariant
under translations or rotations respectively. For Poisson processes due to uniqueness
the converse is also true. The only translation invariant measure on R is the Lebesgue
measure A up to a multiplicative constant, hence the intensity measure of a stationary
Poisson process is ¥ = v - A. The constant +y is referred to as intensity of the stationary
Poisson process. From the uniqueness remark above it is obvious that for every A € [0, oo)
an a.s. unique stationary Poisson process exists. Every stationary Poisson process in R4
is also isotropic (Schneider and Weil 2000, Theorem 3.3.1). Another important fact which
makes Poisson processes special is that all factorial moment measures can be expressed
through the intensity measure. Because we will need this fact in Chapter 3 we formulate
it as a theorem:

Theorem 2.4.11. Let X be a Poisson process whose intensity measure is denoted by v.
Then for the factorial moment measures x™ we have that

™ =, (2.34)

Proof. (Theorem 2.4.11) The proof is pure measure theory and can be found in (Schnei-
der and Weil 2000, Theorem 3.2.3., part c))

Please be aware here of the notational pitfall ¥™ # (™) which basically means that on -
the right hand side of equation 2.34 we don’t have the m*"-non-factorial moment measure.

In point process theory one is often interested in computing the expected value of the sum
of a function f : R? — R evaluated in the (random) points of a Poisson-Process X. This
can be accomplished using the intensity measure v:

Theorem 2.4.12. (Campbell- Theorem) Let X be a Poisson-Process in R¢ with inten-
sity measure v and f : R* — R non-negative and measurable. Then:
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E| Y X)) = [ v

rcR9

Proof. (Theorem 2.4.12) follows from measure-theoretic induction since for f = 14
with A € B(RY) we have

E|) X({z})1a| =E[X(4)] =v(4) = / 14 dv
xcRd /R
O

Point processes can be defined on general LCHS-spaces. Note that the proof of Theorem
2.4.12 doesn’t use the special structure of the Euclidean space and therefore holds generally.
Of particular interest for us is the space F := F\ {0} equipped with the Fell-topology (see
subsection 2.4.1). This space is indeed a locally compact Hausdorff space with countable
basis (Schneider and Weil 2000, Thm. 1.1.1.), hence we can define point processes on it.
The "points” are then closed subsets of RY. The measurable space (Nz,Nr) of locally
finite counting measurcs on F can be constructed analogously as for RY. Because we
concentrate on compact grains in the following, we can restrict ourselves to considering
point processes on C = C\ {0} with the induced topology. Such point processes are called
particle processes:

Definition 2.4.13. (Particle Processes) A measurable mapping X from a probability
space (2, A, P) into (Ng,N¥) is called o Particle Process if its intensity measure v is
concentrated on C'.

It is obvious that the union sets © of the particles in a Particle Process X are random
closed sets in the sense of definition 2.4.1 since {© € FC} = {X(Fy) = 0} VC € C. The
standard example for a Particle Process X arises from attaching iid. compact random
sets ©; in the points of an ordinary point process X = {x1,x2,...} leading to the process
X = {z; + 6;}. Of course one must ensure local finiteness which can be done by imposing
technical conditions. This simple example is of special interest for us since it leads to the
so-called germ-grain-models for porous media.

Definition 2.4.14. (germ-grain-models) Let X = {x1,z2,...} be an (ordinary) point
process in R? and O©; iid. compact random sets such that ® = {331 +01,29+0,...}isa
particle process. Then the random closed union set @ of ®

'i:]
is called a germ-grain-model,

We conclude this section with a decomposition result for the intensity measure of stationary
Particle Processes which we will need later on. Since particles K are compact we can always
define their center m(K) (eg. as the midpoint of the circumcircle). The geometrical
information of the particle can then be separated into "location” m(K) and ”shape”
K — m(K) where the shapes live on the shape space Co = {K € C')/m(K) = 0}. According
to this separation also the intensity measure v of a stationary particle process can be split

up:
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Theorem 2.4.15. (Location-Shape-Decomposition of the intensity measure) Let
X # 0 be a stationary Particle Process, then

v(A) =~ /C /R Lzt K)\i(dz)Q(dK), VA € B(C')

where v > 0 and Q s a probability measure on Co. If X is isotropic, then Q is invariant
under rotations.

Proof. (Theorem 2.4.15) The image & of v under the mapping m : F — (R%,Co) K —
(m(K), K —m(K)) is a measure which is translation invariant in the first component and
hence #(A x B) = ¢(B) - A¢(A) for A € B(R?),B € B(Cy). Now, just definc v = ¢(Co)
(which is finite as long as v is locally finite) and Q(B) = ¢(B)-y~!. The isotropy statement
is obvious. O

2.5 Other Geometrical Characteristics

Besides Minkowski-functionals there are many other characteristics in use when it comes to
modelling porous media. We just mention some of the most important ones here, namely:

e the m-point-covariance functions,
e the chord-length-distribution,

e the pore-size-distribution,

e the Minkowski-functions.

A more detailed discussion of these and more microstructural descriptors can be found
in (Torquato 2002, in particular Chapter 2). We start out with the m-point-covariance
functions.

2.5.1 The m-Point-Covariance Functions

Definition 2.5.1. (m-point-covariance-functions) Let © be a random set in R%. Then
the m-point-covariance-function C™ for © is defined as the function

cm. Rle.. eRI-R
(.’L’],. . ,.’Em) — E H l{wieg}} =P [n{.’l'z c 6}] ,
i=1 i=1

ie. an) is the probability that the m points x1,..., Ty, belong to O.

Of special importance is the two-point-covariance function Cg := Cg ) Isit closely related
to the Minkowski-functionals. The following relationships are obvious for stationary ©
without long range dependence from definition 2.5.1:

C@(.’L’l, xg) = '5(("‘)), lim 06(5517 332) - ,172(@),

lz1,22]l—0 1,22 —o0
however at first glance it is surprising that the derivative of C'g at the origin completely

determines the specific surface arca 3(0) for stationary and isotropic © which almost
surely coincide with the closure of their interior:
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Theorem 2.5.2. (Relationship between two-point-covariance and specific sur-
face area) Let © be a random set in R% with realizations in 8 which is stationary and
isotopic and fulfills © = cl(int(©)) and let Co(r) = Co(|z1 — x9|]) be its two-point-
covariance function. Then for the specific surface area 5(0©) the following is true:

Theorem 2.5.2 provides an alternative way to estimate the specific surface area on a pixcl
grid because in the stationary case estimation of the two-point correlation function is
straightforward by parallel shifting of a rod across the image and counting the relative
frequency of the event that both endpoints of the rod belong to ©. However is remains
difficult to discretely approximate the (onesided) derivative in zero. Theorem 2.5.2 can
also be used as a starting point if one tries to analytically cxpress the specific surface
area by the underlying parameters of a specific model. Usually for two neighboring lattice
points &1 and z3, the expression P [x) € @,z € 6] can be analytically calculated and the
strategy is to investigate what happens if the lattice spacing tends to O (see section 4.3
for such an approach in the case of the Thresholded Gaussian Field Model).

Proof. (Theorem 2.5.2) We choose the observation window W to be the d-dimcnsional
ball with radius r, ie. W, = r - B4(0). Then an application of the Crofton-formula 2.2.3
for g = d ~ 1 and the fact that s =2 -V, leads to:

2. c,
5(0) =l W,NONe,,
5(©) Jm, Kqr? [/903./1Rd 1X( eyw)ti(de)
i 2% E[x(W,NO d
_7i>n<;lo r.:drd - Rd—L [X( r ﬂey,w)] Y
. 2'03—1 .
,=r11>nc}o Kar? -/Rd—lE 1)‘11118 xeze LizieW,n0 211 €W,n0°} dy
1 SCy,w
|#ir1—zi|=h
4.c¢t . (d—2 ¢
— g G ( _ JKd—2 / \/—‘:*ph Plz; € ©,2,41 € O da
r—0o0 KdqT 0 h
4.4 - (d— 2k
= (~C%(0)) - —2=1 (d - 2)rka- 2/ ~2\/1 — 22 dz,
Kd

where we have used in this order isotropy, the Hadwiger-definition of the Euler-
characteristic, the formula d- x4 for the surface of the d-dimensional unit sphere (which has
to be replaced by the respective values for d = 0,1) and finally the substitution z’ = x/r
which shows that the final cxpression doesn’t depend on the ball radius r anymore and
thus the limit r — 0 becomes trivial. Solving the final Beta-Integral and using a well-
known identity for Gamma-functions gives the desired result. An alternative heuristic is
given in the appendix, subsection 7.2.5. O

2.5.2 The Chord-Length-Distribution

Assume that © is both stationary and isotropic. Then a measure for its connectivity along
linear paths is given by the so-called chord-length-distribution. Its name is misleading
since it is a probability density function and not a distribution function. That’s why some
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authors prefer to call it chord-length-density instead. Here the notion of chords is used for
the (finite) closed segments between two subsequent intersection points of the interface
06 with a straight linc. One can consider the chords lying completely in © or those lying
completely in cl(©°) instead.

Definition 2.5.3. (Chord-Length-Distribution-Function) For © stationary and
isotropic and v > 0 its chord-length-distribution ce(r) is the probability density with the
property that co(r) dr is the probability that the length of a chord of © falls into [r,r 4 dr].

The chord-length-distribution function is of great importance for investigating fluid-flow
properties in porous media (see Lehmann et al. n.d. and references therein). It is closely
related to other structural quantities such as the lineal-path-function L(r) which mea-
sures the probability that a segment of given length r thrown into space at random lies
completely in © (Torquato 2002, p.44ff.). For the lineal path function we obviously have
L(0) = 9(®) and L(co) = 0. A close relationship also exists to the contact distribution
function Hy(r) which is defined as Hi(r) :=P [0 € © & r(—K)|0 ¢ O] where K is a com-
pact structuring element and 0 denotes the origin. It is easy to see that in the case where
the structuring element K is a line segment of unit length, then H g (r) is the distribution
function of chord lengths of ¢l(©¢) for chords which have one endpoint in 0.

2.5.3 The Pore-Size-Distribution

The pore-size-distribution can be introduced for arbitrary random sets © and their com-
plements ¢/(©°). It is a density function, too, and can be defined as follows:

Definition 2.5.4. (pore-size-distribution) Let © be a random set and r > 0. Then its
pore size distribution pg(r) is the probability density function such that pe(r) dr is the
probability that the distance from an arbitrarily chosen point € © to the interface 0O falls
into [r,r + dr].

Basic propertics of the pore size distribution are pe(0) = % and pe(oco) = 0. Also
the pore-size-distribution is widely used to characterize flow properties in porous media
(Lehmann et al. n.d.). In real data samples the pore size distribution is usually mea-
sured by mercury porosiometry, however, the mathematical pore size distribution and the
experimentally measured function in general are not the same.

2.5.4 The Minkowski-Functions

Instead of just considering the Minkowski-functionals V;(.) of a (deterministic) set R € R
itself, one can also study its Minkowski functionals after it has undergone one of the
morphological transformations given in definition 2.1.19. The most important and most
frequently applied such transformation in literature is the dilation with a spherical struc-
turing element B of radius r. This gives rise to the so-called Minkowski-functions:

Definition 2.5.5. The d+1 Minkowski-functions ViiR xRt =R, j€{0,...,d} for
a set R € R are defined as the ordinary Minkowski-functionals V;(.) of the sets obtained
by dilating R with a spherical structuring element B(r) when understood as functions of
the dilation radius r, i.e.: ‘

Vi (R,r) :=V; (R& B(r)).
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Instead of just considering the d+1 single numbers V;(R) to summarize an image (with solid
phase R, say), one can gain a lot morc information about the image when characterizing it
by the d+1 functions V' (R,.). It will turn out in later chapters that Minkowski-functionals
Vj(.) on their own arc by no means sufficient to uniquely summarizc the information-
content of a porous structure. If one’s goal is to construct artificial images with the same
optical appearance as an original natural structure, one should obtain much better results
when matching the whole Minkowski-function-paths and thus exploiting the information
provided by the dilated images in the analysis. For a random set © one would like the

expected specific Minkowski-function-path E [V]* (R, 'r')] to agree with the function path
of the structure to be modelled.



Chapter 3

The Boolean Model

The Boolean Model is certainly one of the simplest probability models one can think of to
model irregular two-phase-structures. Thanks to its simplicity and analytical tractability
it has been used to describe random patterns in nearly all branches of natural sciences but
most prominently in applications of materials science. First scientific papers where it was
used date back to the thirties of the last century and even beyond. The main reason why
the Boolean Model is attractive for our purposes is that the theory of Minkowski functio-
nals for Boolean structures is well understood and there are explicit formulae expressing
how the specific Minkowski functionals depend on the parameters of the Boolean Model.
(see section 3.2 for a derivation of these formulae.) Good surveys about the Boolean Model
can be found for example in (Schneider and Weil 2000) for a profound presentation of its
mathematical theory and (Stoyan et al. 1985) for the more practical aspects.

3.1 Definition and Relevant Properties

The Boolean Model is a germ-grain-model in the sense of definition 2.4.14. As the name
alrcady suggests, these models consist of two basic ingredients: The germs which basically
determine the location in the surrounding space of the random objects making up the rea-
lizations of the Boolean Model and the grains which determine the shape of these random
objects. In the case of the stationary Boolean Model the germs are distributed uniformly
and independently across space. Mathematically this is realized by the stationary Poisson
Process. Once the germs arc determined, to each of the germs a grain of random shape
is attached independently of the others. As far as these grains are concerned the general
Boolean Model is very flexible allowing for arbitrary random compact sets imposing only
slight regularity conditions. However for our purposes it is enough to consider compact
and conver random closed grains which usually belong all to the same class of geometrical
objects (eg. spheres, ellipsoids, triangles or lines). The union of all germ-grain pairs
constructed in this manner constitute a realization of the Boolean Model. Let us now give
a first formal definition and a few examples:

Definition 3.1.1. (stationary Boolean Model in R* with compact grains) Let
X = {x1,29,...,} be a stationary Poisson Process in R¢ and ©1,0,,. .. a sequence of id.
random compact sets in R%, Then the union © of all germ-grain pairs

0= J@:+6))
=1
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15 called o Boolean Model with compact grains. 0 20, is called the typical grain
and its distribution is referred Lo as Lhe grain distribution QQ of the Doolcan Model.

Usually one needs some moderate technical conditions to ensurce that the Boolean Model
as defined in 3.1.1 is a random closed set in the sense of definition 2.4.1. For example one
could use E V(0 & )] < x, VO e C.

This ensures thal a.s.  the realizations of the Boolean Model © are closed subsets of
RY. If one considers a scquence of compact subsels increasing to the whole space R?
(cg. balls around the origin of integer radius) then the union of the (as. finitely many)
graing hitting such a compact subset is a random closed set in the sense of definition
2.4.1. Therefore a realization of the Boolcan Model can be scen (almost surely) as
the set limit of an increasing sequence of random closed scts and is therelore itself a
random closed set in the sense of definition 2.1.1 as long as the technical condition
is met.  For similar conditions see (Stoyan el al. 1985). I the grains €, are convex,
then the realizations of the Boolean Model arc in 8§ which is what we need in the following.

Stationary Poisson Process and Boolean Model

00 o 0 ... ...
o o ° ® o *
) o o ‘
OOOO% o ©
o 0800‘9

o

0© 8

o] e8]
e O(I)O 3:’00 o

Figure 3.1: (upper lefl) stationary Poisson Process in [0, 1% with low intensity v — 30.
(upper right) Boolean Model with spherical typical grain and Gamma-distribuled radius.
The realization of the upper lefl image was used as the grain process.  The individual
grains usually have physical meaning, c¢q. represent physical enlities. (lower left) Statio-
nary Poisson Process in [0, 1% with high intensity v — 500. (lower right) Boolean Model
with. spherical typical grain and Gamma-distributed radius.  The realization of the lower
left image was used as the grain process. The individual grains have no longer physical
meaneng. Duc to overlapping they simply contribute to the macrostructure,
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Because of the high degree of flexibility for the choice of the grains, the Boolean Model
can reproduce a wide variety of structures. The degree of sparseness (or density of space
covered by the realizations) of the Boolean Model can easily be controlled by the intensity
of the underlying stationary Poisson Process and the range of the grain distribution. The
overlapping of the grains can be seen as a defect of the Boolean Model when modelling
porous media. However this problem is no longer present if one does not interpret
the Boolean grains as physical grains but rather does understand them as structuring
elements which contribute to the macrostructure.

Stationarity of the Boolean Model is inherited from the stationarity of the underlying
Poisson Process. Because every stationary Poisson Process in Euclidean space must also
be isotropic, the Boolean Model is also isotropic as long as its grain distribution has that
property which we will always assume in the following.

For theoretical considerations as in section 3.2 it is convenient to give an alternative (less
intuitive) definition of the stationary Boolean Model as union set (or support) © of a
stationary Poisson particle process. It can be shown (merely as a consequence of Theorem
2.4.15) that we can always find an underlying ordinary stationary Poisson Process X (The
germ process of grain centers) and a grain distribution @ such that © is also a Boolean
Model in the sense of definition 3.1.1. This new point of view has the advantage that we
can use the whole arsenal of methods and theorems for point processes in general spaces.
Together with the integral geometry developed in section 2.2 this will allow us to give
explicit expressions for the specific Minkowski functionals in the Boolean Model in section
3.2

3.2 Miles-Formulae

3.2.1 Derivation and Interpretation

Because the grains of the Boolean Model © may intersect arbitrarily one might think
that calculating specific Minkowski-functionals as a function of the basic paramcters
v and @ is impossibly difficult. However this is not the case if the model is isotropic
and the grains arc restricted to be convex. Formulae which express V;(©), j = 0,...,d
through the intensity «y of the underlying stationary Poisson Process and mean values of
Minkowski functionals E[V;(0o)], § = 1,...,d for the typical grain ©g can be derived
rather directly from the iterated kinematic formula 2.2.4. We will refer to these formulae
as Miles-formulae but an early and complete derivation can also be found in (Mecke and
Wagner 1991, Mecke 2001). The formulae date back into the seventies of the last century
and are already contained in (Miles 1976), (Davy 1976) and (Davy 1978). Because the
derivation of the Miles formulae is both short and elegant within the particle process
framework we present it here following (Schneider and Weil 2000, Chapter 5, in particular
Corollary 5.4.5.). One can even drop the isotropy property and still find appealing but
more difficult formulae (Schneider and Weil 2000, Th 5.5.3.).

For the derivation of the Miles formulae let us now assume that © is a stationary and
isotropic Boolean Model with convex grains € K’ = XN/, intensity v and grain distribu-
tion Q where C’' :=C\ {#}. The Boolean Model © is the union set of a stationary Poisson
Particle Process X:
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®=UK.

KeX

Furthermore © is observed through a compact and convex observation window W ¢ K.
Starting out with the inclusion-exclusion formula 2.1.7 we can write

M=

v;enw) = ™t Y V(WK N...NK;,)

1 1<i1 <. K <

-~

T

(_1)m+1
— Y V(WnE(n...NKp),
1 ’ (K1 Km)EXT

I
V]38

3
i

where 7 is of course random but can be replaced by oo because only finitely many grains
K intersect the compact observation window W (local-finiteness of the Particle Process)
and where the notation X 7 stands for the process

XZ(Ar % . Am) = (X ®...Q X)(A1 X ...AnNTL), A €F.

whose intensity measure is the factorial moment measure y (™ of X. The inner summation
in the last equation sums function values of a by Theorem 2.1.3, part vii) nonnegative
function evaluated in the points of a general point process (namely X ;2) Hence for the
expectation the general LCHS-space version of Theorem 2.4.12 can be applied to achieve:

o0 m+1
E[V;(enw) = Z > V;(WNnK;n...0K;,)

m=1 (K1 Km)EXT
s m—H

= Z / / ViWNEK N...NKp)dx™(Ky,..., Kp)

m=1 ! ]

oo m+1

= Z / / V(W N KN Kp)v(dKy) ... v(dKm),

1 ’ )Cl )

where the last step follows from the representation of the factorial moment measure for
Poisson Processes, Theorem 2.4.11, and the exchange of summations can be justified.
Because of stationarity we can now use the decomposition of the intensity measure of the
Particle Process © from Theorem 2.4.15 to arrive at:

E V(0 N W)] = i Dl /}C //@ (K, Kn)QUEY) ... Q(dKy), (3.1)
=1
where
(K, ..., Kn) = /Rd [ V3 W 0K 420 00 (o + ) Aalde) - Naldrm)
is used as a shorthand-notation. Because we also assume isotropy these last Lebesgue-

integrals can be replaced by integrals with respect to the Haar measure y on the group
of rigid motions g € G4 because averaging with respect to the Haar measure on SOy is
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redundant by isotropy. Hence the iterated kinematic formula 2.2.4 can be applied to the
Q;i(Ki,...,Kp):

B;(K1,...,Km) = /Gd“. Gd‘/}(WﬂglKlﬂ...ﬂngm)u(dgl)...u(dgm)
d
J— kO!K‘k kﬂ’b Hkm
= Z 'I‘?] (d'lﬁ )m Vk(l(W)Vk1 (Kl) Vkm(Km)

k01“':k7n=j .

This can now be plugged back into equation 3.1 and the integrations with respect to the
grain distribution can be performed:

d

E V(6N W) i 1)m+l Z kO!Klko---km!K’ka (W) V. () ... Vi (©0)

7 gl (dlimgym RN IR0 e T TR0
m=1 koy....km=j 7

ko+...+km=md+j

where we used the shorthand V;(©) := v E[V;(6¢)]. This already establishes the im-
portant relationship between mean Minkowski quantitics for the whole model © and the
basic "grain” quantities for ©y. What now follows is pure algebra such that the defining
limit for the specific Minkowski functionals V;(©) (see definition 2.4.3) can be read off:

ad m+1 d k‘o!ﬁ:k. d i k‘i!ﬁk. =
E[V;(©@nNW)] = Z > Vi (W) > T V(o)
m=1 mi ko=j IR k1, km=1 =1 fd
ki+...t+km=md+ji—ky
= V(W) (1 _ e—vd(@o)) + A, (3.2)
where
) zd: olrg, |, (W)i (—1)m+1 Zd: Ly ©0)
= . Vko N Vi, (©0
ko=j+1 J:hj m=1 m! k1yeeokm=7 i=1 dlkg

ki+...+km=md+ji—ko

The conditions in the subarray of the sum in A reveal that for given kg at most kg-j of
the summands k; can be different from d and thus A is equal to:

d ko—j oo d—1 s
ko K T8 'r'+3+l r kz'h]h —
PO R CIUODIDD ( )—"— Tl CCOMED DI | el CICD

ko=j+1 §= 1 r=0 ky,...ks=j i=1
ki+...+ky=sd+j—~ko
_ d ko— J
CCS ko! '%V Z Hk ik 7
ko=j+1 ' k1, ks=j i=1

k1+...+ks=sd+j—ko

If we now divide the resulting expression for E [V;(© N W)] by V(W) we recognize that
this quotient still depends on the geometrical characteristics of the observation window
W in which the Minkowski characteristics are calculated. This illustrates the need for
defining the specific Minkowski-functionals as we did in definition 2.4.3. This dependence
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on the observation window vanishes if we replace W by r - W for a scaling factor r > 0
and consider the defining limits. Note that for the specific volume o the quantity A in the
above derivation is not present and thus we simply get:

_ . E[Vg(0nw)] _
) = lim

For j < d only the term for ky = d leads to a non zero limit, if we additionally separate

the summand for s = 1 in this term, we conclude:

E[V;(0n W) _

Vi(®) = lim ="

§=2 st kiyeke=j+1  i=1
Ey+..Aks=(s—1)d+j

where we may start indexing the k; at j+1 instead of j. We collect these results in the
following theorem:

Theorem 3.2.1. (General Miles-Formulae) Let © be a stationary and isotropic
Boolean Model with conver grains and denote by vy the intensity of the underlying sta-
tionary Poisson Process and by ©q the typical grain. Then the following equations hold:

- _ v dfc —1)* k‘ 'k ,
V(@) = o | () dz S 700 | (<),
k1,.. ,ks—]+1 =1
i thy=(5—1)d+j

where V;(0g) := v - E[V;(09)] foric {0,...,d}.
Proof. (Theorem 3.2.1) Sec the derivation above.

For modelling purposes it is morc convenient to work with the geometrical quantities the
Minkowski functionals represent instead of the Minkowski functionals themselves. The
following two corollaries give the Miles-equations in two and three dimensions translated
for the geometrical quantities using the scaling factors from table 2.2.4. These corollaries
are the key for all modelling within the Boolean Model that follows. Note that E [x(©¢)] =
1 for convex grains.

Corollary 3.2.2. (Miles-Equations in two dimensions) Let d = 2 and © as in
Theorem 3.2.1, then:

7(0) = 1 — ¢~ VE[v(80)]
5(0) = e TEMOI . 4 E[5(8y)]
2(0) = e—TERE)], (7_ %,YQE[ 3(90)]2) ‘

Proof. (Corollary 3.2.2) Direct consequence of Theorem 3.2.1 and Table 2.2.4.
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Corollary 3.2.3. (Miles-Equations in three dimensions) Let d = 3 and O as in
Theorem 8.2.1, then:

5(0) = 1— ¢ VER®0)
5(8) = 8“7'E['U(80)] -y E [8(@0)]

W©) = rHel. (5 BM(En)] - A Els(En))

X(O) = ¢rEOl (5 Lo B(M(O0)] Bls(O0)] + 557 2* Els(B0))

384
Proof. (Corollary 3.2.3) Direct consequence of Theorem 3.2.1 and Table 2.2.4.

It is straightforward to see that these systems of equations can be solved for the para-
meters of the Boolean Model by forward insertion. An especially interesting fact is that
the intensity v of the underlying stationary Poisson Process is determined if the whole
set of specific Minkowski functionals for the stationary and isotropic Boolean structure
is known and doesn’t depend on the grain distribution Q at all. For d = 2 inverting the
equation system in 3.2.2 one gets:

Corollary 3.2.4. (Finding intensity and grain quantities in 2D)

e 1 56
1-9(0) 4r (1 -—79(©))?

1 47 - log(1 — 9(9)) - (1 — 9(©))?

Elp(©0)] = —=-log1-5(6)) =~ mf(_ v<@§>>—33@§+§zfe§)
N 5(0) _ 4m-5(0)- (1 -9(0))

E[s(0g)] = v-(1-9(0) 4r(l-9(0)x(0)+52(0)

Proof. (Corollary 3.2.4) Simple arithmetics.

And similarly for d = 3 inverting the system 3.2.3 one obtains:

Corollary 3.2.5. (Finding intensity and grain quantities in 8D)

X©) |1 M@®)3s0) w  56)°
1-5(0) ' 4r(1-9(0))2 ' 192 (1 5(©))3

E[(0)] = —% log(1 — 5(0))
1927 log(1 — 9(©))(1 — v(0))?

T 1927%(0)(1 — 9(0))2 + 48M(©)3(8)(1 — 9(©)) + 7253(8)
E[s(9) = 50  _ 19275(0)(1 — 9(6))*
A0 v-(1—-5(0))  1927x(0)(1 — v(©))2 + 48M(0)5(0)(1 — 7(O)) + 7233(0)

(6 2 52(6
TIVCDEY (CLCIRTE i C N

7 \T=0(®) " 82 (1-0(0))
1927 M (©)(1 — 5(0))? + 67352(0)(1 — %(8))
1927%(0)(1 — 9(0))? + 48M(0)3(0)(1 — ©(0)) + 7253(0)

Proof. (Corollary 3.2.5) Simple arithmetics.
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According to Theorem 3.2.1 the set of specific Minkowski functionals V;(©) thus uniquely
determines the intensity of the underlying Poisson Process and the moments E [V;(60y)] of
the typical grain. Because only the moments of the expected grain quantities are uniquely
defined, there is still a large freedom for choosing the grain distribution ) and one
might conjecture already from here that there is a wide range of visually and structurally
different Boolean structures leading to the same specific Minkowski functionals. This
phenomenon is referred to as indeterminacy in the following.

3.2.2 Attainability of Specific Minkowski-Values Within the Homothetic
Boolean Model

From the Miles equations it can be seen that not every combination of preset Minkowski
values v; := V;(©) can be realized within the Boolean Model. However there are only four
types of necessary restrictions that could possibly be violated. Three of them are trivial:
First the intensity of the underlying Poisson Process must of course be positive, second
for convex grains ©p the mean Minkowski-functionals E [V;(6p)] must be positive (this
follows from Theorem 2.1.3, part vii)) and third the Jensen inequality for the moments of
the V;(0¢) and their parameters must be fulfilled:

2l

v > 0,
E[V7(60)] > E[Vf(@0)]"  forp>q.

In addition to that, the Minkowski functionals of the typical grain must fulfill the set of
1soperimetric inequalities which implies that also a set of corresponding inequalities must
hold true for the moments of their distributions.

Theorem 3.2.6. (isoperimetric inequalities) Let K € K and j,k € N with 0 < j <

k <d. Then:
. k , g
(R(i;)J il )> : “2_3 . (Ké_)k G )> -

Proof. (Theorem 3.2.6) The result follows from the theory of mixed volumes. It is
a direct consequence of the Aleksandrov-Fenchel-inequality proved in convexity theory.
Details can be found in (Schneider 1993, Chapter 6, especially equation 6.4.6).

In dimensions d = 2 and d = 3 the moment inequalities derived from Theorem 3.2.6 read:

d=2: d=3:
E[s°(©)] >  36r- E[v*(O0)]
E[s*(@9)] =  4n-E[v(6y)] E[M3*©y)] =  487°. E[v(0)]
E [M?*(©p)] >  4n-E[s(6o)]

In this section we want to restrict ourselves to the homothetic Boolean model for which
the typical grain ©g is formed by expanding an arbitrary convex prototype grain Ogg € K
by some random expansion factor ¢, ic.
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@0 =C- @00.

For the general homothetic setting it is not possible to calculate the attainable region
exactly as long as the prototype grain Ggg is not specified. However for some selected
special cases this can in fact be done. In the following we want to investigate the attainable
region of specific Minkowski-functionals for the following special cases of the homothetic
Boolean Model:

e 2D-circular Boolean Model,

e 3D-spherical Boolean Model,

. éD-elliptical Boolean Model with fixed axis ratio R = &,

) 3D-spher0idal Boolean Model (ie. b = ¢) with fixed axis ratio R = g

In the case of the spherical Boolean Model the isoperimetric inequalities are of course
exactly fulfilled for every grain and hence we also have equality in the moment equations
above. This leaves us with two necessary restrictions in the 2D-case and three necessary
restrictions in the 3D-case:

2D-restrictions 3D-restrictions

v >0, 7 >0,
E[r?| >E[], | E[r?] 2E[]
E[r] > E[1?]?,

where 7 is the radius of the circle or sphere respectively. Note that in the 3D-case the
inequality E [7‘3] > E ['r']3 follows from the above and is therefore not required. Because
the expected grain quantities in the spherical case are directly linked to the moments
of the radius these restrictions translate directly into inequalities for the specific model

quantities V;(©) via the Miles equations in 3.2.2 and 3.2.3. Exemplarily for the 2D-case
we have:

¥>0 & 47-x(0)(1 -73(0))+35%O) >0
: ' Z, _ Z?
4mB[v(00)] = E [s(80)] > E[s(00)]* >0 & —dnis > 15,
where the quantities Z, := 4w log(1 —9(©))(1 —v(0))? <0, Z, := 475(0) - (1 - (©)) > 0
and N := 47 (1~ 9(0))%(0) +5%(O) are shortcuts for the nominators and denominators of
the corresponding ratios on the right hand side of the equation system in corollary 3.2.4.

Note that v > 0 & N > 0 follows from the first condition. Hence the only restriction
7

remaining is N > —~~—L4;;v which finally translates to:

1+ log(l — ©(©))
4rlog(l — 9(©))(1 — v(0))"
This confirms the intuition that the smaller the specific volume is, the harder it becomes
to attain low (especially negative) values for the specific Euler characteristic. In fact
the lower bound on the right hand side converges to infinity as #(®) | 0. On the other
hand with 9(©) 1 1 every value for the specific Euler characteristic should be attainable.

x(©) > —5%(0) (3.3)
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Of course when fitting a Boolean Model to real data, one usually imposes a radius
distribution from a certain model class. Usually within such a class not every combination
of moments which is feasible according to the above restrictions can be achieved, in fact
there are additional class-specific restrictions.

Based on inequality 3.3, figure 3.2 shows for some selected fixed values out of the range
of #(©) the region of attainable pairs (s(©), x(©)) within the 2D-spherical model. The
attainable region lies above the drawn boundary line. Figure 3.2 exhibits the symmetry
which can be expected from the relationships between the Minkowski functionals of the
solid and pore space although one must be aware that the (closed) complement of a Boolean
Model is not again a Boolean Model in general.

Attainable region in 2D Spherical Boolean Model

03 05 07

-0.1 01

-0.4

Figure 3.2: The figure shows for selected values of ¥(©) the region of attainable
pairs (s(0), x(0)) within [0,1] x [-1,1] for the 2D-spherical Boolean Model. For each
7(0) € {0.1,0.2,...,0.9} the boundary lines between the region of attainable pairs and
non-attainable-ones is draum. The attainable region is above the drawn line.

A typical cross-section from the coarse-sand specimen in figure 1.1 has specific Minkowski
functionals around:

7(0) = 0.6,5(0) = 0.05, x(0) = 1.6 - 1074,

hence according to inequality 3.3 this set of specific Minkowski-values does not violate the
Jensen and intensity constraints and should thus be attainable within the 2D spherical
Boolean Model. However it turns out that to obtain these values in practice may become
difficult even for reasonable parametric classes for the grain distribution.
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A similar analysis for the attainability of scls of specific Minkowski functionals
(7(0), 5(0), M(0), ¥(0)) can be done for 3D by nmumnerical determination of the attainable
region. Again the isoperimetric restrictions must not be taken into acconnt, and we arc
left with the Jensen restrictions for the radius and v = 0, but because the radins distribu-
tion must be concentrated on positive values, we must additionally require that the third
3D-Miles equation for the mean integral of mean curvature E [M (©g)] from corollary 3.2.5
leads to E[M(60g)] = 0 or equivalently E [r] = 0, otherwise we wouldn’t be able to find
a nonnegative random variable r with the required first three moments. Note that from
the Miles equations we have v = 0 = E ['1'3} =0 E [7“)] = 0, but opposed to the 2D-case
v = 0 not necessarily cusures Elr] = 0, hence this is an additional condition. Iigure 3.3
shows the attainable region (5(0), M(0), x(0)) for three selected values of specific volume
0(0) ¢ {0.1,0.5,0.9}.

Figure 3.3: The black region contains all the atlainable lriples (s(©), M(©),X(©)) for
a fired value of 5(0) in the 3D-spherical Boolean Model. This value is 7(0©) = 0.1 (left),

(©) = 0.5 (middle), 5(0) = 0.9 (righl). The s-values extend from lefl Lo right in
0, 1] (a-direction), the M-values extend from fronl lo back in [=1,1] (y-direction) and
the Y-valuecs caxtend from bollom to top in [—1,1] (z-dircction). Hence the lower left front

vertex of the cubes is the poinl (3(©), M(0),x(0)) = (0, -1, ~1).

Figure 3.3 displays a similar behaviour as in 2 dimensions, for small ©(©) it is hard to at-
tain small y-values and as 7(0) increases, the attainable region might grow substantially.
To attain small values for M(0) scems 1o be dilficult for small 5(0).

The attainable region can be further enlarged substantially by relaxing the assumption of
spherical grains and allow for clliptical or ellipsoidal ones instead. In the 2D case let us
denote a and b the semi-major and minor axis ol the typical ellipse ©g with a > b and
assume for simplicity that the axis-ratio I = b/a is deterministically fixed. The expected
volume and surlace for @ are given by elementary geometry:

Ev(©y)] = Er-a-b=7E {(L‘ﬂ - R,

E[s(0q) = E [u, /‘A7T \/sinz d+ R?cos? pdp| = Ela|- I(R),
Jo

where I(R) =4 - E(V1 — R?) and F(.) is the complete elliptic integral of the second kind
(see Abramowitz and Stegun 1972, p 589 ff.). The necessary restrictions for this sctting
arc v = 0 and E [azj = E[a]® and the latter translates to:
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E[v(©0)] . E[s(90)"
R~ I(R)?
Note that although the (expected) isoperimetric inequality is strict in the elliptical case it
does not add an additional necessary constraint if the axis ratio R is non-random because
it reads

47’RE [¢®] = 4w E[V(6y)] < E [s*(0y)] = E [a?] I(R)?,
and 472R < I(R)? holds VR € [0,1] because this is the deterministic isoperimetric in-
equality for ellipses with @ = 1. Analogously as in the spherical case we find a lower

bound for the attainable Euler characteristic by plugging in the expressions for E [v(©g)]
and E [s(Qp)] from the 2D-Miles-equations (Corollary 3.2.2):

472 R + log(1 — 9(©))I(R)?
4 log(l — 9(0))(1 — 6(0))I(R)?
For R =1 we have I(R) = 2n and inequality 3.3 is rediscovered. Note that I(R) is strictly
increasing in R and that limpg|o I(R) = 4. From equation 3.4 it is obvious that the lowest
attainable value for x(©) in the elliptical Boolean Model with fixed deterministic axis .
ratio for given specific volume %(0) and surface 3(©) is:

X(©) > —5(0) (3.4)

22

Xmin(©) = _43&7

(1 — 7(©))

but again one must be aware that the choice of the grain-distribution class for a might
impose further restrictions. The lower bound from equation 3.5 in fact holds for all convex
2D-Boolean Models as it immediately follows from Corollary 3.2.4 and the requirement
v > 0. Thus a simple example which is not realizable within the (gencral) Boolcan
Model is a finite circular disc with sufficiently many identical tiny holes. These holes do
not influence volume and surface substantially but reduce the Euler-characteristic to an
arbitrarily low value.

(3.5)

Figure 3.4 shows how substantially the attainable region of pairs (3(@),x(©)) can be
enlarged by allowing eccentric elliptical grains (R < 1) for a selection of values for the
specific volume 7(0) € {0.1,0.5,0.9}.

Figure 3.4 shows that for high eccentricity values B < 1 the attainable region grows
considerably and even for small porosity ¥, very low X can be obtained. However also
for elliptical grains there exists a x-value which can not be underrun (given by equation
3.5). One must also bear in mind that the shape of the Boolean grains heavily influences
the optical appearance of the artificial random structures generated by the Boolean
Model. If one tries to model "physical” grains of approximately spherical shape in a real
structure (as when modelling sand data), very eccentric elliptical grains have a good
chance to replicate the Minkowski functionals of the original structure, however the
optical appearance of the Boolean structure will probably be completely different from
the original image.

For the three dimensional Boolean Model with ellipsoidal grains the same analysis of the
attainable region will be done in the following. For simplicity, we assume that the typical
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Figure 3.4: The boundary lines between attainable and non-attainable region of pairs
(3(9), x(©)) in the 2D-elliptical Boolean Model with elliptical grains. For selected values
of the specific volume 5(0) = 0.1 (left), 1(©) = 0.5 (middle) and v(©) = 0.9 (right)
boundary lines are drawn for a selection of eccentricity values R for the typical elliptical
grain, varying from R =1 (spherical case) down to R = 0.001 (extreme eccentricity). The
attainable region lies above the drawn lines.

ellipsoid with semi-axes ¢ > b > c¢ is of spheroidal shape, ie. b = ¢ and its axis ratio
0 < R =0b/a =c/a <1 is deterministic. For a general cllipsoid the elliptic integrals
for specific surface 5 and specific mean curvature M are unfortunatcly not analytically
tractable and one has to resort to tables or numerical approximation. However, thanks to
the spheroidal symmetry assumed here, all Minkowski functionals of the typical ellipsoid
can explicitly be given:

E[v(@)] = E %Wabc] = %WE [a®] R?,

E[3(8p)) = E _277(12R- (R + ﬁ arcsin /1 — Rz)] =: E[a®] - I,(R),

arcsin \/I——RQ)] =: Ela] - Iy (R),

E[M(@O)] = E -271‘0,- (R2+““'1\/1:RQ

where I;(R) € [0,4n], Ins(R) € [72,47]. As in the spherical case, the relevant restrictions
are v > 0 and the two moment inequalities implied by Jensen. The latter can be written
as:

E

5(80)] . E[M(©0)®  3E[u(80)]  [Els(®)])?
LR ~ Iu(R)? e 2( IS(R;) ) '

There is no further restriction for the moments coming from the isoperimetric inequalities
because of the spheroidal structure with deterministic axis ratio: Exemplarily for the
isoperimetric relationship between volume and surface of the typical grain, we have:
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y 2
E [0°] I,(R) = E |s*(0y)] > 367 E [0(0g)*] = 367 (%mﬁ’) E [0"]

4 2
<= L(R) = 36n (w%’) : (3.6)

The latter inequality holds trivially because it is the deterministic isoperimetric inequality
for a spheroid with scmi-major axis @ = 1. But again similarly as in the 3D-spherical
case because the semi-major axis ¢ is non-negative we must additionally require that the
Miles equation for the mean integral of mean curvature E[M(0g)] (third cquation in
Corollary 3.2.2) leads to Elal = 0, such that a nonnegative random variable a with the
required first. three moments can be found.

Figure 3.5 displays the attainable region (s(0), M(0), ¥(©)) for selected values of the
porosity v¥(Q) and different eccentricity-levels parametrized by the axis-ralio R. By
relaxing the spheroid assumptions this region can be further enlarged although one
must be aware that there are additional restrictions because the axis ratio £ is then an
additional source of randomnoess.

Figure 3.5: The black region is the set of attainable triples (5(0), M(0), ¢(©)) within
the 3D-Boolean Model with spheroidal grains for selected values of the porosity v(0) and
selected avis-ratios R. The porosily values chosen are 9(0) = 0.1 (top row), 5(0) — 0.5
(middle row) and v(©) = 0.9 (bottom row). The awis-ratios chosen are R = 0.5 (left
column), R = 0.1 (middle column), I — 0.01 (right column). In all displayed cubes the
S-values extend from left Lo right within [0,1], the M-values exlend from front to back
within [=1,1] and the x-values cutend from bottom to top within [—1,1]. Hence in all
cubes the front lower left verter is the point (3(0), M(©),x(0)) = (0, - 1, ~1).
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Now we turn back to the general homothetic Boolean Model. For the attainability of a
given quadruple of specific Minkowski-values (%(0), 3(0), M(0), ¥0)) in three dimensions,
the following can be said:

Theorem 3.2.7. (Attainability in the 3D-homothetic Boolean Model) Let © be o
3D-Boolean Model whose typical grain O is a random expansion of a fix convex prototype-
grain Ogy € K with random expansion factor ¢, ie. O = ¢ - Ogy. Denote further the right
hand side of the Miles-equations for the Poisson intensity v and the mean Minkowski
functionals E [V;(Og)] of the typical grain in Corollary 3.2.5 by fy, fu, fs and far. Now let
a quadruple of values for the specific Minkowski-functionals (v(©),5(0©), M(0),%(0)) be
given.

i). If the inequalities f, > 0, far > 0 are simultaneously fulfilled for the given quadruple,
 one can always find a convex prototype-grain Oqy such that the quadruple can be
attained within the homothetic Boolean Model. The prototype-grain can be chosen to

be an ellipsoid.

it). If the inequalities of i). hold and additionally

fs o 1 fo g 1

E ~ 4’ fs% - 6

Lo

are simultaneously fulfilled, the gquadruple can be attained with an arbitrary convex
prototype-grain ©gg. The coefficient of variation of the expansion factor ¢ is smallest
for Ogy being the unit sphere.

i2). If the inequalities of ). hold and additionally we have both

Js o1 Jo o1
f3 ~ 4n’ fs% =~ V36m

b

the expansion factor ¢ may be chosen to be a deterministic constant and ©gy may be
chosen to be an ellipsoid.

Proof. (Theorem 3.2.7) We can always find a distribution for the expansion factor
¢ with the first three moments E[c],E [¢?] and E [¢3] arbitrarily fixed as long as the
Jensen inequalities E [¢*] > E [c]? and E ®] = E [(_:2]3/ ? are fulfilled. (The inequality
E[¢] >E [c]* follows from the latter two). Because only a nonnegative expansion factor
makes sense, we must additionally ensurc that E[¢] > 0. Furthermore we have:

fo = E[u(®0)] =E[*] - v(On),
fs E[s(69)] = E [¢*] - 5(O),
fu = E[M(8¢)] =E[c]- M(B).

Hence from the third equation we have that fas > 0 = E|[c] > 0. Furthermore we must
require:

E[¢?] _ fi M*(Op) :
Eld*  fi  5(Ow) =1 0
E [¢?] _ 53 (O00) > 1. (3.8)

E[c?)2 sz v(Ow) —
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ad i):

From the deterministic isoperimetric inequalities (Theorem 3.2.6) we immediately get a
lower bound on the following two quotients:

3
52(Oqo . M3 Ooo
O0) > (8612, ga(000) = 2100
(o) 57 (G0o)
but there exists no upper bound on these quotients. We can find a sequence of prototype-
ellipsoids ©}, such that

91(Og0) = > (4m)%/?, (3.9)

i )i 3 2
5 (()00) =00 H M (600) o0, (3.10)

, 'llrn -3 . -
100 85(@60)

Such a sequence O} can already be found within the set of cllipsoids by lctting one of the
semi-major axes grow towards infinity. This can be seen from cquations 3.15 below and is
also illustrated in figure 3.6. But then because f., > 0 ensures that also f, > 0 and fs; > 0,
we can choose Zg high enough such that simultaneously equations 3.7, 3.8 are fulfilled:

i 20
fTs ' Mz((:)o%) >1, f_,; _ .92(630%) >
& s(6) 7 u(eh)

and thus a distribution for ¢ concentrated on R* with the required moments
E [¢®] ,E [¢!] ,E[d] can be found.

bl

ad ii):
Let Ogp be an arbitrary convex prototype-grain. If the inequalities

fool  fo 1

> — -
f]%[ T Ar’ fé ~ V36w

hold, then together with the isoperimetric bounds from equation 3.9 we conclude:

2(0, 36
Jo M Ow) 1, o 520w) 1 me

f}f/I. 5(Ogp) T 4w fs% v(©00) ~ V367

hence equations 3.7, 3.8 are fulfilled.

In the light of equation 3.7, we see that the quotient E [cz] J/E [0]2 becomes minimal if we
let ¢1(®gp) attain its minimum 47 for the unit sphere. This is only feasible for
L1 Ly

12, = an 137 V3r

3

because we must ensure that inequalities 3.7, 3.8 hold true.
ad iii):

If both
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Figure 3.6: The three quotients g1 = s2(Ogy)/v(On), g2 = M3(Og)/s2(Ogg) and
g3 = M3(Ogo)/v(On0), which are lower bounded by the 3D-isoperimetric inequalities
(Theorem 3.2.6) for ©qn being a general ellipsoid with the two smaller semi-azes being
b=1,c—= % as a function of the largest semi-axis a.

because of equation 3.10 there exists an ellipsoid ©q9 with

MO _fiyy,  HOw) £ e
s®w) £ 2™ o) f, 2V

such that we have cquality in equations 3.7, 3.8. 0

Figure 3.6 illustrates that already within the class of ellipsoids the quotients q, ¢2, g3 can
be made arbitrarily large. According to the figure the quotient ¢, might be bounded from
above, but it is obvious that by ”stretching” an ellipsoid of given volume, its surface can
be made arbitrarily large. Rigorous arguments can be derived from equation system 3.15
below and the properties of the elliptic integrals F and E. Additionally figure 3.7 gives a
general illustration of how the surface area s and the integral of mean curvature depend
on the ellipsoid axes.

Of course an analogous result to Theorem 3.2.7 exists also in two dimensions. We state it
herc for the sake of completeness:

Theorem 3.2.8. (Attainability in the 2D-homothetic Boolean Model) Let © be a
2D-Boolean Model whose typical grain ©g is a random expansion of a fir conver prototype
grain Ogy € K with random expansion factor c, ie. Oy = ¢ ©Oyy. Denote further the
right hand side of the Miles-equations for the Poisson intensity v and the mean Minkowski
functionals E [V;(0q)] of the typical grain in Corollary 3.2.4 by f, fu and fs. Now let a
triple of values for the specific Minkowski-functionals (0(0), §(0©), ¥(0)) be given.

i). If fy > 0 for the given triple, one can always find a convex prototype-grain Oy such
that the triple can be attained within the homothetic Boolean Model. The prototype-
grain can be chosen to be an ellipse.

ii). If £y > 0 and additionally Lg > 41 , the triple can be attained with an arbitrary
convex prototype-grain Ogg and the variability of the expansion factor ¢ is smallest

for Oyg being the unit disk.

iii). If f, > 0 and additionally %’- < ;1%1:, the expansion factor ¢ may be chosen to be a
deterministic constant and ©Ogy may be chosen to be an ellipse.
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Figure 3.7: Contours of the surface area s (left) and the integral of mean curvature M
(right) as a function of the axis quotients 3 and % for a general ellipsoid with unit volume.
It is assumed that a is the largest semi-axis, but b and c are in arbitrary order which makes
the plots symmetrical to the main diagonal.
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Proof. (Theorem 3.2.8) analogous to the proof of Theorem 3.2.7.

We conclude this section with a final remark on the 3D-convex homothetic Boolean Model.
Please note that similarly as in two dimensions from Corollary 3.2.5 and the requirement
v > 0 a lower bound for the Euler characteristic in the general 3D-convex Boolean Model
is:

2(©) > ——©) -(M(9)+ r_, _#0) )

ar 192 1—#(©)

However, in the convex homothetic Boolean Model we have the requirement that the
random expansion factor ¢ is positive and thus also E [¢] > 0 which implies E [M(©)] > 0.
Hence from Corollary 3.2.5 we learn that in the convex homothetic Boolean Model we also
have a lower bound on M:

2 5%(0)

() > 5 T 5@

3.3 Simulation Procedures

Due to the Miles formulae, simulation of a stationary and isotropic Boolean Model is
quite straightforward although there are some technical difficulties one may encounter
which will be mentioned in the following. We start out with the set of predetermined
specific Minkowski functionals (vg,...,v4) and the goal is to generate a realization of a
Boolean Model whose specific Minkowski functionals match the predetermined values:

Vo(©),...,Va(®) = (vo,-.-,va), d€{2,3}. (3.11)

In this section we restrict ourselves to considering the stationary Boolean Models
with circular (spherical) and elliptical (ellipsoidal) grains in two and three dimensions.
In principle one could generate Boolean Models with much more complicated (even
non-convex) grains but the practical realization of such models is usually difficult and
often the benefit over the simple spherical models is moderate. In addition to that, many
porous structures which turn up in practice can be reasonably modelled by spherical or
ellipsoidal Boolean grains because their solid phase is granular and these rcal material
grains can be roughly approximated by spheres or ellipsoids. This is the case for the
sand structures we examine in this thesis but one must also be aware that there exist
many structures for which a spherical or ellipsoidal Boolean Model is not appropriate, for
example if the structure consists of thin fibres (then a fibre-process or tessellation model
might help).

Of course there are many methods to simulate Boolean Models and we have tried several
of them. In the following we present the techniques that worked best for us with the
least effort. In general one can say that the (continuous) realization of a Boolean Model
is easy, for example in the circular case, a realization simply consists of two vectors of
disk midpoint coordinates and a vector of radii. The hard and time-consuming part is the
accuratc discretization of a realization on a grid which is crucial if one intends to measure
the Minkowski-functionals and evaluate the simulation-process in the end.
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3.3.1 Simulation of the 2D-Circular Boolean Model

Fixing the specific Minkowski functionals for the stationary Boolean Model © accor-
ding to equation 3.11 determines the expected Minkowski functionals of the typical grain
E[V;(©9)], j € 1,2 and the intensity v of the underlying Poisson Process. If we now
consider circular grains with random radius r, the E [V;(0q)], j € 1,2 are proportional to
the first two moments E [r?(69)] and E [r(6g)] of the typical disc ©g. Because of indeter-
minacy - as long as one respects the restrictions discussed in subsection 3.2.2 - there is still
a large freedom to choose the grain distribution @ which is simply the distribution of the
random radius 7 in this case. The choice first suggesting itself is the Gamma-distribution,
hence we assume

r ~ Gamma(¥e, Ar), (3.12)

where 7,, As > 0 and the circular grains are independent.

Of course there are plenty of other appropriate choices. Especially the choice of a dis-
tribution with finite support might be considered if onc knows for example that the real
grains of the structure to be modelled are of some characteristic size. With the assump-
tion 3.12 made, our final model consists of only three parameters, namely -,~, and A,
which all must be positive. Thus the positivity of 7, and A\, might impose additional
restrictions on the attainability of specific Minkowski functionals V;(©) coming from the
Gamma-distribution but this is not the case as soon as the Jensen inequality for the ra-
dius is fulfilled and the intensity of the underlying Poisson Process is positive. Therefore
the choice of the Gamma-distribution in fact does not impose any further restrictions.
This makes the choice of the Gamma-distribution a very flexible one. Using the inverted
Miles-equations 3.2.4 and the expressions for the Gamma-moments we have:

x(©) 1 _ 5O

T R )

phe — ~4os(L-5(6) (1 -5(O)? 1 % (3 +1)
T I (1-9@) x@)+#e) A
By — _ 2(0):0-10) 15
dr-(1-5(0)) - x(©) + 2(0) _ A’

and hence the algorithm can be summarized as follows:

Algorithm 3.3.1. (stationary circular 2D-Boolean Model) To simulate a stationary
2D-Boolean Model with circular grains, [-distributed radius and predetermined specific
Minkowski functionals V;(©) in an observation window W

i). generate inside W a 2D-stationary Poisson Process X = {xy,z2,...} with intensity
7, where:

7T 150 471'.(1;-' @)%’

ii). generate n =y - |W| independent circular grains ©; = B(x;,7;), where r; ~ T, 5 )
with:
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N 1)) _
E[r2(8)] - E[r(0)]"
4-5%0) - (1-9(0))?
(—4logll — 3(8)](1 — 8(©))?) - (4r - (1 — 8(©)) - X(©) + 52(8)) — 4s2(O)(1 — 9(6))*’

____E[re)]  _
T E[r2(0) - Elr(©)]

(2-5(0) - (1-9(6))) - (4 - (1~ 9(©)) - X
ilodll 7O~ T ( 1-9(0)) x() +

(© )+§( )
§%(9)) — 4s°(0)(1 - 0(8))*’

Remark 3.3.2. In step i) of course we have the problem of edge effects. If we simulate
the Poisson grain only in the observation window W we neglect those Boolean spheres ©;
intersecting W whose center lies outside W but is still close to its boundary. This would
obviously result in severe errors when calculating the (estimated) specific Minkowski-
functionals V(©) using such a realization in the end. Thus in practice we must simulate the
Poisson-germs in an enlarged window W which in the circular /spherical case adds at least a
margin of a sphere radius to the dimensions of W on each side. In the elliptical/cllipsoidal
we add at least the size of the semi-major axis. The same problem occurs for all the
simulation algorithms for the Boolean Model in the following and can be accounted for in
the same way. We will not mention the problem again for each algorithm in the following.

3.3.2 Simulation of the 2D-Elliptical Boolean Model

Relaxing the circular grain-assumption and allowing for elliptical grains makes the model
more powerful in the sense that the attainable region of specific Minkowski-values is
extended (sec section 3.2.2). If the eccentricity of the elliptical grains is chosen to be
small the results of the elliptical model are of course similar to the oncs generated by
the circular model but by choosing the eccentricity large one can generate quite different
looking realizations consisting of long, thin "needles” or fibres. The main drawback of
the elliptical model is the fact that the circumference of an ellipse cannot be calculated
analytically but only through numerical approximation of the complete elliptic integral of
the second kind. The approximation errors typically become larger for high eccentricities
(e = 1). With a typical intensity of v = 1073 in a 1000 x 1000 pixel observation window W
about 103 ellipses have to be placed and the approximation errors for the circumference
in the calculation of 3 may quickly become relevant. This accumulating error-effect of
course gets much worsc in 3-dimensions where in a 1000*-pixel-sized observation window
with intensity v = 1073 the surface area of one million ellipsoids is involved. In 3D the
same problem occurs also for the mean-curvature because M for the ellipsoid as well
cannot be calculated analytically but only by approximation of an elliptic integral. An
other consequence of this effect shows up in discretization of clliptical/cllipsoidal Boolean
Models: To explicitly draw the ellipse/ellipsoid its semi-major axes have to be computed
from its Minkowski-functionals which also has to be done numerically and which again
is subject to approximation error. In general to find the axes for cach cllipse/cllipsoid a
small numerical approximation problem has to be solved which prolongates computation
time considerably compared to the circular/spherical models. This can be avoided by
choosing a homothetic Boolean Model, where all the grains are dilated or shrunk version
of the same prototype-ellipsoid. In this case there is a only one single axes calculation
to perform whose computational cost is negligible. The restriction to the homothetic
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model can also be justified by the fact that grains in real granular porous structures often
can be thought of as a product of minor random modifications of the same basic shape.
Therefore in 3D the homothetic model will be the model of our choice in the following,.

However in the 2D-situation we implement the general (non-homothetic) stationary
Boolean Model with elliptical grains. In our algorithm the typical grain @ is built by
random expansion of a prototype ellipse:

Op = ¢ Oqo,

where ¢ is a random expansion factor which we assumc to follow a Gamma-distribution:

¢ ~ Gamma(e, Ae), Yes Ae > 0.

But opposed to the homothetic situation in Theorem 3.2.8 the prototype ellipse is random
itself. We assume Ggg to have unit volume, ie. v(@gy) = 1 and random circumference
8(Bgp) independent of ¢. Of course the isoperimetric inequality (Theorem 3.2.6) requires
that s > 24/ 1= Scirc, Where 8circ I8 the circumference of a circle with unit volume. We
assume 3(Ogg) to follow a translated Gamma-distribution starting at scirc:

$(Q00) = Scire + A, A ~ Gamma(ya, Aa), YA, Aa = 0.

Our final model then consists of 5 parameters ~, e, Ac, 7A and AA but from the inverted
Miles-equations 3.2.4 we only get three conditions. Hence the model is underdetermined
and we are free to choose 2 parameters ourselves. A meaningful parameter to tune the
model is E [A] which allows us to control the mean eccentricity of the grains. It turns out
that the second parameter which should be controlled is Aa. This parameter has influence
on the variability of the ellipsoidal shapes which arc present in the model. Aa should be
chosen big enough for two rcasons: Firstly in real structures often all of the grains are of
rather similar shape and it is very unlikely that a model with too much shape variability
will fit the data well and secondly one should prevent the model to choose ellipses which
are too eccentric because the numerical axes calculation considerably loses precision for
very eccentric ellipses.

With the above assumptions one now finds for the mean Minkowski functionals of the
typical grain: '

2
E[v(©)] = E[?] = e ;%

E[s(€0)] = Elc E[s(O)] = %  (Scire + E[A]).

C

Hence once E[A] is determined, #. and A, can be calculated from the above equations.
Furthermore 7A = Aa - E [A] and the expression for the Poisson intensity - is the same as
in the circular case and follows directly from the inverted Miles-equations 3.2.4. Finally
to draw the ellipses for each ellipsc one of the semi-axes a and b has to be computed and
the other one follows from the condition 1 = v(Bp) = 7+ a-b. We now summarize all
these steps in the following algorithm:

Algorithm 3.3.3. (stationary elliptical 2D-Boolean Model) To simulate a statio-
nary 2D-Boolean Model with predetermined specific Minkowski functionals V;(©) and
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elliptical grains in an observation window W with grains of the form ©¢ = ¢ - ©gg, where
Opo has unit volume and ¢ and $(Ogg) — 2/ are Gamma-distributed,

i).

i).

ii).

iii).

choose a value for the mean excess circumference E [A] and Aa to regulate the mean
eccentricity of the elliptical grains and its variability and calculate mean volume
E [v(0g)] and mean circumference E [s(Og)] of the typical grain by applying the
inverted Miles-equations 3.2.4,

generate inside W a 2D-stationary Poisson Process X = {z1,72,...} with intensity
<, where:

__Xx(®©) 1 5(©)
TET1o0@) T s

for n =« - |W| generate n independent realizations ¢; of the expansion factor ¢ and
n independent realizations s; of the circumference s(gg) of the prototype ellipse:

i ~ D(ve,Ae) did., i€ {1,...,n}
s ~ 2-/m+T(ya,Aa) iid, i €{1,...,n}

where the parameters are determined in this order:

e = E [s(60)]”
E [v(00)] - (2v/7 + E[A])? — E[s(80)]*’

. ’73‘4")’2
Y = A\ BR©

Ya = Aa-E[A].

calculate the semi-major axes a; of the n elliptical grains ©;(ux;, a;, b;) by solving
numerically for each ¢ € {1,...n} the following equation for a;:

5 1 . 1
s;=4-a; 1-(1———|sinpdp=4-E |1 — ——— 3.13
v | \/ O R e

where E[] is the complete elliptic integral of the second kind (see Abramowitz and
Stegun 1972, p. 590, eq. 17.3.7). Set b; = 1/(7 - a;) and draw the grains O(z;, a;, b;)
centered in the points z; of the stationary Poisson Process X in random orientation.

The random orientation in step iii). can trivially be achieved by simulating the polar
angle ¢ of the large semi-major axis a of the ellipses, ic. ¢ ~ Unif[0, 2].

Please note that opposed to the circular model from section 3.3.1 in the elliptical case
the Gamma-assumption does impose additional restrictions on the attainability of specific
Minkowski-functionals for a given mean eccentricity. In step ii) the denominator of the
expression for 7, can be negative. But in practice this problem can always be overcome



70 Chapter 3. The Boolean Model

by increasing E [A]. Step iii). of the above algorithm is the most subtle one with respect
to approximation errors and time, however, in principle the approximation problem is
trivial because for fixed volume the circumference s(B¢g) is a convex and monotone func-
tion of the ellipse eccentricity € = /1 — b2/a?. Equation 3.13 follows trivially from the
parametrization z = a-cos¢, y = b-sin¢, 0 < ¢ < 27 and:

o(Bog) = '/O%ds:‘/ozwmz/o%\/(%)zju(%)2@

2% z 2
= / \/cz2sin2¢+62c052¢d¢=4a-/2 \/1—(1—b—2)0082¢d¢
0 0 a
— % b2 ) 1=mnab % 1 . 9
= 40,4/0‘ \/1 — (1 — ?) SII ¢ d¢? = 4&A \/1 — (1 — W) 811 qb d¢

3.3.3 Simulation of the 3D-Spherical-Boolean Model

Also in three dimensions our goal is to simulate Boolean Models with predetermined
values for the specific Minkowski-characteristics. In 3D there is an additional Minkowski-
functional, namely the integral of mean-curvature M (see subsection 2.2.4 for a discus-
sion). Starting from the preset values (9(0),3(0), M(0),%(0)) we can directly com-
pute the intensity v of the underlying stationary Poisson Process and the mean values
E[V;(00)], j € {1,2,3} for volume, surface and integral of mean curvature of the typi-
cal grain using the inverted 3D-Miles-equations from Corollary 3.2.5. Because the grains
arc spherical, the grain distribution is fixed as soon as the distribution of the random
radius 7 is fixed. Because the E [V;(Og)], j € {1,2,3} correspond to the first three mo-
ments of the radius distribution, we therefore need to find a distribution with E[r], E [7‘2}
and E [rr”] fixed. A natural choice of a threc-parametric distribution is the translated
Gamma-distribution, ie.

r=0+R, R ~ Gammal(a, 3), a, 3,6 > 0.

It should be mentioned that opposed to the 2D-setting, in 3D the choice of the (trans-
lated) Gamma-distribution does impose additional restrictions on the attainability of
specific Minkowski-functionals within the 3D-Spherical-Boolean Model. It has turned out
that these additional constraints are rather severe and in many situations other (often
less comfortable) radial distributions must be considered. Again a distribution with
constant support may be considered if the real structural grains are of a characteristic size.

However, with our assumptions we can express:

E[v(O0)] = 4?” E[r9] = 4?” E[(6+ R
dr fa(a+1)(a+2) 3da(a+1 a4
- “g‘( ( +ﬂ)3( 2 (ﬁ; )+35 +5).
E(5(600)] = 4rE[r’] =4rE [0+ R)*] =4dn (a(cz}iz-l) + 2%‘1 + 52) .

E[M(6)] = 4rE[r|=4rE[5+ R] = 4 (5 + %) : (3.14)
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This is an equation system for a, 3,8 which can be solved analytically by removing the
constants:

jo= D BRG]l o BBO0) . B(M()
) 4 ’ ) 47 ! ' an ’

and introducing the new variables:

Thus the whole simulation procedure can be summarized in the following algorithm:

Algorithm 3.3.4. (stationary spherical 3D-Boolean Model) To simulate a statio-
nary 3D-Boolcan Model with spherical grains, a radius which follows a translated Gamma-
distribution and predetermined specific Minkowski functionals V;(0), j € {0,...,3} in an
observation window W

i). use the 3D-inverted-Miles-equations from Corollary 3.2.5 to calculate the mean
volume E [v(0¢)], the mean surface E[s(©¢)] and the mean integral curvature
E [M(©g)] for the typical grain ©g.

ii). generate inside W a 3D-stationary Poisson Process X = {z1,z3,...} with intensity
~, where:

_ X 1 M@®)5O) 7  §6)7°
TTIC5@) T an (1-0(@)2 " 192(1—9(©))3
iii.) gencrate n = « - |W| independent spherical grains ©; = B(x;,r;), where the radii
r; ~ 0 +I'(e, ). The parameters a, 3,6 can be determined by performing the
following calculations in this order:

1. Calculate

471- ? ¢ 47T b] 47.‘_ .
2. Calculate
_ 2-(5-m?)? o2 oy y—(m—y) -y
y_ﬁ_3.m.(§_m2)_ms’ = " .
3. Calculate
1
g=-, a=y-p3, 6 =1 —uy.
I

The calculations in step iii.) of the above algorithm stem from a step by step-solution
of equation-system 3.14. Of course the algorithm only works if the parameters a, 3,7,
are all non-negative. If not, as long as v > 0, a change of the radius distribution may be
considered.
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3.3.4 Simulation of the 3D-Homothetic Ellipsoidal-Boolean Model

As far as the 3D-ellipsoidal model is concerned we restrict ourselves to the homothetic
case, ie. all Boolean grains 6 are scaled versions of a single fized prototype ellipsoid ©gg.
The main reason for this is that the ellipsoid surface s and its integral of mean curvature M
cannot be calculated analytically but only expressed as elliptic integrals. The Minkowski-
functionals for a general triaxial ellipsoid E with semi-major axes a > b > ¢ > 0 are:

v(E) = %-W-a-b-c

27rh 2 _ L2 20002 — 2
s(E) = 27rcr‘)~i~——7:~~~—2-[c2 F(arcsin(a C) o p,))—i-
C
C

= e ) B (@)

2 22
(az — (‘2 (d,I‘Cbln (a, ) ((:2 — 2;)] )
be 2 2_ 2\ o2 _ B2
ME) = 2 [Z P (e (5 )’a?—«ﬁ)
: a2 — 2\ o2
+vat—c* E (arcsm ( - ) » 3 2)] ; (3.15)

i

where F' and E are the Flliptic integrals of the first and second kind respectively which
are defined as follows (sce also (Abramowitz and Stegun 1972), Ch. 17 for a complete
survey of elliptic integrals. Especially formulae 17.2.6, 17.2.8):

¢ &
F(p,m) = / ! ae, m) = / V1—1m-sin®6db.
0 V1—m-sin’6 0

Because numerical approximation is needed for each ellipsoid when calculating the
Minkowski-functionals § and M from the semi-major axes a,b,c or vice versa and the
number of ellipsoids in recasonably sized 3D-samples may be immense, accumulating ap-
proximation error is a serious problem for the 3D-ellipsoidal Boolean Model. Also the
myriad of small approximation steps needed to calculate the ellipsoid- axes when drawing
the cllipsoids slows down the algorithms considerably. The homothetic model has the
advantage that only a single approximation step is nceded for the prototype ellipsoid ©gp.
Of course this single approximation must be performed as accurate as possible because
the approximation error is transferred to the other grains by scaling. From the modelling
point of view, restriction to the homothetic case is often no serious issue because the grains
in many real material structures have a typical basic grain shape with relatively small vari-
ation compared to the variation in grain size. Hence we assume in the following that the
typical ellipsoidal grain @ is generated by expanding a non-random prototype-ellipsoid
Ogo with a random expansion factor ¢:

Oy = ¢ Oy,
where v(Ogp) = 1, $(Opp) = sgo and m(BOgy) = mgo and where sgp and mg are fixed
constants. For the expansion factor ¢ we assume a Gamma-distribution:
¢ ~ Gamma(ye, Ac), Yey Ae > 0.

It is a fact that both the restriction to the homothetic model as well as the choice
of the Gamma-distribution for ¢ impose serious restrictions on the attainable region
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of Minkowski-values. These can be partially overcome by dropping the homotheticity
assumption and choosing spo and mgy random obeying the isoperimetric inequalities
from 3.2.6. However, because of the problems mentioned above we will not do that in
the following. We would also like to mention that instead of fixing distributions for sgg
and mog one could also fix distributions for the semi-major axes a, b and ¢. This would
bypass the time-consuming numerical axcs-calculation in the non-homothetic model. But
then relating the distributional parameters to the the mean Minkowski-functionals of the
typical grain becomes more difficult and furthermore we could not reach the same level of
accuracy in reproducing preset values for the specific Minkowski-characteristics with this
simpler procedure as with the algorithm described below.

From the inverted Miles-equations given in Corollary 3.2.5 we can calculate the intensity
v of the underlying stationary Poisson Process and the mean Minkowski-characteristics
E [v(©0)],E [s(600)] and E[M(6g)]. The latter can be expressed by the additional model
parameters e, Az, 800, Moo as follows:

E[v(8)] = E[?]= Yer (Ye+1) - (ve+ 2)’

¥
Bls(00) = s B[] = sop- 2 0T
E[M(0)] = mo-Bld =mp- = (3.16)

These are three equations for four model parameters (soo, 77200, Ye; Ac) hence we may choose
one of these parameters free. The most meaningful parameter is sgo which we can use to
tune the (deterministic!) eccentricity of the ellipsoidal grains. However by the isoperimet-
ric inequality (Theorem 3.2.6) we must have sgy > /367 = 4.84. Equation system 3.16
is readily solved and we can surnmarize the whole simulation procedure in the following
algorithm:

Algorithm 3.3.5. (stationary homothetic ellipsoidal 3D-Boolean Model) To
simulate a stationary homothetic 3D-Boolean Model with predetermined specific
Minkowski functionals V;(©) and ellipsoidal grains in an observation window W with
grains of the form ©¢ = ¢ Oy, where O is a fized deterministic prototype-ellipsoid
of unit volume, fixed surface area sgp and fixed integral mean curvature mgy and
¢ ~ Gamma(v,, A;) 1s a Gamma-distributed scaling factor,

i). usc the 3D-inverted-Miles-equations from Corollary 3.2.5 to calculate the mean
volume E [v(0¢)], the mean surface E[s(0g)] and the mean integral curvature
E [M(©y)] for the typical grain ©¢ and choose a value for the surface area sqp of the
prototype-ellipsoid.

ii). generate inside W a 3D-stationary Poisson Process X = {z1,z2,...} with intensity
v, where: '

__Xx(®) 1 M@®)}sOe) « 56>
TTI-90) T aIm (1-0(0)? T 102 (1-9(6))*

iii). For n = 7 - |W]| generate n independent realizations ¢; of the expansion factor ¢ ~
I'(7e, Ac) where «, is a (positive) solution of the quadratic equation
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(520 - E[0(€0) = BIs(00)°) 12+ (530 - E[v(O0))” — 4+ E[s(80)]* ) 7o~ 4-E [s(80)f* =0,

. and

£ = \/('7::‘*‘” * Ve~ 800
‘ E[s(®0)]

iv.) Set mgy = E[M(Gy)] %g and calculate the axes a,b,c of the prototype ellipsoid
BOgo(a,b,c) by numerically solving the equation system 3.15. Then draw the homo-
thetic ellipsoidal grains ©;(x;,a,b,¢) = ¢ - Opola, b, ¢) centered at the points x; of
the stationary Poisson Process X in random orientation.

In step iv). of the above algorithm to place the ellipsoids in random orientation three
angles ¢,0,v need to be simulated to uniquely determine the position of the ellipsoids
©; in space. An easy way to do this is to take the pair (¢,8) as the polar angles of the
largest semi-major axis a and v the rotation angle of the ellipsoid around a with respect
to a certain reference point in the normal plane I, to a through the ellipsoid center. For
example one of the intersection points of II, with the plane parallel to z = 0 through
the ellipsoid center could serve as a reference point (one can take the one with the lower
z-coordinate to define it uniquely). Then v is trivial and (¢,8) ~ Unif(S?), where S? is
the unit sphere in three dimensions, ie.

¢ ~ Unif[—n, ], 6 ~ arcsin (2 - Unif[0,1] = 1), v ~ Unifl0,2n].

Again only positive values for v, 7., A make sense, of course.

3.3.5 The Discretization-Process

We conclude this section with a few remarks about the discretization process. Because rea-
lizations of a Boolean Model arc continuous sets in R? and the Ohser-Miicklich-estimators
(subsections 2.3.1, 2.3.2) for the Minkowski-functionals only can be used on a grid we must
discretize the Boolean realizations generated with the above algorithms to evaluate the
simulation process. At least in three dimensions this is definitely the most-time consuming
step of the simulation procedure. Discretization must be done at a reasonably high reso-
lution such that the curved grain boundaries of the circles/ellipses can be approximated
with an edge path on the grid with sufficiently small error. Pleasc note however that
discretization is not necessary just to define the artificial images fur further calculations
(eg. midpoints and radii of spheres) without plotting them and without checking for their
specific Minkowski-functionals. Once a target resolution is specified (around 1000¢ pixels
in our case), the 2D-discretization is still fast. We start with a white image, and process
each circle/ellipse sequentially. For pixels p lying close enough to the grain center o (only
pixels in the square centered at z¢ and side-length equal to the perimeter 2r of the grain
disk or the length of the major axis 2a need to be considered), we check whether they lie
inside the grain and thus need to be blackened. In the circular case for example, we simply
check whether the pixel’s grid coordinates fulfill [p — zo|2 < r2. Once a pixel is blackened,
it stays black until discretization finishes. In three dimensions where discretization time
is crucial, there are basically two possible generalizations of this 2D-procedure:

e Process the spherical/ellipsoidal Boolean grains ©; sequentially and for each grain
blacken the points which lie inside the Boolean grain. For a spherical grain B(zg,r)
for example the pixel with coordinates p is blackened if [p — zo|? < r2.
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e Process the horizontal layers z = 2o sequentially. Calculate the intersection
spheres/ellipses of the 3D-Boolean grains with the layers z = zo and apply the
2D-procedure for each layer.

Although the second procedure initially involves a few simple spatial geometry calcula-
tions, it turned out in our experiments that the second method performed much faster
on large 3D-images and is well worth the slightly higher implementational effort. It is
even possible to carry this idea one step further and reduce the needed calculations to one
dimension. The interior of an ellipsoid in general position is given by the usual inequality
for a quadratic form (z — )T A(z — z¢) < 1, where A is a positive definite 3 x 3-matrix
and x = (x1, 2, x3) and xo = (xo1, To2, To3) are 3-vectors, where o is the midpoint of the
cllipsoid. By completing the square this can be transformed into:

2
a2 a13
(:l: — :EO)TA(:L‘ — CL‘O) = a1 ((171 — :1’501) + a—ll(:L‘g - 5602) + 04_11(7:3 — $03)>

2 2
a a11a23 — G120
12 X 11023 — 012013
+ (0'22 - ) ((12 - zp2) + (3 — 3303))
a1 Q11422 — ayy

2 2
a a11d93 — A12013
+ (a33 o | U 1;) ) (w3 ~ wo3)* < 1, (3.17)
ay] (11022 — A11479

where all the coefficients of the squares on the left hand side of the inequality are strictly
positive by positive-definiteness of the matrix A. From equation 3.17 one can directly
devise the following discretization-algorithm for the 3D-ellipsoidal (and spherical) Boolean
Model:

Algorithm 3.3.6. (Discretization of 3D-Ellipsoidal Boolean Model) Let E be an
ellipsoid given by (x — z¢)T A(z — zp) < 1. The points z = (w1, 79, x3) falling into the
interior of E can be found by successively solving one-dimensional inequalities as follows:

i) Solve for x3:

2 \2

aiy _ (a11a23 — a1a13) 2

("‘33_ -T2 ——— ) (@3 —zp3)" < L.
ail a711022 — A11079

ii) For each x3 that fulfills i). solve for xy:

2 2
Q] a11a23 — A120];
12 11623 12413
azz — — | | (w2 — zo2) + 5 (%3 — Z03)
a a11a922 aia

2 2

ais (a1 — a1za;3) 2

gl—(agg——— 2 5 ($3—$03).
a1l 71022 — 41147y

iii) For each solution (z2,3) to i). and ii). solve for z;:

2
a ai:

aiy ((991 — Z01) + =2 (g — Tz) + —> (3 — -”1703)) <
ai11 a11

2 2

a 11023 — G12013

1-— (azz - ﬁ) ((372 — Tog) + 5 (T3 — o3)
ail a11022 — Q9

2 ¥

aiz3  (ar1a23 — a12a13)? 2

—{aB—-—— —— p) (z3 — wo3)*.
a1l (1,110,22 - analz
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3.4 2D-Results

I this section we want to apply the algorithms 3.3.1 and 3.3.3 to model 2-dimensional
cross-scctions as displayed in figure 1.3 of the synchrotronized coarse-sand cube given
in figure 1.1. We also generate images where one ol the 3 Minkowski-characteristics
(v(0),5(0), ¥(0©)) is changed and the others kept fixed to illustrate the change in op-
tical appearance ol the artificial Boolean structure with respect to a single Minkowski
characteristic. This also helps us to illustrate the obvious defects of the Boolean Model
in modelling porous media. One should bear in mind that main reason why the Boolean
Model has been intensively studied in literature is notl because it generates good model
fitting results but because it is analytically tractable to quite a far extent.

3.4.1 Typical Results for the 2D-Spherical Boolean Model

Figure 3.8 shows a typical cross-section extracted from our data coarse-sand-cube in
fisure 1.1 and a realization of the stationary 2D circular Boolean Model generated with
algorithm 3.3.1 which has the same specific Minkowski characteristics as the original sand
cross-section up to a negligible relative error of 3% for the Buler-characteristic and an
absolute error of < 1073 for the other characteristics.

Figure 3.8: An 800 x 800-pizcl-sized cross-section of the coarse-sand-cube from figure 1.1
with o = 0.600, s = 0.061 and ¥ = 1.63-10 1 (left) and a realization of the circular Boolcan
model with the same Minkowski characteristics generated according to the algorithm 5.3.1.

(right)

The Boolean Model docsn’t perform bad, it passably captures the basic structure of the
true image. DBecause of indeterminacy we cannot expect a perfect result, because there
are a lot of potential Boolean Models leading to the same specific Minkowski functionals,
hence the Minkowski functionals on their own are simply not enough to capture the whole
information stored in the true image. If one understands the Boolean Model in the sense
that every model grain in the Boolean realization should stand for a true grain in the real
image, then the Boolean Model has a major defect: its grains are allowed to overlap ad
libitum whereas the sand grains in the real image do not overlap at all. More realistic
models such as hardcore and cherry-pit don’t show this defect. In the hardcore model the
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circular grains don’t overlap at all whereas in the cherry-pit model they arc allowed to
overlap only up to a certain depth. (This is the origin of the name-analogy. A cherry has
a soft and penetrable pulp and a hard impenetrable pit.) The drawback of these models is
that they are no longer analytically tractable and more difficult to implement. For details
concerning the cherry-pit model see for example (Stoyan and Kadashevich 2005) and
for the basic so-called force-biased hardcore algorithm (Moscinski, Bargiel, Rycerz and
Jacobs 1989). But as figure 3.8 and subsequent figures show, if the natural grains are in
average much larger than the Boolean grains, it may be that a natural grain corresponds
to a whole non-circular compound of many small overlapping circular Boolean grains
and hence the Boolean grains themselves may have no interpretation, they are just the
constituents of the whole structure. With this viewpoint, the overlapping of the Boolean
grains is no disadvantage at all, but a flexible mcans of building up non-circular grains.

Because in the Boolean Model only the mean Minkowski-characteristics V;(0) coincide
with the specific Minkowski-characteristics estimated in the true image, the Minkowski-
characteristics of a particular realization only approximately correspond to the ones of
the true image. Sometimes one may have to simulate several times to get a satisfactory
result. It is hard to get analytic expressions for the variability of the V; but one can get
quite a good impression of it by simulation. Figure 3.9 shows boxplots for the distribution
of the three Minkowski-characteristics for 1000 realizations of the Boolean Model used to
generate the right image in figure 3.8:
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Figure 3.9: The distributions of #(©)
v

(© ) §( ) for 1000 realizations of the statio-
nary circular 2D-Boolean Model with = 0.600,

(©) X(©) = 1.63-10~* and 5(0) = 0.051.

Figure 3.9 shows that there is considerable variation of the estimated specific Minkowski
functionals and the distribution seems to be centered at the right means but it is a
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fact that the estimators § and X defined in equations 2.24 and 2.24 are biased which
is not very surprising because a smooth boundary is not digitizable. The bias depends
on the adjacency defined on the underlying grid. In this thesis we are always using
(4,4)-adjacency which means that for both the black and white phase we use the natural
adjacency given by the lattice squares such that each pixel has 4 direct neighbours. One
could usc other adjacencies instead, for example 8-adjacency, where also the lattice-cell
diagonals are part of the edge-graph and hence each pixel has 8 direct neighbours. The
surprising result found in (Ohser, Nagel and Schladitz 2003) is that for the spherical
Boolean Model this bias for % doesn’t vanish cven when the lattice spacing h tends
to zero. For 3D-Spherical Boolean Models and for some reasonable adjacencies it is
even asymptotically infinitely large! Please note that the realizations of the Boolean
Model are not morphologically regular, and in particular not morphologically closed
with respect to the segments which form the edges of the cubic lattice cells on which
the Euler-characteristic is estimated. This holds for arbitrarily small such structuring
segments. This phenomenon can easily be seen already for the 2D-Boolean Model with
spherical grains and fixed deterministic radius r. Whenever two such spherical grains
glightly overlap they form a compound which has two boundary points at which the
curvature is not continuous (These are exactly the extremal points of the intersection
sickle of the two spheres.) After morphological closing the compound will have grown a
little near these two boundary points regardless of the compound’s orientation relative to
the structuring segment and hence corollary 2.1.21 cannot be applied which means that
the specific Euler characteristic estimation of the Boolean realization may be erroneous,
even for an arbitrarily small lattice constant h. Because such overlapping of the spherical
grains occurs with positive probability it is well plausible that the OM-estimator for the
Euler characteristic is asymptotically biased for A | 0.

At last in figure 3.10 we show realizations of the stationary circular Boolean Model where
one of the specific Minkowski functionals is enlarged or reduced and the other two specific
Minkowski-functionals agree with the ones of the original sand cross-section in figure
3.8 (left image). The Minkowski-functionals are modified towards the boundary of the
attainable region as indicated in table 3.1. '

Image modified functional | modification

top left specific volume increased to 0.8

top right specific volume decreased to 0.515
middle left specific surface increased by factor 1.7
middle right | specific surface decreased by factor 0.3
bottom left | specific Euler increased by factor 100
bottom right | specific Euler decreased by factor 0.3

Table 3.1: Modifications of specific Minkowski functionals with respect to the ones of the
original cross-section in figure 3.8. The specific Minkowski functionals of the reference
image are v = 0.600,5 = 0.051,& = 1.63 - 10™%. The corresponding images are shown in
figure 3.10.

Figure 3.10 shows that for the increased volume (top left) the overlapping of the circular
grains become so intensive that the singular grains can hardly be discerned any longer.
The structural grains which are a result of the clustering can still be identified by eye but
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Figure 3.10: The influence of changing a single specific Minkowski-characteristic in Lhe
2D-circular Boolean Model. As a reference the original sand cross-section in figure 5.8 was
taken. Top row: enlarged/reduced specific volume, middle row: enlarged /reduced specific
surface, bollom row: enlarged/reduced specific Euler characteristic.

their shape is no longer cirenlar. On the other hand the image with the reduced volume
uses the Boolean grains directly as structural grains. The grains are connected via large
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chains and thus form large holes to account for the low Euler characteristic. In the high
surface image (middle left) the Boolean grains form thin connections to stretch out the
given amount of black volume into thin fibres over the image to make the surface as large
as possible including smaller holes as in the top right image because of the higher volume.
In the middle right image the volume is concentrated in large spheres to reduce the surface
to the required small value. The Euler characteristic is corrected upwards by introducing
a lot of additional tiny spheres each of which increases the Euler characteristic by one at
a very low cost of increasing the surface. The bottom left image uses the same technique
to increasc the Euler characteristic. The whole interspace between the few large spheres
which make up volume and surface is blotched with spheres of tiniest size to screw up the
Euler characteristic. Finally in the bottom right image the Boolean spheres seem to be
arranged ”the least random” but rather quite regularly in a grid-like fashion. It’s casy to
see that a grid-like arrangement of pixels achieves the lcast possible Euler characteristic
for a given volume and surface. Reducing the Euler-Characteristic further (which is not
possible for the given values of volume and surface) would reveal the grid-effect more
clearly.

3.4.2 Typical Results for the 2D-Elliptical Boolean Model

In this subsection we show a few realizations of the 2D-stationary elliptical Boolean
Model. Again we use a cross-section from figure 1.1 as a benchmark. Figure 3.11 shows
realizations of the stationary 2D-elliptical Boolean Model which all share their specific
Minkowski-functionals with the cross-section taken from the real sand-cube in the upper
left image of figure 3.8. The realizations differ in their value for the mean eccentricity
parameter E[A] that was chosen in algorithm 3.3.3 which is varying from moderate to
high eccentricity. Of course the real sand grains exhibit only moderate eccentricity and
thus the large eccentricity images should of course not be interpreted as grain-to-grain
reconstructions.

The images in figure 3.11 illustrate the flexibility of the elliptical Boolean Model. The
granular structures in the top images are optically quite different from the fibre-like
structurcs in the bottom images. This fact also confirms the indeterminacy phenomenon:
Already within the elliptical Boolean Model a large varicty of different structures with the
same specific Minkowski functionals can be generated and hence a lot of important struc-
tural information is lost by summarizing an image into its three specific Minkowski-values.

Figure 3.12 illustrates the sensitivity of the artificial elliptical Boolean structure with
respect to changes of a single specific Minkowski characteristic while the other two are
kept fixed and coincide with the values of the top left image in figure 3.11. The changes
in the model parameters that were made to produce the different images of figure 3.12
are summarized in table 3.2.

The images of figure 3.12 show similar effects as the ones in the corresponding figure 3.10
for the circular model. For the bottom right image the sign of the Euler characteristic was
flipped which results in a densely interconnected network leaving small holes which give
negative contributions to the Euler number. Such a low Euler characteristic can only be
achieved for high eccentricities, hence the eccentricity parameter had to be chosen much
higher than for the other images. We now turn our attention to the presentation of some
three dimensional results.
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Figure 3.11: An 800 x 800-pizel-sized cross-scction of the sandeube from fiqure 1.1 with
v = 0.600,5 = 0.051 and ¥ = 1.63-10™* (top left) and several realizations of the elliptical
Boolean Model with the same Minkowski characteristics gencrated according to algorithm,
3.3.5. The eccenlricity parameter was chosen to be E[A] € {0.1,0.3,0.8,2.0,3.7} in this
order from lefl to right and top to bollom. The variability of ellipse shapes was kept small
by choosing the parameter Aa Lo be as large as 4.
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Image modified functional | modification

top left specific volume increased to 0.8

top right specific volume decreased to 0.3
middle left specific surface increased by factor 2
middle right | specific surface decreased by factor 0.5
bottom left | specific Euler increased by factor 100
bottom right | specific Euler decreased by factor —2

Table 3.2: Modifications of specific Minkowski functionals with respect to the ones of the
original cross-section in figure 3.11. The specific Minkowski functionals of the reference
image are U = 0.600,5 = 0.051,& = 1.63 - 1074, The corresponding images are shown in
figure 3.12.

3.5 3D-Results

In this section we present a few realizations of three-dimensional Boolean models. The
images were generated using the module-based 3D-visualization-tool AVS (Advanced Vi-
sual Systems 2006). Firstly we present some modelling results of our experiments with
the spherical Boolean Model and then summarize a rather extensive study where arti-
ficial structures generated with the ellipsoidal Boolean Model and real sand-specimens
with the same specific Minkowski functionals are compared with respect to their geo-
physical propertics such as fluid-flow and permeability. A more detailed summary of this
work was published in (Lehmann et al. n.d.). The study was part of the FIMOTUM
(FIrst principle based MOdelling of Transport in Unsaturated Media) project which was -
jointly pursued during the last few years by 4 groups of geophysicists from the Technical
University of Braunschweig, the University of Stuttgart and the Swiss Federal Institute
of Technology (2 groups) (visit the FIMOTUM-website for more detailed information
www.fimotum.stroemungsmechanik.org).

3.5.1 Typical Results for the 3D-Spherical Boolean Model

Figure 3.13 displays the same 2563-pixel-sized cubic extract from an 8003-pixel syn-
chrotronized HASYLAB coarse-sand-specimen that was already displayed as the left
hand-side image of figure 1.1 along with a realization from the 3D-spherical Boolean
Model generated according to algorithm 3.3.4. The two structures exhibit the same
specific Minkowski-functionals with high accuracy. The fine sand-sample on the right
hand-side of figure 1.1 cannot be modelled by the spherical Boolean Model if the grain
distribution is chosen as in algorithm 3.3.4 although its specific Minkowski functionals
arc in the attainable region.

Figure 3.13 shows that the variability of grain sizes is much higher in the artificial structure
than in the real sand-image. A possible explanation for this effect is the overlapping of
grains in the Boolean structure. The volume and surface loss due to overlapping must be
compensated by additional touching small spheres. If the goal is to artificially reproduce
the sand-structure on the left hand-side of figurc 3.13, a possible solution to this problem
would be to chose a radial distribution which concentrates its mass on the radii observed
in the real coarse-sand-sample,
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Figure 3.12: The influence of changing a single specific Minkowski-characteristic in lhe
2D-elliptical Boolean Model. As a reference the original sand cross-scction in figure 3.8 was
laken. Top row: enlarged/reduced specific volume, middle row: enlarged/reduced specific
surface, bottom row: enlarged/reduced specific Euler characteristic. A} was chosen to
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Figure 3.13: An original 2563 -pivel-sized cube taken from the 8007 -pizel samples of
the HASYLALD synchrotron sand data with coarse granularity and side length = 1lpm
displayed on lhe lefl hand-side of figure 1.1. The right image shows o realization of the
FD-spherical Boolean Model gencrated according to algorithm 3.3.4. The two structures
share the same specific Mumkowski functionals.

3.5.2 Typical Results for the 3D-Ellipsoidal Boolean Model

Figure 3.11 again displays a 256%-pixcl-sized cubic extract from an 800%-pixc] synchro-
tronived HASYLAB sand-specimen but this time the fine granularity-specimen that was
already displayed as the right hand-side image of figure 1.1. The image comes along with
a realization of a 3D-cllipsoidal-Boolean Model with rather eccentric graing which was
gencrated according to algorithm 3.3.5 and has the same specific Minkowski functionals
as the fine-sand-sample. The reagson why we chose the fine-sand specimen this time is
because ils Minkowski-functionals arc a little bit farther away from the boundary of the
attainable region within the Ellipsoidal Boolean Model and thus exhibit more Hexibility
for a sensitivity analysis as it is done further below. Because ol the high cccentricity of
the ellipsoicdal graing we cannot expect a high optical similarity of the two structures in
ligure 3.14, butl the figure is an instructive example for the indeterminacy principle and
once more shows that optically very different-looking structures may still have the same
specific Minkowski-functionals.

If the goal is to reproduce the real fine sand-structure artilicially, less cceentric ellipsoids
must be used.  Unfortunately the convenient choice of the Gamna-distribution for the
extension factor ¢ in algorithm 3.3.5 is not compatible with low eccentricitics. The
minimal surface area sgo of the prototype ellipsoid in algorithm 3.3.5 with which a
structure with the same specific Minkowski [unctionals as the fine-sand-sample in figure
3.14 can be achieved is 599 = 6.74 which is far above the theoretical minimum 4.84 given
by the isoperimetric inecuality. For less cecentric grains different grain distributions must
he used and the sunulation-algorithm must be adapted to the target sample. But this is
not our goal here.
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Figure 3.14: An original 256” pizel-sized cube laken from. [he 800°-pizel samples of the
HASYLA synchrotron sand dala wilh fine granularily and side length = 11m on the left
hand-side. The right image shows a realization of the 3D-ellipsoidal Boolean Model gene-
rated according to algorithm 5.3.5. The two structures share the same specific Minkowski
Jfunctionals.

Because of the greater flexibility of the cllipsoidal compared to the spherical Boolean
Model similarly as in the discussion of the 2D models above it it possible to do a sensitivity
analysis with respect (o the change in a single specific Minkowski characteristic while
keeping the other three specific Minkowski values fixed. In this spirit, fisure 3.15 shows
6 realizations of the 3D-Ellipsoidal Boolean Model for cach of which one of the specific
Minkowski-functionals was changed according to table 3.3 whereas the others were cho-
sen equal to the ones of the real fine-sand reference-structure shown in figures 1.1 and 3.14.

Image modified functional modification

top left specilic volume increased to .65
top right, specilic volune decreased to 0.55
middle left specific surface decreased by factor 0.75
middle right, | specific surface decreased by factor 2
middle left specific integral mean curvature | decrecased by factor 0.5
middle right | specific integral mean curvature | increased by lactor 2
bottom left specific Kuler increased by factor 1.5
bottomn right | specilic Euler decreased by factor 0.5

Table 3.3: Modifications  of  specific  Minkowski  functionals  with  respect Lo

the ones of lhe orginel  fine  sand-sample  shown on  the left hand  side of
Jgure  3.14. The  specific  Minkowski-funclionals  of  the  reference-sample  are
v o= 0598, s = 0.106, M = 1.201 - 1077, & = ~1.165 - 10~%. The corresponding images
are shoum in figure 3.15.
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Figure 3.15 is not as instructive as the corresponding two dimensional figure. Apart from
the image with increased specific surface, wherc the same thin fibre-effect as in 2D is clearly
visible, the other images all look very similar. This gives us a hint that that Minkowski-
functionals are even less powerful in three than in two dimensions to characterize a porous
structure and there is a strong need to consider other aspects of the underlying geometry
as well.
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Figurc 3.15: The influence of changing a single specific Minkowski-characteristic in
the 3D-ellipsoidal Boolean Model.  As a reference the original fine-sand cross-seclion
from figure 3.14 was taken. Top row: enlarged/reduced specific volume, sccond row: en-
larged/reduced specific surface, third row: enlarged/reduced integral of mean curvature,
bollom row: enlarged/reduced specific Euler characteristic.  The parameter soy i algo-
rithm 3.3.5 which governs the mean grain-cceentricity was chosen to be 9 for oll images
which is high above its theoretical manirmum 4.841.






Chapter 4

The Thresholded Gaussian Model

In this chapter we describe how Thresholded Gaussian Random Fields can be used to
model porous media with Minkowski functionals. In order to ensure that the geometrical
quantities related to the Minkowski functionals exist and can be calculated for realizations
of Thresholded Gaussian Fields, the underlying Gaussian Field must be smooth enough.
Hence the first section below - besides giving necessary definitions - presents the relevant
aspects of continuity and differentiability of (Gaussian) random ficlds.

4.1 Definition and Relevant Properties

The Gaussian Field Model is widely used to model spatio-temporal data with a certain -
dependence structure in various scientific branches, the most prominent of which being

geology and geostatistics. The special appeal of the Gaussian Field Model lies in its

simplicity and analytical tractability because the model is widely based on the Gaussian

distribution which is both omnipresent in statistics and well-understood. Because the

Gaussian Field Model can be combined with any feasible covariance structure in R9, it is

also extremely flexible. A Gaussian field is usually defined as a continuous model where

in every point of Euclidean space a standard Gaussian variable is placed and a covariance

structure describing the dependence of those Gaussian variables is imposed. For our

purposes we can restrict ourselves to the stationary (and isotropic) case.

Definition 4.1.1. (Gaussian Field in R?)

» A Gaussian Field Z in R® is a collection of random variables (Z(z)) ega such
that the finite dimensional distributions of the random vectors Z(z1),...,Z(zy,) are
jointly Gaussian Vxy,...,z, € R%n e N.

o A Gaussian field is stationary if and only if its expectation E[Z(zx)] is constant
for all x € R? and its covariance p(x,y) := Cov(Z(z),Z(y)) depends only on
h:=y—=z € R%. We then write p(h) := Cov (Z(x), Z(x + h)).

o A stationary Gaussian field Z is isotropic if p(h) = p(”h,”) is a function on R.

Without loss of generality we may assume E [Z(z)] = 0 and Var (Z(z)) = 1. A function p
is called the covariance function of a stationary Gaussian Random Field if and only if it
is positive definite. There is a plethora of standard covariance models used in literature.
A large collection along with techniques to construct one’s own positive definite functions
can be found in (Schlather 1999, p.12 ff.).

89
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We now turn to continuity and differentiability of genecral random fields. Noting that
E [(Z(z) - Z(y))?] = p(z,2) + p(y,y) — 2p(z, y) we recognize that continuity in the mean
square sensc for a random field Z(z) at « follows directly from continuity of the covariance
function at (x,z). For mean square differentiability we have the following important
theorem:

Theorem 4.1.2. (mean-square differentiability of random fields) Let Z(z),r € R?
be a random field with covariance function p(z,y) and differentiable expectation. If the
derivative 8%p(z,y)/0z:0y; exists and is finite Vi € 1,...d at the point (z,z) then Z(z) is
mean square differentiable in x. The covariance function of g—i is given by 82 p(x,y)/0ziy;.

Proof. (Theorem 4.1.2) see for example (Cramér and Leadbetter 1968, p. 84)

Of course the theorem can be extended to higher order derivatives. From the above state-
ments it becomes evident that in the stationary case we have mean-square continuity at x
if and only if p is continuous in 0 and mean-square-differentiability follows from existence
and finiteness of 9%p/8z? in zero. Furthermore from the Cauchy-Schwarz inequality it
immediately follows that a stationary covariance model attains its maximum value at the
orlgln, 1€.:

|p(z)| < p(0) Yz € RY.

Therefore in the isotropic case a necessary condition for the second-order derivatives of
the covariance function 8%p(z)/0z? to exist is that the covariance model p(h), h € R has
a vanishing derivative at zero, ie. p/(0) =0.

For modelling porous media we restrict ourselves in the following to stationary and
isotropic Gaussian Fields. For such fields we saw above that continuity of the covari-
ance model in 0 is already sufficient for continuity in mean square but not for almost sure
continuity of the sample paths which is the property we will need in the following. How-
ever, sufficient conditions for the latter can be given if the covariance model p(h) doesn’t
move away from p(0) too quickly:

Theorem 4.1.3. (Sample path continuity of Gaussian Fields) Let Z(z),z € R4
be a real-valued Gaussian field with E [Z(z)] = 0 and a continuous covariance function p.

Then Z has almost surely continuous sample paths in the unit cube if one of the following
conditions is fulfilled:

)
1
/ v —logu dp(u) < oc.
0
where p(u) = MaXy )| ol <|ulvd VE[Z(21) — Z(2)?].
@) 3C with 0 < C' < oo and Je > 0,

C

E [lZ(iE]) - Z(.’L‘z)lz] = 2(p(0) - p(”'Tl - TQH)) < Ilog ||Tl — $2”|1+e’

V1,29 in the unit cube.

iii) Z is stationary and Je > 0 such that
[, os(1+ AP (3) < o,
R4

where F(.) is the spectral distribution function of Z, ie p(h) = [ e*dF(t),Yh € R%.
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Proof. (Theorem 4.1.3) sce (Adler 1981), Thms 3.3.2, 3.4.1, 3.4.3.
Definition 4.1.4. (Thresholded Gaussian Field)

O(w) = {z € RY|Z(z)(w) > b}.

It is trivial to verify that this set © is a random closed set in the sense of definition
2.4.1 if we assume that the Gaussian field Z has almost surely continuous sample paths
(see the examples following definition 2.4.1 for the argument.) Specific realizations of ©
we will call 6 in the following and we will also use the notation (z)(w) = 1z()w)>s to
denotc the binary state of a pixel within a realization 6.

While Theorem 4.1.3 answers the question, when the ezcursion set ©(w) of a Gaussian
field is a random set, it is not at all clear whether we can compute its specific Minkowski
functionals V;(©). However, if we can make sure that the level set over the observa-
tion window 6} := {z € W|0(z) = b} is a smooth d-1 dimensional C'%-manifold then
all the geometrical quantities related to the Minkowski functionals such as surface, curva-
tures and Euler-characteristic are well-defined in differential geometry and thus Minkowski
functionals for " := § W can be computed. It turns out that with moderate regularity
assumptions this is indeed the case for stationary Gaussian fields which are our focus in
this chapter. The following rather involved result is developed in (Adler 1981):

Theorem 4.1.5. (boundary smoothness of excursion sets) Let Z(z),z € RY be
a stationary Gaussian field with almost surely pathwise continuous partial derivatives
up to second order such that the joint distribution of Z(x) and all its first and distinct
second order derivatives are non-degenerate. Let further W be a compact observation
window whose boundary has zero Lebesque measure. Then the level set Ogv s almost surely
a d-1-dimensional C?- manifold and also a basic complex and therefore the Minkowski-
functionals of O are well-defined.

Proof. (Theorem 4.1.5) The theorem follows from (Adler 1981, Thm. 3.2.4) because
all the conditions required for suitable regularity are fulfilled if the Gaussian field is as
specified above. The definition of suitable regularity (Adler 1981, Definition 3.1.1) then
immediately implies that 6} is a C?-manifold via the implicit-function-theorem. The fact
that the excursion set is a basic complex follows from (Adler 1981, Thm. 4.3.1).

Remark 4.1.6. The existence of first and second order partial derivatives of a stationary
and isotropic follows according to Theorem 4.1.2 from the existence and finiteness of the
second and fourth derivative of the covariance function in the origin. From Theorem 4.1.2
and the discussion thereafter it follows further that nccessary and in the case of smooth
enough covariance models also sufficient conditions for the existence of the second and
fourth derivative of the covariance function in the origin is that both the first and the
third derivatives of the covariance model p must vanish (otherwise the covariance function
or its second derivative respectively would not be differentiable at the origin):

Op &p

o (0) = 0. (4.1)

Because (mean square sense) derivatives of Gaussian fields are obviously still Gaussian
we can then use Theorem 4.1.3 to check whether their sample paths are almost surely
continuous which gives us a method to verify the assumptions of Theorem 4.1.5.
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Hence for our purposes we can restrict our attention to smooth covariance models with
the property 4.1. In literature such covariance models are sometimes called non-erratic,
so we adopt this definition here:

Definition 4.1.7. (Non-erraticity) A stationary and isotropic Gaussian Field Z(x) is
called non-erratic, if its covariance model p can be expanded as follows:

1" v
p(h) = 1—w'h2+w-h4+0(h5).

2 24
Once the existence of first and sccond order partial derivatives is established, note that the
conditions for almost sure continuity of sample paths stated in Theorem 4.1.3 are rather
weak. For example is hard to find a covariance model with a finite first derivative which
does not fulfill condition ii). However, a non-erratic covariance model will always mect
this condition because its derivative in the origin is zero, whereas the derivative of the
dominating function 1/|log h|1*€ at the origin is infinity.

Assumption 4.1.8. For the rest of the chapter we restrict oursclves (if not otherwise
stated) to considering stationary, isotropic and non-erratic Gaussian random fields. Qur
standard example is the widely used two-parametric Whittle-Matérn-Covariance-Model
for kK > 3 which we introduce now.

Definition 4.1.9. (Whittle-Matérn- Covariance Model) The Whittle-Matérn Co-
variance Model is the class of positive definite covariance functions

prp(R) =217 . 1*_(175)" _ (%)KKN (g) |

where I'(.) is the Gamma-function, K(.) is the Bessel-function of the second kind, k > 0
is a shape parameter and v > 0 is a scale parameter.

The popularity of the Whittle-Matérn Class stems from the fact that it makes it possible to
control the degrec of differentiability of the covariance function and hence of the underlying
Gaussian ficld: If & = (2n + 1)/2 then py, is 2n times differentiable and thus Z is n
times mean square differentiable. Another property which is crucial for us is is that odd
derivatives 0%p, ,(h")/0h of the Whittle-Matérn covariance function vanish in 0 Yu < k.
This can easily be seen using two properties of the Bessel function (see Abramowitz and
Stegun 1972):

Ko(h) ~ %r(n) (%h) for (b — 0, > 0) (4.2)

o 3] ‘

g (PE(h) = D e K Kieuyi(h) for u< s, (4.3)
i=0

where the ¢; are constants.

Combining these properties for v > 1 it follows that in the expansion (4.3) for A | 0 all
summands vanish if u < x and u is odd because of:

g > 1= B K yai(R) ™ 0.
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4.2 Adler-Tomita-Analytical-Formulae

Once one has made surc that the level set for 6" is smooth enough, general expressions
for the specific Minkowski functionals in the Thresholded Gaussian Model can be obtained
using the relationships between the general integrals of mean curvature and Minkowski
functionals from section 2.2.4. Instead of calculating Minkowski-functionals directly one
can usc the arsenal of methods from differential geometry to get cxplicit expressions for
the general mean curvatures (definition 2.2.6) which are easier to obtain than expressions
for the Minkowski functionals directly.

An cxplicit expression for the specific Euler characteristic x(©) for the excursion set © of
suitably regular Gaussian fields © in arbitrary dimension was first obtained by R.J. Adler
and a considerable part of the book (Adler 1981) is devoted to its derivation. However it
was eventually the paper of H.Tomita (Tomita 1990) which contained cxpressions for all
general integrals of mean curvature in arbitrary dimension. The following result by Tomita
was a milestone and lies at the very heart of modelling porous media with Minkowski
functionals:

Theorem 4.2.1. (explicit expressions for mean curvatures) Let Z(z),x € RY be
a stationary, isotropic and non-erratic Gaussian field. Then the specific mean curvatures
M, of the pore space cl(©°) = {z € R%|Z(x) < b} can be calculated as follows:

e DEED | N
[2 I'(5) = (6:6’"(75)( o)

where p is the covariance model associated with Z(x) and ¢ is the standard Gaussian
density.

T AONS
2r )

M,(0cl(6°)) = (

Proof. (Theorem 4.2.1) The involved proof of this result is covered in (Tomita 1990)
and references therein.

For our purposes we are interested in these expressions for dimensions d = 2 and d = 3.
Note that the volume is not covered by the set of mean curvatures, however it is of
course trivial to get an explicit expression for the specific volume #(0). For the other
Minkowski functionals recall that the connection between mean curvatures of a compact
C2 hypersurface § € R and Minkowski functionals is given by

MT(BS) =d- WT’+1(S)

(see equation 2.19 or (Santalé 2004, p.224) for a proof in the convex case.) To switch
between expressions for S and the closure of its complement recall Theorem 2.1.13 and
note M(S) = —M(cl(5°)). Now Theorem 4.2.1 together with thesc remarks permits
us to formulate the following corollaries summarizing Tomita’s results in two and three
dimensions. For the sake of completeness also the one-dimensional functionals are given:

Corollary 4.2.2. (1D-Minkowski functionals for Thresholded Gaussian Fields)
Let ©(z) = 1yz@)»sy o one-dimensional stationary, isotropic, non-erratic thresholded
Gaussian field. Then its specific Minkowski functionals can be expressed as follows:

5(0) = 1-(b). (4.4)

5(0) = @ - 6(8) - V=7 (0). (4.5)
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Corollary 4.2.3. (2D-Minkowski functionals for Thresholded Gaussian Fields)
Let ©(z) = 1{z@)>} a two-dimensional stationary, isotropic, non-erratic thresholded
Gaussian field. Then its specific Minkowski functionals can be expressed as follows:

3(O) = 1-(b). (4.6)
5(©) = @ 6(6) -V 70). (47
X(©O) = —5-b-9(5) F(0), 43)

Corollary 4.2.4. (3D-Minkowski functionals for Thresholded Gaussian Fields)
Let ©(z) = 1iz(z)>p @ three-dimensional stationary, isotropic, non-erratic thresholded
Gaussian field. Then its specific Minkowski functionals can be expressed as follows:

3(0) = 1-0®F). (4.9)
50) = —=-00)- V=70 (4.10)
H(©) = —b-g(bh)-p"(0), (4.11)
XO) = G 02 =1)-60) - (O, (@.12)

From these corollaries it becomes evident, that all the specific Minkowski-functionals are
determined if the threshold b and p”(0) are given. Therefore only very little information
about the covariance function p of the underlying field is incorporated in the Minkowski-
functionals, however, quite surprisingly it is the very same information for all of them.

4.3 Asymptotical Unbiasedness of O-M-Type-Estimators

As far as the modelling of a Thresholded Gaussian Field © is concerned, for a given random
closed set © we can only generate compact extracts 0" := W of its realizations 6 in an
observation window W and hence being able to compute Minkowski functionals for 8% is
enough. But as an additional restriction we can only simulate Thresholded Gaussian Fields
OF =©6WNTonagrid I'. It is then obvious that ©Y is a a random sct in RNW (because
WNT is compact) and that its realizations 8F := OF (w) arc clements of S (more precisely
of R). Therefore the Thresholded Gaussian Field on a grid Or fits in our framework and
specific Minkowski-functionals for its realizations exist and can be estimated by Ohser-
Miicklich estimators from subsections 2.3.1, 2.3.1. It is then interesting to ask whether
the specific Minkowski functionals for the estimated V;(Or) comverge to the V;(©) for the
continnous Thresholded Gaussian field. This question will be addressed in this section.
More precisely we will show that both the d = 2 and d = 3 means for the Ohser-Miicklich
estimators converge to the true theoretical values for the specific Minkowski functionals of
the continuous Thresholded Field Model as the lattice spacing h tends to 0. We assume
that estimation takes place on an equidistant finite cubic lattice T'(h) = h - Z¢ N W with
lattice spacing h. Recall that we denote the continuous model by O(z) = 1 (Z(z)>b}
where b is an arbitrary real threshold and Z(z) stands for a stationary and isotropic non-
erratic Gaussian Random Field with E [Z(z)] = 0, Var (Z(z)) = 1,Vz € R? and covariance
function p(h).



4.3. Asymptotical Unbiasedness of O-M-Type-Estimators 95

4.3.1 Integrals and Expansions

Throughout this and also the next section we will need to calculate a plethora of elementary
integrals involving the standard Gaussian probability density and cumulative distribution
function. Furthermore many of our theoretical results involve the explicit calculation of
multivariate Gaussian probabilities for correlations tending to one. We thus decided to
devote this subsection to the collection of all the necessary integrals and expansions we
will need later to establish our main results. We start out by a lemma giving explicit
expressions for some elementary integrals:

Lemma 4.3.1. (Some elementary integrals) Let ¢(z) and ®(z) denote the density
and cumulative distribution functions of A'(0,1). Then:

i). [®(z)dz =z D(z)+ ¢(x).

)- [z ¢(z)de = ~¢(z).

ili). [o-®(—z)dr =4 22 ®(—z)— L -z ¢(z) + 1 B(x).
)

1

1v).

J 202 (~2)dz = §-02- 0%(—x) —z-¢(x)-B(~2) + - B(2)-B(~2)+ §-¢2(2) + - D(a).

w -arctan b
v). Va£0,beR: [“d(a-z) @b -z)dz = Lutmﬂ

‘w—2-arctan %

vi). Va#0,beR: [° ¢(a-z) ®(b-z)ds =

4-7-|al

vit). [0 2 @(@) @ (&) do= £ - 5
ix). ffoo z? - ®(r)dr = 2.
x). Jo a?- ¢(z)dx =
xi). ff’oo 22 ¢(z)  ®(V3 1) de = ﬁ - %\/%

xit). [0 2% ¢(x) B(x)dz=1- L.

xiii). [0 2% @ (x)dz =3 — L.

xiv). [y @ ¢ (z)dr = L.

Proof. (vLemma 4.3.1) Apart from parts v) and vi) respectively, the proofs are trivial

applications of integration by parts and simple substitutions. Some of them, such as x),

are even obvious. The proof of v) follows for example from the exposition in (Kendall and
Stuart 1969), pg 351 and vi), of course, follows from v).

The main problem we face when it comes to find explicit expressions for Gaussian integrals
is the fact that for a,b, ¢, d pairwise different real constants, the following integral cannot
be explicitly calculated:

/qﬁ(am +b) - p(cx + d) da
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This problem will cause us much difficulty in the following and to bypass it some of our
proofs get considerably lengthier and less elegant. It is also one of the main reasons which
prevents a more direct derivation of Theorem 4.2.1 without the use of the machinery of
differential-geometry.

The following lemmata are statements about pairs, triples and quadruples of general
standard Gaussian random variables Z; in Euclidean spaces of arbitrary dimension d with
correlation function p(.). However, as our focus lies on stationary and isotropic Gaussian
fields we will adapt the formulation of these lemmata to this context.

Here is a first lemma about the probability that two Gaussian variables at small distance
take different values:

Lemma 4.3.2. (Gaussian Pairs) If Z(z),z € R? is a stationary and isotropic Gaussian
Field with covariance Function p(h) and x5, € R? is a point at distance h from the origin,
then for arbitrary threshold b € R

P[Z(0) > b, Z(zx) < b]

= V20(0)60)V T 0] — Y202 ~ D061~ ph)E + O (1 - o(h))?).

If p € C* then:

P[Z(0) > b, Z(zp) < b]

— . (i) .
= =V h - YL [(bz 102 + ”p,,(f)‘)”] K+ O,

Proof. (Lemma 4.3.2) We have that:

(5($3>)”N2((8)’(p(1h) )

for the conditional distribution we get Z(xp)|Z(0) ~ N(E[Z(z})|Z(0)], Var (Z(z1)|Z(0)))
with:

E(Z(x4)|Z(0) = 2] = p(h) - 20,
Var (Z(z3)|Z(0)) = 1-p?(h).

Hence introducing the new variable 7 = /1 — p(h) and performing the substitution zg =
b+u-T we can write:

P(Z(0) > b, Z(zn) <] = /b'°°¢(zo).¢,(%) i

= T-'/()Oogb(b-i—u-T)(I) (w) du,

2 — 712

::f@!T)
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where we use f(u,7) as a shortcut for the underbraced expression. The next step is to
expand f(u,7) around zero up to second order. The first and second derivative of f(u, 1)
are found to be:

2— 12

flu,m) = —(b+“7’)'“'¢(b+m).®(w)

¢ o[ gy
fu,7) = —u?-p(b+ur)d (T(Lﬂ{ﬁ)
- (b+ur)? u? - p(b+ur)® (f—%z_—”)
— ol ur) o (M )-(;2”13;)3;‘;%’)27“'}2-”_7—15 -

)
21712
+ ¢(b+u7)-¢(7(b+— ;‘“L)T;“)
(2-7)vV2— 12 (—3ur? + 3u) — (—ur® + Bur + 2b) - (—27) - $v2— 72

g 22
and thus:
F,0) = ¢(b)-@(%),
P = ==bouot) o (2o ()00 o
R & R OR T S B R RO R
3-v2- 3-v2-u

b o (25) 5 oo () oY

Therefore we can express P [Z(0) > b, Z(zp) < b] as:

P[Z(0) > b, Z(z3) < b] = 7¢(b) /w@ (\'/—"ﬁ> du

ol [ ()b on o)

b22—1.¢>(b) Owuz.é(:\/q—%) duh§£ _1).¢(b)/()mu.¢(%) du}
+ o).

+ 7

Working out the integrals using Lemma 4.3.1, parts 1), ii), iii) and ix) together with some
elementary substitutions we conclude:
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P[Z(0) > b, Z(zh) < b] = 76(b)p(0) V2

w2 |oo) (5 - 3) | +7° [ - DewwvE (3 - 2) ] + ot

ﬁ(lﬁ —1

= V26(0)p(b)7 = 35 (6 = 1)e(0)¢(b)° + O(r"),

which was to be established. The second equation immediately follows from cxpanding
— p(h) and (1 — p(h))3/2. O

The next lemma is about the probability that standard Gaussian triples which span small
similar triangles take different values:

Lemma 4.3.3. (Gaussian triples) If Z(z),z € R? is a (non-erratic) stationary and
isotropic Gaussian Field with covariance function p(h) and the points x1,72,73 form a
triangle € R? such that:

|$1—~.’L‘2’:h, I:IJ3—.’L‘1|=(22-h, |.’L‘3—.’B2|:(33-h,

where c3,c3 € RY are positive constants respecting the triangle inequality cs < 1+ co, then
for an arbitrary threshold b € R we have:

P [Z(Ll‘l) > b,Z(.’L‘Q) b,Z :L'3 ]

' o0 U 0 1 l-’—C%—C%
V'1—p(h)-$(b) - Jo o, ( \1/? ) 0 ) , ( L+ei—cd 2e2 ):I du

O“

('2\/5 2co 1
1 [ U (-1+c3—c2)-u
+(1-p / (__) ~2 3‘ d
( { V2 Jo ? V2 (\/2 (2c5(1+c3) — (3 —1)2 —c3) ¢
A1-d—-d)-u
Lo d
V2 Jo («m 230+ - G- -
00 ‘ 1 1+ft2—c3 4
-/ u- Py ( _ ‘{LZ ) ; ( 8 ) ; ( TITIE B )} du} + O((1 - p(h))2).
0 c2v/2 _Qﬁz_a 1

Remark 4.3.4. Note that the correlation term asymptotically vanishes exactly if the three

points x1,22, 23 span a rectangular triangle. Because for the OM-estimators (defined in

section 2.3) considered later only triples forming rectangular triangles must be taken into

account, the involved calculations are easy enough to obtain explicit analytical results,

because the two-dimensional cumulative distribution function ®5(.) decouples. The only

exception being the triangular contributions to the estimator of the specific integral of

mean curvature given in equation 2.32. However it turns out later, that also this case is |
still analytically tractable. We collect these two especially important cases in the following

corollary:

Corollary 4.3.5. (Special Triangles) Consider the situation of Lemma 4.3.3. Set |

= /1~ p(h). Then:
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i). For ¢} =1+ c% we have:

P[Z(z1) 2 b, Z(w2) < b, Z(z3) < b =7 - (b) - /Om@ (—%) P (_c;j/i) du

+Tg'b'¢(b){%/ow¢( 7 ) (\/2 @2 _iucg, —2 g)) e
2 [o(z2) (S ffi;*%))d“

“fowel) # (o) e

i) For ¢} = c2 = 1 we have:

+b- p(b) - [ﬁ../()ooqb(%)-@(P —gu) du
L) (O

Proof. (Corollary 4.3.5) obvious.

[
Sk
—
TN
oo
S~——’
TN
[V =

= bal—

)

B[t
[

Proof. (Lemma 4.3.3)
We define the variables p1 := p(h), pa := p(ca - k), p3 := p(cs - h) and 7 = /1 — p(h).
With this notation, we obviously have p; — 1,7 € {1,2,3} as h | 0.

Z(xy) 0 1 p1 po

Z(z2) | ~N O, m 1 p3 :
Z(z3) 0 p2 p3 1

In the following we are going to expand the triple probability on the left hand side in the

statement of Lemma 4.3.3 as a function of 7. The involved calculations are lengthy and

tedious but straightforward applications of Taylor’s theorem. We will therefore suppress
the details of these calculations to a large degree.

Expanding ps and ps3 as functions of 7 we find:

(i) 2 -
2 +P (0)e3 (‘32 1) 7_4_‘_0(7.6).

= 1~
& N 60" (0)?
(M2 (2 — 1
5 P cs(c
ps = 1—-c& -2+ (6/))”?(())3 ). ™+ 0.

Furthermore by conditioning onto Z(z,;) we can write:

P[Z(z;,) > b,Z(CL‘Q) <b,Z(zx3) <b]= /boo &(z1)- P [Z(:L'z) < b,Z(x3) < b|z1] dz.
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Next we note for the conditional distribution Z(z3), Z(x3)|Z(z1):

Z(22), Z(x3)|Z (1) ~ N (( P121 ) ’ ( 1—pf p3— P12102 )) .

p221 pz—mp2  1—p;
If we now perform the change of variables z; = b+ u - 7, we are left with the following
expression for P [Z(x1) > b, Z(z2) < b, Z(x3) < b]:

P[Z(.L] > b Z(:L‘z) < b Z ’I‘d) < b]
b p1(b+ ur) 1-pl  p3—pip2
= b ; d
- / Potu-7) ((b) (P2 b+m’)) (P3_P1P2 1-p} ¢

o~ b—p1(b+ur) 0 1 p3—pip2
/1— 2 /l_ 2 /l_ 2
=T7T:* / ¢(b + u - T) " (:D ( ( b—PZ(b‘fl‘)bT) ] ( 0 ) ’ ( 3—p102 pll < ) ) d'u:.
0 4@ 1-p3/1-p2

= fEL,T)
It remains to perform a Taylor expansion of the integrand f(u,7) up to at least first order.
To do this we need the following expansions in 7:

b— p1(b+ur) u b

b = _— D — — — 2 + O
() T =t T g o)
b — pa(b+ ur) u | be (1 = 3)p™)(0) + 90" (0)*cF) u 3
b: = = +—=-7+ T+ 0 ’
2(7) V1-p2 IV AR 12v/2p"(0)2c, " 7
' 3 — P1P2 1+ —c 2
p(r) = = = + O(7%). (4.13)
V1= pi/1—p} 2¢3

Next we calculate the derivative of f(u,7). By calculating the partial derivatives with
respect to by(7),b2(7), p(7) and using the expansions 4.25 the chain rule gives (after a
couple of simple algebraic manipulations with the Gaussian density):

2= 011w (5 ) ()]

+¢(b+m){¢<b1(f)>-¢> (bZ( i) +0(r)

2(7-

o (B o) | (ber
+¢(b2(7'))@( o ) (%2 0<>)+O(>}

This shows that we will be in need for two further expansions in the following:

ba(r) — p(r)br(r)  _ (E—cE—1)u
Vi=2n) V2RE[T+B) - (e — 1) - )
b (c3+c%—1) . 2
Y edn D) oo d o)
bi(r) = p(r)ba(r)  _ 1-c—c2) u
1 — p2(7) 2/202E1 + 3) — (c3 — 1)2 — )

b-cz-(l—cg+c§)

- V2231 +cf) — (c3 — 1)2 = cd) T4+ O(r7). (4.14)
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Hence we conclude:

l—l—c?z—c?3
J0) = o) )(3)( vaag )}
2cy
©of B 1w (-1+c2—cd)-u »
./0 6T(u,0)du N b¢(b){ 2/0 <Z)(\/_)(I)(\/Q (2c3(1 +c2) — (c§—1)2—03))d
3 oo u 1-c2—c2) u
+ 2/0 ¢(C ) (02\/2 (2c3(1+¢3) - (03”1)2“03)) o

o0 — Licd-d
Lool2) 0 ()
0 T3 Ll | 1

2o

Recalling that 7 = /1 — p(h) establishes the Lemma. |

The next lemma is about a probability for standard Gaussian quadruples. This lemma
will simplify the tasks we face in later sections considerably because it will allow us to
identify a class of lattice cells with a special vertex configuration as negligible:

Lemma 4.3.6. (Negligible configurations) Let Zg = Z(x¢),Z, = Z(z1),Z2 =
Z(w2), Z3 := Z(x3) be standard Gaussian variables of a stationary and isotropic Gaussian
Field with covariance function p(.) such that zg,z1 := zg + hey,z2 = x¢ + hey, x3 :=
Zo + he1 + hey span a square with side length k. Then it holds:

P|Zy>b,Z) <b,Zy <b,Z3 > b = O(h'), ¥beR.

Proof. (Lemma 4.3.6) To start out we introduce the following new set of random vari-
ables Y7, Y5, Ya:

VAR Zy — 7 Z3— 241 — Za+ Z
Y; = 1h o Y, — 2h 0 Y = 23 1}12 2 0

which are discrete approximations of the first and one of the second directional derivatives.
We then have (Zp, Y1, Y2,Y3) ~ N (0,X) with and

1 p(hlz—l pghh!—l H—p(\/_h) 2p(h)
P(hh—l 2(1-p(h) 1+p(\/§h)—2p(h) H‘P(\/_h) ~2p(h)
X= p(h)—1 1+ (\/1;1) —2p(h Z!l—g!h” _9 1+p( \/J}L!-Zp!h}

h
l+P(\/5}h2)—2ﬂ£h2 21+P(\/_ h)—2p(h) 21+p(\/_ n=2p(h) 4 1+p(v2 }?4) —2p(h)

Then we can write:
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P[Z0 > b,Z1 < b,Z5 < b, Z3 > b]

b_hZO’Y2 < b— 2y

= > <
P[Zo_b’Yl_ h ’ = h2

00 b—’ZQ b—Zg
/ / h / h
b —00 o0

X PlZy € dz, Y1 € dy1,Ys € dyo]

e[

v, > 2= %0~ hMi +Y2)]

b—Zy—h(Y1 +Y3)
W2

Zo=z20,Y1 =Yy, Y2 = il/‘z]

PlYs>v+w—-u

Zo=b+uh? Y = —vh, Yy = mwh]

b+ uh?
X ¢ —vh ,0,X_44| dwdvdu, (4.15)
—wh
where we have substituted Zy := b+ uh?, Y1 = —vh, Yo = —wh and ¥_44 emerges from

i and ¥ by deleting the fourth row and column respectively.

The conditional distribution Y3|Zo, Y1, Y is N ([, i), where with some tedious calculations
£t and 3 can be found to be:

1 1—2p(h) + p(V2h) 2
R AR [b(p(ﬁh,)—1)+h ((’U—I-w)(l—i-p(h) — (1 — p(V2h)) )]

) (0) (0" (0)b + 2(v + w))

= BEL0) B2+ O(n").
L - p(VE) - (VR — 42 A
5w 1= 202(R) + p(v/2h) =g Tom)

Thus in first order the expression of equation 4.15 boils down to:

PlZ0>b,71 <b,Zy<b Z3>0b ~

4 ' 9 [ [ [ B \/§(U+w—u) . 5
d(b) - ¢(0) '/0 [L /u [1 q)(—p(“’)(O) )} dw dv du + O(h?).

The integrals in the last expression are finite. They can be related to the third absolute
moment of the standard normal. If Z ~ A/(0, 1) by substituting w’ := v+w —u we obtain:

FLL o (5 e

LTI Lo (| oo [ e (585 o
- [T o ()| - 3 (250 ) [ o
-5 (”(WQ(O)) B (7] < o

and this concludes the proof. a
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The last lemma we prove here is about a probability concerning a quadruple Z,, Zy, Z3, Z,
of standard Gaussian variables on the real line consisting of two collapsing pairs (Z1, Z2)
and (Z3, Z4) at a fixed distance x:

Lemma 4.3.7. (Collapsing Gaussian pairs at fizxed distance) Let (Zy, Zo, Z3, Z4) be
a quadruple of standard Gaussian random variables with the following covariance structure:

A 0 1 p1 p3s pa

z. 11

(N Y: 0 P P5 D6 ’
Z3 0 ps ps 1 po

Zy 0 pPs ps p2 1

such that py,pa — 1, ps fized and p4, ps,pe — p3 for T = /T —p1 — 0 in the following
way:

1—py = cr?+0(h
pi = p3+ et +O(r?)
ps = p3+csT+ O(T?)
pe = p3+(ca+cs)r+0O(r?)
P6 = ps —pat+p3s = ceT +o(T7). (4.16)

Then:

P[Zl 2b7Z2§b7Z32b3Z4Sb]N

s [ v (52) o (B2 1 () s ()]

where:

C4 212 - Cs 212
= 2b|—+=(1-— — - =05/,
m [2 + 211( ,03)] + wo [2 21165]
22
= Yoy — =12,
3 22 Bl
5 4(1 — p3) —2¢2  —2c4p3 — c5C8
ot 2
—2(74p3 — C5Cq 2(32 — (32 — %6-

Proof. (Lemma 4.3.7) We introduce the following set of new variables (Wy,..., Wy):

VARWA
Wl:Z1+Z2a W?,: 2 ]7

T

_ 2y — 23

T

Wy = Z3+ Z4, Wy

Then with the assumptions of equation-system 4.16 we find for the distribution of
(Wr,...,Wy):
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Wi 0 4+ O(r?) 0 4dp3 + O(1)  2¢c4 + O(7)

Wa | N 0 0 2+0(1%) 2c5+0(1)  cs+0(1)

W3 0 4p3+O(1) 2c5+0(1) 4+ 0(%) 0 ’
Wy 0 2c4 +O(1) ¢+ o(1) 0 2¢5 + O(1?)

Furthermore we have the following set equivalence:

{Zl 2b,22§byZSZbaZ4§b}:
{W2§0,2b+TW2§W1 SQb—TWg,W4$0,2b+TW4SW3§2b—TW4}.

By conditioning on the independent pair Wi, Wy we calculate:

Z1>bZQ<bZ‘3>bZ4<b] (417)
/ (wz>/% TwzczS(M)P[Zb TWy < W3 < 2b+ 7Wy, Wy < 0wy, wa] dwidw
— 4 3 TW4, 4 1, W2 1 2

2\/7 2b+Twz 2

If we now denote the conditional distribution (W3, Wy|Wy, Ws) as

W Waton ) [ (G0 B ) )

and consider the limit 7 — 0 in 4.17 we find that both the limits & := ¥(0) and 3 := 3(0)
exist and thus:

PlZy>b,Zy <b,Z3 > b,Zy < b] ~ (4.18)
9 0 (ﬂ) 0 2b(1 — ,331) — ﬁgg’wz 0 ]
\/§¢(b)7— /_00¢' \/§ w2 \/_Oo ’LU4¢2 l:( Wy — 2b641 _ ’342“}2 ) ) ( 0 ) §Z:l dwydws,

where with some standard calculations one finds f31 = p3, B2 = ¢, B = %, B = £
and :

> 4(1 — p%) — 2(152) —204[)3 — C5Cq
— 2 .
—264p3 — C5C¢ 202 - C?I had %

Because the first entry of ¢4(.) is independent of wy, the inner integral in equation 4.18
can be worked out explicitly. By decomposing ¢(.) as

) 26(1 — (331) — Paows 0 .
# K wy — 2841 — fayws )(0 ) ’ZJ =

¢ (2b(1 — Ba1) — Paow2,0,%11) - ¢ (’w4 — 2b(341 — Baywy, ; (26(1 — Ba1) — Baws) , X — g—u)

and thus by abbreviating m = 2b (ﬂ41 + g2(1 - ﬁsl)) + wo ([342 - %}’fﬂsz) and further-

2
more s = 4/ Xgg — %ﬁ equation 4.18 can be transformed into:
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P2y >b 2, <b 23 >b 2y <~

otort o) e (M) i [
= vaetr [ o () e (PUBRE ) o [ (45) o0 (7)o

which is what we wanted to show. O

1
m) — d’UJ4 d’wg
)

4.3.2 Two Dimensional Convergence Results

First of all we state and prove the 2D-version of the convergence results. The specific
Minkowski functionals arising for d = 2 are the porosity or volume fraction o, the specific
surface area 5 and the specific Euler-characteristic x.

Theorem 4.3.8. (Asymptotical Unbiasedness of OM-Estimators (2D-Version))
Let ©(x) = liz()»s} @ two-dimensional stationary, isotropic, non-erratic Thresholded
Gaussian Field. Then the mean Ohser-Micklich estimates for the specific Minkowski func-
tionals on o finite grid T'(h) converge to the continuous limit, ie. the rates of the specific
Minkowski-functionals in the continuous setting, if we let the grid-spacing h tend to zero:

i) limpo E[5(6r(h)] = 9(6) =1 - &(b).
B T B (600)] — 5(©) — V800 7O
i) limayo B [X(6r(h))] = X(8) = —3; - b- ¢(b) - "(0),
where Op(h) = {z € T'(h)|O(x) = 1} denotes the binary approzimation of the continuous

observed pore phase 8 NW,0 = {x € R?|O(z) = 1} and ¢(z) and ®(x) denote the density
and cumulative distribution function of the standard-Normal-distribution.

The main step towards establishing Theorem 4.3.8, namely the proof of part iii), is provided
by Lemma 4.3.6 and Corollary 4.3.5.

Proof. (Theorem 4.3.8)
ad i). Because counting grid points and counting lattice squares is not quite the same we

need some more notation. Let’s denote I'*(h) = T'(h) \ {lower and right boundary of W}.
Part i) is then a trivial observation because of: :

E[o(6r(h)] =

1
Zher (2¢ + 1)] g : Z Lizoecor(n)}

=0 zo€l(h)
= P [330 € 0r(h)] = P[Z(xo) 2 b] =1 — ©(b).

ad ii). The proof of asymptotical unbiasedness for the OM-specific-surface estimator is
postponed to section 4.4 where we will prove asymptotical unbiasedness for a more general.
class of surface estimators. It turns out that the OM-surface-estimator considercd here is
a member of this class and hence the proof directly follows from applying Theorem 4.4.4
below.
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ad iii). The proof of this part is the most involved one because four-dimensional Gaussian
probabilities must be calculated. In fact we have because of the isotropy property:

E[)ﬂ—E[ T (Zher Zhap(w 2) +2- (}Lgr(6)+hgr(9)))]

i=1

F-’to (h)

+2-P [{To,Ts} C 9{‘,{1’1,:1)2} - 91(;] +2- P[{.’El,l'z} C 91“,{.’170,.’1?3} C Q]Cj‘])

1
Y (P[xo € O,z C OF] — P [zg C Op,x0 € OF] + P [{zo0, 23} C Or, {w1, 22} C wa])

JQ(P[Z0>() Zy <bZy<b,Z3<b—PlZy<b,Z >bZy >b2352>bl+
P[Z()zb,Z] <b,Z2<b,Z32b]),

where we have slightly abused the notation by sctting z§ = {xq, z1,z2, 23} \ {zi}.

Please note that therc are only two different types of four-dimensional Gaussian proba-
bilities involved here. In fact, due to X ~ N(u,02) = —X 2 X and Cov (X,Y) =
Cov (—X, —Y) which of course holds generally, we have:

P(Zo<b,7Z1>b,Zy>bZ3>b =P[Zy > —b,Z1 < —b, Zy < —b, Z5 < —b).

Because of high positive correlation of Zj,...,Z3 when the lattice spacing h is small,
we expect the term P[Zy > b, Zy < b,Zy < b,Z3 > b] to be of smaller magnitude than
P[Zy > b,Zy < b,Zy < b, Z3 < b]. From Lemma 4.3.6 we see that this intuition is true. In
fact, the term P [Zy > b, Z) < b, Z5 < b, Z3 > b] is even negligible for our purposes. This is
somehow reassuring that the ambiguous vertex configurations won’t have a considerable
influence on the characteristic as long as the lattice spacing is small enough to discern
between constrictions of a single and the prescnce of two different connected components.
A further benefit is of course that the lemma considerably simplifies our computational
task. We note that what Lemma 4.3.6 provides is even more than we need. In fact a
decay of order o(h?) would already suffice for our purposes.

. a 1
%%E[)’(’] = h2(P[ZQ>b Zy < b, Zz(b] [Z(_)zb,Zl <b,Zy <bZ3> bl —

PlZy> -b,Z1 < —b,Zy < —b+P[Zy> —b 7y < —b,Zy < —b,Z3 > —b] +

P[Zy 2 b,2Z, <b,Z2<b,Z32b])
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= lhl,?(}hl (P[Z0>b Zy < b, Zy <b] P[Zoz—b,zl <—b,ZQ<—b]+0(h3))

1
= %?&h—(P[ZO>bZ1<bZ2<b] P[Z()Z—b,Zl<—b,ZQ<—b]), (4.19)

Hence it remains to evaluate P[Zy > b, Z1 < b, Z3 < b] for arbitrary b € R. To calculate
this probability we may directly apply the corollary to Lemma 4.3.3 with ¢z = 1 and

c3 = v/2. Recalling 7 = /1 — p(h) we learn from corollary 4.3.5, part i):

P[Zozb,Z1<bZ2<b]

e () o)
—ﬁ-¢wxému-@2(—é%)d4-+0@ﬂ)

From equation 4.19 it becomes obvious that we only need to consider the 72-term in
the above expression because the terms which are even functions of b drop by taking the
difference in equation 4.19. The remaining integrals in the 72-term can be calculated using
Lemma 4.3.1, parts iv) and v), to arrive at:

ImE [x] = limi 4¢(b)'b._w}___2.b.¢(b).(l_i)].7-2+(9(7'3)

hl0 hl0 h? V2 42 4 2
(" (0)
- _ b b 4.20
RS O N (4:20)
where we have used the definition of 7 in the last step. This concludes the proof. a

4.3.3 Three Dimensional Convergence Results

We now turn our attention to the three-dimensional situation. The main goal here is
to prove the 3D-analogon to Theorem 4.3.8 for the 3D-Ohser-Miicklich estimators from
subsection 2.3.2. The specific Minkowski-functionals in three dimensions are the porosity
(or specific volume) @, the specific surface area 5, the specific the integral of mean
curvature M and again the Euler-characteristic .

Theorem 4.3.9. (Asymptotical Unbiasedness of OM-Estimators (3D-Version))
Let ©(z) = 1iz(z)>py o three-dimensional stationary and isotropic Thresholded Gaussian
Field. Then the mean Ohser-Micklich estimates for the specific Minkowski functionals on
a finite grid T'(h) converge to the continuous limnit, ie. the rates of the specific Minkowski-
functionals in the continuous setting, if we let the grid-spacing h tend to zero.

G| ~‘q

@)_1—@(1;)
(0) = - ¢(b) - v/—p"(0).
=M(0) b o(b) - p"(0),

i) limp o E [{:)(Hr(h))]
i1) limp o E [g(al(h))]

i) limp o E []\ZI or(h))

I
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where Op(h) = {z € T'(h)|O(z) = 1} denotes the binary approzimation of the continuous
observed pore phase 6 N W,0 = {z € R?|O(z) = 1} and ¢(x) and ®(x) denote the density
and cumulative distribution function of the Standard-Normal-distribution.

Also in three dimensions the covariance function p(h) of the underlying Gaussian field
enters the formulac only through the second derivative at zero. A further interesting
observation is that the 3D-Euler-characteristic changes sign twice at thresholds b = +1
(see below).

Remark 4.3.10. Of course therc is also a formula for the 3D-Euler-characteristic for
Thresholded Gaussian Fields ©. In the book of Adler (Adler 1981) the following expression
for the continuous limit from corollary 4.2.4 is proved:

X(6) = G (=160 (<" O)},

Because under the conditions of Theorem 4.1.5 the realizations of a Thresholded Gaussian
Field are C2-manifolds, the curvature at the boundary points within W is always defined
and finite and thus the realizations should be morphologically open and closed almost
surely. But then summation and limit in the Hadwiger definition of the Euler-characteristic
(definition 2.1.12) may be exchanged. Thus we conjecture that in analogy to Theorems
4.3.8 and 4.3.9 we also have asymptotical unbiasedness for the 3D-Euler-characteristic:

- 1 2 1 3
B [X] Or() = X(O) = g - (P = 1) - 6(0) - (=" (@)%, (421)

but although having invested considerable effort and time, we have not been able to prove
equation 4.21 by direct calculation so far. If working with the usual 6-adjacency, the main
difficulty is that in order to calculate E [;?] explicitly, we need to determine Gaussian
probabilities involving all the eight dependent jointly-Gaussian variates corresponding to
the eight vertices of the typical cubic lattice cell. Because the Euler-characteristic is
dimensionless, the involved probabilities have to be expanded at least up to order O(h3).
However, taking into account Lemma 4.3.6 of the 256 binary vertex-configurations we
may neglect those that contain a either a cell-face or a rectangle bounded by two cell-face-
edges and two cell-face-diagonals whose 4 vertices are of alternating colour (eg. clockwise
black-white-black-white). Further exploiting symmetries and complementarities only 3 of
the 256 vertex-configurations need to be considered to calculate the Euler-characteristic,
namely:

P(Z02b,2  <b,....Z<b],PlZo>b,.... 20 > b,Z5<b,...,2; <],
P(Z0>b,..., 202> b,Z3<b,Z4>b,Z5<b,... 27 <b].

Unfortunately, this does not remove the difficulty of calculating the probabilities for eight-
tuples. Not even with the assumption of linearity for the underlying Gaussian field, ie.

gy T
Z(z) = Z(0) + [agg) (0)] .z for 7 € RY,

we were able to prove equation 4.21. It turned out that this considerable simplification
is not even feasible in the two-dimensional situation in the sense that with the linear
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approximation we cannot reproduce the result of the 2D-Theorem 4.3.8, part iii), and
there is no reason to believe that the linear approximation is accurate enough for d = 3 if
it already fails for d = 2.

Another approach we performed used the fact that the Euler-characteristic of a set does not
depend on the edge-graph on which it is calculated. However as already mentioned in the
discussion of the Boolean model its estimation on a discrete lattice may be biased. Instead
of using the 6-adjacency induced by an ordinary cubic lattice one might consider other
more complicated graphs defined by different adjacencies and it might well be that the
configurations needed to calculate the Euler characteristic for other adjacencies might be
better analytically tractable. Of course one must be aware that different adjacencies might
well lead to different biases. However we were able to set up a small computer algorithm to
show that the expectations of the OM-estimator for the specific Euler-characteristic with
respect to all the adjacencies considered in (Ohser et al. 2003) only differ in contributions
that stem from negligible configurations in the sensc of Lemma 4.3.6. This means that
the differences of the biases for the different adjacencies are of order @(h*). Therefore the
approach to consider different adjacencies to prove equation 4.21 is well-justified. Using
the 14.1-adjacency defined in (Ohser et al. 2003) which decomposes three-dimensional
space into tetrahedrons we were able to show that:

Elx] = hi-d'(P[Zozb,Zl <b,Z3<b,Z; <b+P[Zy>b,Zy > b,Zg > b, Zy < b
FP[Zozb)ZI Sb7Z5Zb)Z'TSb]_P[Z()zbyZQEbyZ'}567Z7Sb]

—P[Zy 20,22 <b,Z6 > b,Z7 <b] —P[Zy > b, Zy > b, Z5 < b, Z7 < b)),

where Zy,...,Z7 are the standard Gaussian variates associated with the vertices of a
lattice cube numbered according to the nomenclature of equation 2.27. Hence we only
need to consider quadruple-probabilities. Explicit calculation of the involved integrals,
however, remains unfeasible.

The main part of the proof of Theorem 4.3.9 to which we now proceed can again be derived
from the fundamental Lemma, 4.3.3. '

Proof. (Theorem 4.3.9) :
ad i). Again the proof for the specific-volume estimator & is trivial and can be copied
from the 2D-version:

E[i(@c()] = E

127

1 . 1 3

% . E hop (21 + 1)] =K _7;.(; . Lizocon(n)}
i=0 xo€l™* (h)

= P [CBQ € Hp(h)] =P [Z(.’Eo) = b] =1- ‘I)(b),
where I'*(h) = I'(h) \ {lower and right boundary of W} is the boundary-reduced lattice.

ad ii). The proof for the specific surface estimator can be postponed to section 4.4
where an analogous result will be proved (Theorem 4.4.4) for a more general class of
surface cstimators of which also the 3D-OM-surface estimator defined in equation 2.29 is
a member.
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ad iii'). The main part of the proof is thus devoted to the OM-estimator of the specific
integral of mean curvature M. For its expectation we have:

1]3?8' E [M(er‘(h))] = 27‘- ’ 1’3?(} (E [Pufacesl + E [Pudiagonals] + E [Putrig]) * (4'22)

We can now have a look at the three types of contributions separately. We can use the
familiar isotropy argument. The expected directional contributions E[P,] of all 2 - 3 cell
faces are thus the same. With lemma 4.3.6 they can be calculated as:

_6'(20

E[P, —7-(P[Z02b,Z1 <b,Zy <b,Z3<b|—P[Zy>b,Z1>b,Zs > b, Z3 < b))

faces]
6-c
- _H]FL—E_O . (P[ZO > b,Zl < b,Z2 << b] —P[Zo > —b,Z1 < —b,ZQ < —b]+0(h3)).

Similarly for the 2 -6 mean diagonal rectangle contributions we get:

E [Pu(liﬂg(.wllals] -
12.
= :2 (P[Z02b,Zy <b,Zg <b,Zr <b|—P[Zo>b,71 > b,7 > b, Zr < b]) =
(P2 2b,Z1 <b,Zg <b|—P|[Zy > —b,Zy < —b,Zg < —b] + o(h®)) .
WS (P[Zo 26,21 6 <b—P[Z 1 6 |+ o(h?))
And finally the mean contributions of the 2 - 4 triangle planes are:
8-
E [Py] = Bk (P[Z0 26,25 <b,Z6 <b] —P[Zy > b,Z5 > b, Zg < B]) .

The contributions E [P, | of the cell faces have already been calculated in the proof of
Theorem 4.3.8, part iii). From equations 4.19 and 4.20 we learn:

B(Pupa] = 6o+ (5= b-6(8) - '(0)) + O

For the rectangular contributions E [Py‘,iagmals] we can apply Corollary 4.3.5, part i), with

¢ =+v2and c5 = V3 (Note that the ¢; of Lemma 4.3.3 and the Voronoi-coefficients ¢; in
the contributions above are different!) to find:

P[ZOZILZl Sb,ZﬁSb]:

r.¢(b)/0°°<1><—%) - (~5) du+o(t)-b- [% (/()OO@(—g) -¢(%) du
Wi [To (- )0 (5) a)- [Two(-25) e (-E) a] o),

Again by taking differences only the terms which are odd-functions in b survive, hence we
need only consider the O(72)-term. The integrals can be solved using Lemma 4.3.1, parts
v). and vii.). This leads to:
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12 ¢ 2 -2 V2 w42 arctanv?2
E [Pudiagol]ﬂlﬁ] = s ' b : ¢(b) s 5
V2 - h2 V2 \ 4 2 o

7 — 2. arctan v/2 1 1 1
2. —92. 2 - —arct -
+V2 2m ) (2 2T are an\/_ V2.7

12/ 1,
=20 (000 0)) + O,

)] 2 O(T3).

where we have used 7 = /1 — p(h) in the last step.

It remains to consider the triangular contributions E [’P,,mg]. The triangle spanned by

Zy, Z1 and Zg is cquilateral with side-length v/2. Therefore we may apply corollary 4.3.5,
part ii), and the rescaled lattice spacing h = v/2 - h. Consequently we usc 4.3.5, part ii),

for 7(h) := 1/1 — p(h) to arrive at:

P[ZOZb,Zg,gb,Zggb]:%-qS(b)-/ooo@z [( )} du+b- ¢(b) -

I
SIS
S——
TN
oo
N—”
N
B[ =

Ll 1

o [e(Gp) o () =
*/Owu'%[( :g)(m(} 1)] d“}'*“@(*?’)- (423

Because the triangle (Zy, Zs,Zg) is not rectangular, the two-dimensional Gaussian
distribution-functions do not decouple which makes the integration a bit more tedious.
By the usual symmetry argument when taking differences we only need to consider the
=2

T-term.

As a next step we solve the last integral involving the non-factorizing two-dimensional
Gaussian distribution function ®4(.) by a transformation to independent variables. To do
this consider the Gaussian random variables Xy, X3 with Var (X)) = Var (X3) = 1 and

Cov (X1,Xs) = % and let us introduce the pair of transformed Gaussian variables W, W5
as:

Wi = X + Xo, Wy = X — X

Then we obviously have:

Var (W) = 3, Var (W3) = 1, Cov (W1, W3) =0,
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hence Wy and W, are independent. Thus:

©e U U
PlXi<—— X< ——| d
fo [1‘ vz e \/5] )
L [ o ()
= — u- | —= | - ¢(we) dwy dwy du
3Jo —00 V2utw \/?: ( )

= L/()0()/__\/5Lbfzt-gzb(%) [1—2 <I>(\/§-u—|—'w1)] dw; du

L o) b e
1 0 0 (U)o sz (%) otnan
Too () oo [ ()

‘%/J(%) ) dun + = \/'/ mo () o

(4.24)

where we have used Lemma 4.3.1, parts i),ii),v),xi) and x) and some simple substitution
and integration by parts-arguments.

Combining equations 4.23 and 4.24 and a further application of Lemma 4.3.1, part v),
takes us to:

E [Pa.] = jg-.czz.(b.qs() [2 va. ﬁ_z.(%_g_%) ~2+O(%3))
= \/§ h2 (b ¢(b) - on T +O(T3)) = B ( b- o(b) o 5 h +O(h3))
8- ¢y V3

- b (—E;-b-qs(b) - 0"(0) +0<h)) -

Finally plugging the three contributions into equation 4.22 gives:

lm B 7] = 2 [6 <o (—517; 560 0)) + 22 (b 60)-0)

8- cg \/§
= —b-¢(b)-p"(0)- (6-co+12-c3+8-cg) = —b- p(b) - p"(0),

where we have used the fact that the Voronoi-coefficients add up to one. This proves the
theorem. O
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4.3.4 Bias of the 2D-Euler-Characteristic Estimator

By expanding the probability P [Z(z1) > b, Z(22) < b, Z(23) < b] further than only to first
order in 7 = /1 — p(h) as given in Lemma 4.3.3, one can find expressions for the biases
of the OM-type estimators. Because by the symmetry arguments applied above the ex-
pressions for the expected values of these estimators only consist of terms which are odd
functions of the threshold b, for the Euler-characteristic an expansion to at least fourth
order in 7 is needed. This involves the calculation of the third derivative of the function
f(u,7) in the proof of Lemma 4.3.3. The resulting calculations are extremely tedious and
the Gaussian integrals can no longer be solved in general. However, for the 2D-Euler
characteristic considerable simplifications can be made. This is because the decoupling
effect leads to integrals involving only products of one-dimensional Gaussian distribution
and density functions and polynomials which can still be solved analytically. Hence with
some effort an explicit expression for the bias can be obtained. This is the content of the
following theorem.

Theorem 4.3.11. (Bias of the 2D-OM-estimator for Euler- characteristic) Let
O(z) = 1z(z)>p a two-dimensional stationary, isotropic, non-erratic Thresholded Gaussian
Field. Then the bias of the two-dimensional Ohser-Mucklich estimator for the specific
Euler- characteristic given in equation 2.26 when used on a finite grid I'(h) with lattice
spacing h is as follows:

2. (4b% — 18) + p)(0) - (6 + m)

E[X(©)] -x=~¢() b O 967 k2 4 O(hY).

Proof. (Theorem 4.3.11) Because the calculations involved here could casily fill a
dozen pages without offering the reader some deeper insight, we content ourselves with
giving a few intermediate results. We use the notation introduced in the proof of Lemma
4.3.3. There one can easily see that the second derivative of f(u,7) cvaluated in 7 =0 is
an even function in b and thus does not contribute to the bias. Hence contributions to
the bias come from terms up to order O(7%). '

Expanding the expressions defined in equation-systems 4.25 and 4.14 a bit further we find:

b 3 b
() = \/_ N, - +F 7+ 0,
ba(r) — v b ((1 — c3)p{™)(0) + 90" (0)%c3) u 2
"ot 12v27 (07
. ( nliv) 3,7(0)262 — piv) 2 )
+bCz (p'"(0) + 3p"(0)%c5 — p*(0)c3) O,
12\/§p//(0)2
_ 1+4-4 1 (i) 4.2 od 202

p(r) = 5, + 547 (0)2c3 ["P (0) - (1 4¢3 +¢5 — 265 + c5(c3 — 2))

0P (1L d-d-de+d)] -+ o),

and:
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ba(1) — p(7)b1(7) _ ((’% - szz —1) - b- (Cz + L; -1) o
1—p2(7') V2221 +c}) — (C';"'l ) \/2 21+c3)—(e3—1)2=cd)

{ ~4p) (0)c[—2c4 + (c} ~ 1)* + (1 + 3)]

12v20"(0)2263(1 + c3) — (G — 1)2 — cf

+ 3p"(0)%[c§ — 3c3(1 + cg) + (2 —1)*(3c3 — 1) — 3(— ?:+ 2c2 + c3)] } w1+ O,
12v2p7(0)2[2c3(1 + ¢§) — (i3 — 1)2 — 12
bi(r) = p(r)ba(7) _ (1-cf—c})-u b-ep (1—(’2‘“’3)

1— p?(r) 24/2(2c5(1 + %) — (c3 — 1)2 — ) \/2 (2c3(1 + ¢2) — (c3 — 1)2 —cg)-T
+ {P(iv)(o)[cg — (c8 = 1) + c§(3c3 — 4) + ¢5(6 + 3¢5 — 9c]) + 3(—4 - 3(’3 +2c3 + 5¢3)]
12v20"(0)%¢s[25(1 + ) — (e — 1)% - ¢4
3p"(0)2cA[—1+ ¢ + 3c2 + c§ — 3c8 — A(3 +5¢3) + (3 + 262 + 7c)]
12v20"(0)2ca[263 (L + ) — (¢ — 1)* - ]2

For the third derivative we also need to take into account the derivatives of

®(p) ==‘I’(( gb,lg; )( 8 ) ’ ( p(lr) p(lT) >)

with respect to p. Because for the Euler characteristic we have 1, T3, z3 forming a rectan-
gular triangle with ¢y = 1, ¢35 = /2 and thus p(7) — 0, these derivatives become especially
simple:

.J’._

}'U'T2+O(T3)

o U
=0 = 2( = ,
ap( ) i (\/5 )
9*® u? , [ u
=0 = 5% (%)
Finally for the third derivative of f in zero for ¢3 = 1,¢3 = v/2 we end up with:
@(u 0) _¢(b).M:_3) ./wu2.¢(i) . (_ﬂ) du
™ 12v2 Jo V2 vZ)

+9(0) - (%_%) /O R <_\_“5) du

oy (5 [o(3) o)

‘The integrals can be worked out using Lemma 4.3.1, parts v),xii),xiii),xiv) to obtain:

p)(0) - (v2rr — 6b) — 3p"(0)? - (26 — 9b + /27) _
720"(0)%m

Br‘f

—(v,0) = ¢(b)
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Recalling once again that 7 = /1 — p(h) and even terms in b drop when taking the
difference in equation 4.19, we see that the contribution to the bias of the 7*-term is:

p"(0)% - (95 — 26%) — 2b- p(i¥) (0)
$(b) - o

The other contribution that stems from the 72-term can be derived from cquation 4.20
and is:

-h? + O(hY).

~6(8) -5 p"(0) - (2 + )
96T
Hence we can conclude for the bias:

~h? + O(hY).

E [$(0)] = o) -b- p"(0)% - (4b? — 183647; P (0) - (6 + ) B2+ OMY),

which was to establish. O

We would like to mention that in principle also for the bias of the integral of mean
curvaturc-estimator one could provide a (less explicit) expression using the same expan-
sions above and work out the integrals numerically. We will not give this expression here.
For the specific-surface estimators in both two and three dimensions to obtain explicit
expressions for the bias is much easier because the calculation of their expectations only
involves two-point-probabilities. The biases of the surface-cstimators are given in Theorem
4.4.4 in section 4.4.

4.4 General Surface Estimators Based on the Covariance
Function

In this section we still consider the Thresholded Gaussian Field ©(z) = 1{z(s)»s and
generalize some results for the 2D-and 3D-Ohser-Miicklich estimators defined in equations
2.24 and 2.29 of the previous section 4.3 to a more general class. Besides proving asymp-
totical unbiasedness we will gain explicit information about the bias of these estimators
when applied on a finite regular grid I" with non-zero lattice spacing h. The class of es-
timators we consider in this section can be defined for gencral stationary and isotropic
random fields © and arises naturally from the fundamental relationship for stationary and
isotropic random sets which is the content of Theorem 2.5.2. The relationship connects
the two-point Covariance function C®(h) given in definition 2.5.1 (we will suppress the
superscript (2) in the following) with the specific surface area 3: The latter is - up to a
dimension-dependent constant - equal to the first derivative of the covariance function in
0. Approximating the derivative by its difference quotient, we have that:

hmZﬁ Clh- '“Jl ¢O) _ _eno Zﬁjmﬂ (4.25)

th

Hence because we have for arbitrary coefficients 3; € R and vectors a; € R%:

C(h-aj]) — C(0) =
Pl0€O,h-a;€0]-P0cO)=-P0cO,h a €0, (4.26)

on a finite grid I' it is natural to consider estimators of the following class to estimate the
specific surface area 5(©):
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Definition 4.4.1. Let © be a stationary and isotropic random field observed on o finite
regular grid I' with lattice spacing h consisting of n lattice points x; An estimator of the

type

. 1 b1 m
S=—un Z Z B - L2,€0,zn+hn-a;c0% (4.27)
=1 j=1
is called a general specific surface estimator, ifa; € Z%,j € 1,...,m are vectors such

that x; + h - aj are lattice points Vi,j and B; € R,j € 1,...,m are suitable weights such
that:

T

d-b
> B-lagl = -2, (4.28)
= ba—1

for by the volume of the unit sphere S%1.

Hence in the case of the Thresholded Gaussian Field a general specific surface estimator
is of the form:

m

= R
T ;;ﬁj "L Z(2i)2b, 2 (2i+h-aj)<b}-

Remark 4.4.2. The reason for the normalizing condition 4.28 in definition 4.4.1 is that it
ensures the asymptotic unbiasedness property 4.25 for general specific surface estimators
as will be proved in Theorem 4.4.4 below. Also note that definition 4.4.1 is completely
dimension-free. Note also that we do not take into account any edge effects to keep the
notation uncluttered, but of course for real applications the z; must be the points of a
reduced subgrid I'yeq such that still all z; + h - a; are contained in I and thus can be
observed.

Example 4.4.3. Both Ohser-Miicklich surface-estimators for 2D (equation 2.24) and 3D
(equation 2.29) are examples of general surface-estimators in the sense of definition 4.4.1.
In fact for the 2D-estimator we have:

m = 8,
|a1| = |as| = |as| = |a7] =1,
|az| = laa| = |ag| = |as| = V2,

1 =
Bi=—-—- -, j{1,...,8}
APy J
and thus:
m
2.7 2 - by
DY TR S 2.
. 2 by
J=1

And for the 3D-estimator we see:
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m = 26,

la1] = laz| = las| = 1,]aa| = ..., = |ag| = V2, |aro| = ... = |a3| = V3,
la1s+x| = |ag| for ke {1,...,13},

B; = —ﬁc]-, je{1,...,26}

where the c; are the Voronoi-coefficients from equation 2.29 and hence:

TH,

26 4r [
3.5 3-b
DIIT ) SRS L)

In section 4.5 we will also consider the 1D-Ohser-Miicklich surface-estimator. First we
have to clarify what we mean by specific surface area in one dimension and how its Ohser-
Miicklich estimator can be defined. Note that in 1D there are only two Minkowski-
functionals, namely the segment length V;!(.) and the Euler characteristic V' (.). From
the discussion in Chapter 2 we know that the surface area s equals 2V;_; and thusind = 1
is just the doubled Euler-characteristic. This is in accordance with a general definition of
specific surface area which is provided by stochastic geometry. Let © be a random closed
set, then the specific surface area § for arbitrary dimension d > 1 is the density of the
surface measure S:

Se(B) = ha—1(B N 08),

where B € B(R%) is a Borel-set and hg is the d-dimensional Hausdorff-measure. Thus for
d = 1 the surface measure simply counts all the phase transitions from solid into pore
space and vice versa. Note that this definition is in agreement with the surface area as it
is defined for (finite) one-dimensional objects in two-dimensional space. The surface area
of a line segment [ in 2D is proportional to V?(I) and equals twice the length of I. Hence
the one-dimensional Ohser-Miicklich surface-estimator is simply:

1
n-hy

n
> (Azghnyee * 1z(aihneos + 1zina)cos - Lzinmee) - (4.29)

i=1

z;hn(Z) =

Also this estimator is a gencral surface estimator according to definition 4.4.1 because:

1 .
m:]_’ |0’1|:17 'a2|=|wll:13 161 :/B2:_m, ZE{]_,Q},
1-2 1-b
Bilar|+ By -lag] = -2 = ——= = - ==,
1 by
The following result collects some important properties about general surface estimators

in arbitrary dimension d:

Theorem 4.4.4. (Properties of General Surface Estimators) Consider a statio-
nary and isotropic Thresholded Gaussian Field ©(z) = 1{z(;)>p) in R¢ with a covariance
function p(h) € C* that is observed on a finite reqular grid T'. Let further § be a general
surface estimator according to 4.4.1 with vectors a; € R® and coefficients B; € R such that
equation 4.28 holds. Then the following statements about § hold true:
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i).
ii).

iii).

5 is an asymptotically unbiased estimator for h | 0.

The bias of 5 is of order O(h?) and can explicitly be given as:

1

B[5(h)] s =5

m 4 () 0

3" Bjla; Pa(0)8(b)(~o" (0))} ((b2 ~1+ ‘;(—0()}) K2+ O(R?).
j=1

Thus for 370, Bilaj|* = 0 we can even obtain an O(h®)-biased general surface esti-
mator.

Ifm =2 and p™)(0) # 0, the O(h®)-biased estimators are exactly those which fulfill:

|ay |2 - Cq

laz)? - cq _
|az|(la1[? — |azg|?)’

laf(Jlar? —Tazl?)’

b=

Ba la1| # |az| # 0.

where cg = —-Ed'—bi.

i—1

Remark 4.4.5.

i)

The fact that the bias for the surface-estimator in the Thresholded Gaussian Field
model is of order O(h?) seems quite surprising at first glance. This result heavily
relies on the assumption that p € C% Relaxing this assumption means less
differentiability of the underlying Gaussian field resulting in less smooth boundaries
of the excursion set. In fact if p € C* doesn’t hold, the bias is of order O(h). This
is in accordance with a (quite heuristic) argument in (Frisch and Stillinger 1963)
where it is shown by differential-geometric arguments that for random sets whose
boundaries have no edges, corners, multiple points or generally no singular points of
infinite curvature an O(h?)-bias can be achieved. The paper also provides an exam-
ple of a random system consisting of impenetrable identical 3D-spheres which may
exhibit inter-particle-contacts and thus have singular contact points. It is shown
that the bias for this system is O(h). The same problem also arises in the Boolean
Model where the inter-particle contacts also lead to singular boundary points. Such
realizations are obviously not morphologically closed.

Choosing 77" Bjla;|* = 0 to achieve an O(h?)-bias is only possible if there arc both
positive and negative coefficients among the 3;. From definition 4.4.1 is becomes
clear that this might lead to negative estimates of the specific surface 5 which is an
obvious disadvantage of this bias-optimized estimator.

Corollary 4.4.6. Let O(z) = 1{7()>s} be a stationary and isotropic Thresholded Gaus-

sian Field in R® with a covariance function p(h) € C* that is observed on a finite reqular
grid T'. Let further 81,52, 83 be the Ohser-Miicklich surface estimators defined in equations

4.29,

2.24, 2.29 respectively. Then the 5;,i € {1,2,3} are asymptotically unbiased for b | 0

and on the grid for h > 0 their biases are:

i).
i).
iii).

E (5] = 5(0) = —f5 - (=p"(0))F - 6(0) - 6(b) - (6% — 1) + Zrp? ) - h% + O(h),

=

E[5] ~5(0) = ~f5 - (=0"(0)7 - 6(0) - 6(0) - (5* = 1) + Syl ) - b2 + O(h®),

E [85] - 5(0) = ~0.334486 - (—0"(0))3 - 6(0) - $() - ((6* — 1) + Zrg# ) - b2 + O(h?).
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Proof. (Corollary 4.4.6) Combining Theorem 4.4.4 part i). with Example 4.4.3. For
iii). the factor ‘

—0.334486 ~= —% (6-co+24-c3+24-cg)
stems from the Voronoi-coefficients defined in the discussion following equation 2.29. O
The proof of Theorem 4.4.4 is based on Lemma 4.3.2.

Proof. (Theorem 4.4.4)
ad i).

We start with the definition of a general surface estimator given in definition 4.4.1. For
its cxpectation we calculate using Lemma 4.3.2:

N 1 n m
E[5§]=E ~h Z Zﬁj ‘L z(20) 20, Z(2ithea)<b} | =
i=1 j=1
1 m T
S BPIZ0) 26, Z(h a5) < = — [ﬁjm(O)aﬁ(b) L=p(h-laj]) + 001 - p(h))]
j=1 j=1

> VIO T -+ 0] =
~0(0)6(b)v/=p"(0) Y _ Bylas| + O(h), (4.30)
j=1

where we have expanded /1 — p(h - |a;]).

Similarly we learn from Theorem 2.5.2 and equation 4.26:

_ _dbayy o d-ba,  C(h) —C(0)
o bga ¢ = bg-1 lfi?(:)l h
_dbay o Lp [Z(0) > b, Z(h-a) < b] = ﬂ\/iqﬁ(O)qb(b) lim ~ /1 — p(h)
byg—1 RO h - - ba_1 hl0 h
d-b
= ﬁczs(ow(b)\/wp"m), (4.31)

where C(.) is the two-point-covariance function (definition 2.5.1) and a is a unit-vector.
Comparing this with equation 4.30 we see that 5 is asymptotically unbiased for h | 0 if
and only if equation 4.28 holds which is true by definition of 3.

ad ii).

To calculate the bias explicitly we need to expand /1 — p2(h) a bit further:

—_ =P 11 ") o, 4
V1= p(h) = 5 h V30 h® + O(nY).

If we plug this into the expression for P [Z(0) > b, Z(h|a;|) < b] calculated in Lemma 4.3.2
we find that up to order h3 we have:



120 Chapter 4. The Thresholded Gaussian Model

P[Z(0) 2 b, Z(hlaj|) <b] = - |ag| - 6(0)p(b)/—p"(0)

) . (i) 3
13 gyl [qb(ow(b)—‘?;% T (="(0)) Fo(B)BO) (B - 1)

24
where we have noted that there is an additional term of order k® coming from the expansion
of (1 — p)*/2. Hence for the bias we arrive at:

+ O(h"),

m

. (iv) a
B[ -5= izgﬂjlaﬂd (¢(0)¢<b)”7ff(’g) + (=(0)}6(8)9(0) (8 — 1)) W+ O,

which was to be shown.
ad iii.)

If |a1}, |az| are given, (31, 32 must solve the following equation system:

Bi-lat]+ B2-lag] = ea
ﬁl'|al|3+ﬁ2'|€lzf3 = 0.

It’s trivial to verify that this equation system is fulfilled for the 3;,7 € {1,2} given in
statement iii). O

4.5 Asymptotic Normality of Surface Estimators

The main goal of this section is to prove asymptotic normality of the general surface-
estimators of definition 4.4.1 for Thresholded Gaussian Random Fields when the field size
n tends to infinity and the grid spacing h,, tends to zero accordingly. We start out with
some general model-independent remarks on the variance of general-surface estimators.

4.5.1 Variance of General Surface Estimators Based on the Covariance
Function

In this subsection we compute the asymptotic order of the variance of general surface
estimators as the lattice-spacing h tends to zero. For this purpose let © be an arbitrary
stationary and isotropic random set in R? and consider a sequence of refining grids T', =
Hg=1[0, By 2Ry, ..., (ns —1)hy,] with lattice-spacings h, and set n = Hg=1 n, the total
number of lattice points. We assume that as n — oo (and all ngy — o0) we have h,, | 0

in such a way that nh? — oco. Furthermore we denote by (ni)o<i<n & numbering of

the gridpoints of ', and note that for every z = (z1,...,2%) € R?* there is a scquence
y ? )

Zn; — x for n — oo. In this setting we recall definition 4.4.1 of general surface estimators:

ki) m

R 1 dbg )
o T oh, 21: z;ﬁj ' H{eni€,anithn-a;€0°) z;ﬁj aj| = bt (4.32)
=1 )= 1=

In practice of course, one can compute 5, only on a reduced grid and onc must assure that
Tpn; + hy - a; are gridpoints of I'y,, too, and thus observable. We ignore this fact here to
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keep the notation and the formulae simple. It’s then straightforward to see that we can
write the variance of § as:

Var (3) =
1 m m n n

5 2 2 B i) ) | Plani € 0,ani + 0 € 6,20k € O, 2ng + Py € 9'3]
" =1 1=1 i=1 k=1

—P [:L‘m' € O,Zpn; + Ay, - aj; € @c] P [-Enk €O, zpp+ hn-ar € (”)C]

If we now use stationarity this can be simplified to:

Var(§)~
7 222@ Gy Z {P[OE@,hn-aj6(~)c,:1:niG@,:Bm-l-hn-ale(-)C]
7 =1 (=1 Zni€ly,
d
C C |m1‘?7.zl £)¢
~P0€O,hy-a; €OIP0EOhy-ay €O | -n-]] - mi ), (4.33)
s=1 8

where I = [[io;{—(ns— Dhn,...,(ns—1)h,} and z3, is the s-th component of the
gridpoint z;.

We now need to discuss the covariance terms in square brackets of equation 4.33 a little
more in detail and study their order of magnitude for 4, | 0. This discussion applies for
many stochastic models © and examples will be given in the following. It turns out that
the covariance terms cxhibit a different behaviour for dimension d — 1 than for higher
dimensions. Let us first study the one-dimensional case. Then the covariance-terms in
equation 4.33 simplify to:

P[Z(0) € ©,Z(jhn) € ©°, Z(khy,) € ©, Z((k + Dh,) € ©°]
—P[Z(0) € ©,Z(jh,) € O P [Z(0) € ©, Z(lhy,) € O],

where 1 < j,1 < m and —n < k < n, hence for the discussion without loss of generality
we restrict ourselves to the case where both j and [ are positive. Now for fixed j and [
the covariance term depends on the ordering of the involved quadruple of variables. For
k > j or k < —I, and thus for almost all values of k, we have that the ordered variables of
the quadruple take the values 1 — 0 — 1 — 0 alternatingly. Therefore the covariance term
is then of order O(h2), but as we will see below, the sum of all such covariance terms can
be written as a Riemannian integral and is thus of order O(h,,). On the other hand for
—l <k < j the variables of the ordered quadruple take the values 1 —1 — 0 — 0 and thus
the covariance term is of order O(h,). Because the sum over k is then only over a fixed
finite number of terms (always j + ! — 1 terms not depending on n), we are left with an
O(hy)-term after summing over k. This reasoning shows that the finite part of the sum
over k where the intervals [0, j] and [k, (k + [)] intersect is not negligible. Thus for the
one-dimensional casc we can summarize:
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Assumption 4.5.1. (Covariance-terms in 1-dimension)
P[Z(0) € ©,Z(jh,) € ©°, Z(khy) € ©, Z((k + 1)h,) € OF]
-P[Z(0) € ©, Z(jh,) € ©° P [Z(0) € ©, Z(Ih,) € ©7
[ gulzn) - R: fork > jork < -,
{ cji(k) - hn for —l < k < J. (4.34)
where c;;(k) are constants and g;;(z,;) are model-dependent functions.

Lemmata 4.3.2 and 4.3.7 show that this is true for the Thresholded Gaussian Model. A
further example where the assumption 4.5.1 is obviously met is the Markovian Model
treated in section 7.1 of the appendix. The important observation is now that the sum
of the g;(.)h2-terms is of Riemannian nature. Thus from equation 4.33 we see for the
variance variance of s, for n — oo in the one-dimensional case:

Var (5,,) NTZZ Z 9j1(khn )R + Z cji(k)

k>jk<—1 —l<k<j
m m
nh ZZ@ B / ga(x)dz+ > cak)|. (4.35)
T oj=11=1 —l<k<]

Hence the asymptotic order is O (nh L)

For the multi-dimensional case d > 1 and without loss of generality for kn; € Z¢N [—n, n]d
the covariance-terms are of order

P0e€©,h,- a; € O°, hpkyn; € O, hy(kni + lll) € ("')C]
_P[0€O,hy-a;€OYP[0E O, hy-ar € O ~ i1 (Fni)m

or even smaller depending on the relative position of a;,a; and kp;hy,. The rj stand for
modcl-dependent constants. If we now assume that the 7;(.) are summable, ie.:

Y- ralk)l < oo,

keZs

there exists a number kg such that for ||ky;|| > ko the covariance terms are of order O(h2)
independent of the rclative position of aj;,4; and kn;hy,. Hence because of kyihy, — x for
||knil] > ko the covariance terms can be written as:

P0€©,hy - a; € O hpkpi € O, hp(kni + a1) € OF
—P0€O,hy-a; €OUP[0E€ O, hy-a; € O ~ gji(knihn)h2,

where g;(.) is a Riemann-integrable function. Thus we conclude from this reasoning and
equation 4.33 for the variance of 5,:

A m m 1 1 1
Var (8,) ~ > > ;B W/Rdgjl(m)da:—l-—*— > ralk) No(nhd)

— nh,
J=11=1 " keZd, || k|| <ko

Therefore opposed to the 1D-case, in the multi-dimensional case the Riemannian sum
dominates the finite-sum.
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4.5.2 Asymptotic Normality for the Surface Estimator in the Gaussian
Thresholded Field Model

In this section we investigate the properties of the one-dimensional Ohser-Miicklich
surface estimator § defined in equation 4.29 for the Thresholded Gaussian Random Field
Model. The main goal is to compute its variance and to assert its asymptotic normality
as the grid on which the estimator is computed becomes finer, ie. the number of lattice
points n — oo and the lattice spacing h, — 0 in such a way that n - hy, — o0.

The same strategies which will be used to calculate the variance of § and to prove
asymptotic normality in the Thresholded Gaussian Model in the following are applied -
as an introductory example - to the Continuous On-Off-Markov-System in section 7.1
of the appendix. We have included this example because before reading on, the reader
might want to familiarize himself with these techniques and see them working in a more
easily and explicitly tractable setting first before tackling the Thresholded Gaussian Model.

Throughout this section we will assume that the random set under consideration is
O(z) = lx(s)»b, where Z(x),z € R is a strictly stationary Gaussian Random Field in
one dimension. We start out with the formula for the estimator 5 in this setting. As men-
tioned in section 4.4 the surface of a one-dimensional object is equal to the total number
of its endpoints. Hence the estimator § simply counts the number of phase transitions
from black to white and vice versa:

1
n-hy

n
Bnhy = Z 1 z(i-hn) 2} H{Z((i+1) k) <6} + 1{Z(i-hn)<b} L{Z((i+1)-hn)2b} - (4.36)
i=1
Of course a transition from black to white must be followed by a tramsition from white
to black until the next black-white transition follows and thus the two summands that
contribute to the estimator are identical up to edge effects. The analogous remark also
applies for the same estimator in the continuous Markov model considered in subsection
7.1.1 of the appendix.

The next theorem collects the crucial properties of 5 in the 1D-Gaussian Thresholded Field
Model:

Theorem 4.5.2. (Surface-estimator properties in the 1D-Gausstan-Model) Con-
sider the one-dimensional Thresholded Gaussian Random Field Model O(x) = 1 x(z)>b,
where b € R and Z(z),z € R is a strictly stationary Gaussian Random Field with co-
variance function p(h) observed on a sequence of grids T'y, = hy, - Z with n — oo, hy, | 0
such that n- h,, — 0o. Let further § be the Ohser-Miicklich surface estimator defined as in
equation 4.36. Then the following statements are true:

i). The specific surface area 3(@) in the 1D-Thresholded Gaussian Field Model © 1s:

2
() = /2 ()70
where ¢(.) is the density function of the standard normal.

). For hy, | 0 the estimator § is asymptotically unbiased for 5 and the bias has the form:

. —"(0))2 , (iv) ‘ '
E [5nh,] —5(0) = —% : (—l\/-é—?)— - p(b) - ((b2 —1)+ ‘;”(0()?) hE 4+ O(hS).
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). If p(x), p'(z), p"(z) are integrable and

/ 2] - [p(z)| da < o0, / 2] - 9/ ()] der < o, / 2] - 10" (z)] da < oo,
0 J0 0

there exists an integrable function g(z) : R — R such that = - g(x) is still integrable

and
Var (5) ~ ! ki + /00 g(z)dx
n-hn J—co ’

where ki is a constant. Hence the variance Var (3) is of order O(mll:)

Proof:(Theorem 4.5.2)

ad i) and ii): Since the specific surface estimator as given in equation 4.36 is a special
case of the general specific surface estimator form definition 4.4.1 form =2, 8y = 3 = —

and a1 = 1, ag = —1, these claims follow directly from equation 4.31 and Theorem 4.4.4,
part ii).

ad iii):

Since the estimator 5 is of the form given by equation 4.36 for m =2, 8 = —1, By = —
a; =1, ag = —1, we get for the variance;

Var (3,) nh2 Z - 1K, {P[Z( ) > b, Z(hn) < b, Z(khn) 2 b, Z((k + 1)h,) < 0]

+2-P[Z(0) > b, Z(hn) < b, Z(khy) < b, Z((k + 1)hy) > b]

+P[Z(0) < b,Z(hy) > b, Z(khy,) < b, Z((k + 1)hy,) > 1]

~P[Z(0) > b, Z(hy,) < b2 — 2P [Z(0) > b, Z(hy) < b]P[Z(0) < b, Z(hy) > b]

- PZ(0) < b, Z(hn) 2 4"} (4.37)

We will sce that for n, k — oo, nhy, — 00, h, — 0 and k - h,, — T most summands of the
expression in curly braces of equation 4.37 are of order O(h2). However by Lemmata 4.3.2
and 4.3.3 the terms for which the intervals [0, hy], [khn, (kK + 1)h,] intersect are of order
O(hy,), namely for k = 0 and k = 1 respectively.

P[Z(0) > b, Z(hy) < b, Z(Ohy) > b, Z((0 + 1)hy) < b]
P[Z(0) < b, Z(hy) > b, Z(0hy) < b, Z((0 + 1)hy) > b]

+ o+

2 (1 - %) P [Z(0) > b, Z(hn) < b, Z(1hn) < b, Z((1 + 1)hn) > b]

P [Z(0) > b, Z(hn) < b + P [Z(0) < b, Z(h,) < b]

+ (2 - 5) P2(0) > b, Z(hn) < b, Z(2hn) > b] ~ (1 + 2

—)

for some constants k1, k2. The subtracted terms in cquation 4.37 are of order O(h2).
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We will show in the following that all other summands of the expression in curly braces
in equation 4.37 wherc the intervals [0, h,| and [khy,, (kK + 1)h,] do not intersect can be
expanded as g(khp)h2 4+ O(h3), for a function g which fulfills the integrability conditions
stated in the theorem. Thus assumption 4.34 is fulfilled. Once this is shown the claim
follows from expressing the variance through Riemannian sums and treating the O(h,,)-
terms separately:

Var (§n) =

. (k + hn + Z |k| (g(khn)h2 + O(h3))
Tbhn 1 = (7 T 1
~ o | bt Z ! Z Vel B g (kP ) s + "'—2

Rt fin nPhg e * T n2hy,

khn—z 1 o0 1. oe . kz

T, (’“ +/_m9(“’)d"’) g | e i

1 (w9

~ . 4.

'n:hn (kl * /—oo g(x) d ) ’ ( 38)

where all sums only run over such k for which the intervals [0, k,,] and [kh,, (k + 1)h,] do
not intersect.

It then remains to show the integrability of the function g(.).
In a first approach, we only consider the single probability-term

P[Z(0) > b, Z(hy) < b, Z(kh,) > b, Z((k + 1)h,) < b]. to which we want to apply
Lemma 4.3.7 with Z; := Z(0), Z; := Z(hy), Z3 := Z(khy,),Zy == Z((k + 1)hy). To do
this we have to determine the constants cs,...,cg of the Lemma. in the one-dimensional
Thresholded Gaussian Field setting. Because of kh, — x wc have:

pr=p2=ph),  ps=ps=px), pg=plx+h), ps=plx—h),

and thus with 7 = /1 — p(h):

p2 = ph)=1-1 = 1-—pp=1t=cy=1, (4.39)
_ _ e

¢4 = lim PAZ 13 g plzth) = p() = V24 () .

710 T 10 /1 — p(h) /*p"(O)

. ps—p3 . plx— ) (J:) V2 (2)

s = lim—= =1 — ] 4.41

[ 7}{{]1 T 7}?01 /1 — /__p//(o) ( )
- - — _ _ 1t

s = lim P —P5 —Pat p3 _ lim 2p(£) p(z + h) — p(z — h) _ 2 (rc)‘

1o 2 10 1= p(h) 70)

(4.40)

(4.42)

Hence a direct application of Lemma 4.3.7 lcads us to:
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P(Z) > b2y <b Zs>b 25 <~ (4.43)
A wa 2b(1 — p3) — cswe 1 m m .
s [ o () 0 () 7o [0 () -0 (3)] -

st [ ()| == v

where:
m = 2b[54+ 1—pf;)]+1LI2l%i g—:(‘]
= B | A+ pa | v S+ T
s = Ezz—g%"
- 41— p(2)%) + 45555 ~2v2p(z )[ Veroha ”ﬁﬁﬁ”gi)g,]
) | A L] v -

From equation 4.37 we see that the function g(z) = g1(z)+g2(x)+g3(z) is defined through:

g1(z) = (4.44)
Jim =1 [P [2(0) > b, Z(hy) < b, Z(z) > b, Z(z + hy) < b — P[Z(0) > b, Z(hy) < b]2]

and two similar terms g2(x) and g3(z) which can also be read off from equation 4.37. All
the calculations that follow are identical for g;(.), g2(.), g3(.), so without loss of generality
we may only consider g;(.) in the following and drop the index to simply denote it g() in the
following. Please note further that only the term coming from the quadruple probability
depends on x and that obviously

P[Z(0) > b, Z(h,) < b]* = lim P[Z(0) > b, Z(hn) <b,Z(x) > b, Z(z +h) < b].

To show integrability of g we certainly must show that g(z) deccays fast cnough for
x — oo. The integrability for z — —oo then follows from symmetry considerations. But
another problem arises for ¢g(.) near zero. One can easily see that Y1,Y9s,8 — 0 for
x — 0 while the correlation ¥15/4/%11322 — 1 for z — 0. Hence in view of equation 4.43
we must also ensure that g(x) does not explode for « near zero. This is the problem we
will tackle first. Because only the quadruple probability in the above expression for g
depends on z it is enough to show that the integral in equation 4.43 stays bounded for
z — 0. This we will show now.

Estimating from above ¢ ( %) < # and ® (—™) < 1 and dropping any constants where
possible the integral in equation 4.43 can be decomposed into the following three terms:
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. 1 Cq 212 0 2[)(1 — p3) — CrW2
—_ —22(1 — P d
i) [2 + 7o (1 03)] / wod Wi wo

.. 1 [es  %i2 ] /0 9 (Qb(l - p3) — Cs’wg)
ii — — = W dw:
) Y [ 2 35 ) s 20 VEn 2

1 2, [ 2b(1 — p3) — cyuy
iii) o Yoy — 2—1?/ w2¢( ( pg)u - )
— 00 V
X

We now show that in fact all these three integrals vanish for z — 0:

ad i):

D

b 2b(1—p
S+ Z2(1—py) (0 - wy + 2rs) oy
5 —oo  VEN AT

cs

G 4221 p, - VoM .
< 2 Lu( p'i) 2b(1 pg) n 2 X1 ~ 23 a;__g 0.
&3] C5 Var ¢s
o2 fc;‘ x—0 ~T fo‘rraf;—>0

where we have standardized such that the Gaussian integral can be estimated from above
by the first moment E [|X|] of a Gaussian random variable X ~ A(u,0?) which can be
estimated from above by E[|X]|] < |u| + \/% - 0. With some tedious but straightforward
calculations we have expanded the two remaining factors into Taylor-Series for z — 0 to
find out their order of magnitude.

ad ii):  This can be treated similarly:

¢ _ Zio 0 . . _ 2b(1—pg)
2750 % / o = dws
5 coo 2VEn —VLL“

6 _ X1z

v C by 4b%(1 — p3)?

2 B¢ 11 3 x—0

< |2 5u% _2_+¥ ~ 2200,
N% for z—0 ~oz? for t—0

where we have standardized such that the Gaussian integral can be estimated from
above by the second moment E [X?] = Var(X) + E[X]? of some Gaussian random
variable X this time and again expanded the remaining factors into Taylor-series for z — 0.

ad iii):

Here we first combine the two standard Gaussian factors into a single one. For arbitrary
real numbers a, b, ¢, d completing the square reveals:
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¢(W;“)¢(WJ”): (4.45)
1 HR = )
) T

1 1{a?2 ¢ % +
VAT 5 2+ 7 b2
And hence by applying equation 4.45 to iii) and comparing to the first moment as in i)
we find:

c,.
@,;,|n

e I

+
+

Ry
c[:-il—‘ Q,:,IQ

VvZ11 Y1 Jooo
c4 4 Zaz(q _ c6 _ Xi2
2b [z + Yn (1 p3)] + w2 [2 21 C5]
X¢ = dws
_ 12
Y — 52
~x2 ~ocst. ~?
e e
2 2 2 a 2
SR U AU N T Y e TR
— 1
2 V211 X1 1 1 2 b2 d? 4 oy
2 + = (b d’ )
~Lforz—0 ~g2forz—0 m—
® ~x2 for 2—0 N -~ .
~cst. for c—0
a ¢
wt 2 1 -0
x| |[5—% |+ =0,
grae| V(Lo
N e’ |
3 . ha
@ forz—0 ~g2 for z—0
where:
ba) 52,
0 = Zb[%‘l-f-—f‘;“(l p3)j| b o— 22—51";‘
c = M d = 1

and hence g(0) exists and is even zcro. It remains to show that the decay of g(z) for
r — oo is fast enough to cnsure integrability of g. We start again from cquation 4.43
and only consider the g;(.)-part of g(.) given in equation 4.44. It is enough to show that
| [o g(x)da| is finite for a well chosen zo. For a fixed 1/2 > € > 0, we can easily choose
an o such that the following conditions are simultaneously fulfilled V& > zq:

(@) <1, /(@) <1, |p"(@)] <1,

b
o
—
=
=~
&
—
=
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The last of these inequalities can be made true for x large enough because de L’Hopital’s
rule gives:

lim mp($) =| lim p(z)
T—00 D | |z — 1 _ o - 2 - -
RN (2@ @) + A @7 @)
1

= 0.

= | lim 3

w300 T (22p(z) + 7y #(2))

Now we define the following quantities for z > zg:

r) = _ - plx V24 (2) wg| —b
Al( ) : m [2b(1 P( )) + —,D”(O) ]

Ae) < M—lzﬁ%i""* \/Euf’)f)p,,()|wz| UL o(a) + VEC .
_ m@) _ 1 )  Teg_ o | 2@ Ti2 V2
8200) = T =3 (Zb[ =70 ty A—pl@)| + 2[pn(0)+211 p(O)D
L

1 (=) Wl 1 1
Ao(z)] < =-<2b 4C%/2|p (z
|Ag(z)] < 02 {2 [ —270) )+ 10’ )|( — 0 + (wp"(O))')

i (@ act ] 1
i '2'(IP”<O>|+ —p”(O)'p()'(\/W +(—p"<o>)%)>}

im(z)] < {2()[ /) +4cff|p(x>|( _; T )}

@l e 1 1
: '“’2'(!/)"<0)|+ _p,,(o)lp(@l( =0 (- p~<0)>%))}'

Then we also have the following inequalities:

{min {b,b + A1(-’L‘)},mﬂx {b,b + Al(ﬁ)}}

Ty

—~
3]

—
m

. 2b(1 — p(x)) V2 (@) | @l
E(z)] < |b]+ NG \/Eu(m)\/_p”(o)l o] < 0]+ Cs + V2, mp,,(o)r 2.

v(z) € [min{(),Az(a:)},max{O,Ag(m)}

1 P (@) N 1 1
v(z)l < |Aqg =—42b V2 3
I ( )] = I ( )’ 02 {2 [m@"‘ 4C | ( —,0”(0) + (_pn(o)):z):l
w " ()| 407 e 1 1
+ el (Ip”(O)I var oL (\/——p"(m ¥ <—p"(0)>%))}
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Further we can deduce from the mean value-theorem the existence of 6 € (ﬁ—; 1) and
n € (2,5%) with:

o (x)?

C] 1- (1 - p(w)z) - p//(o)

< L
2C1.

211 Z]](.L 4

l VEu(z)

<t
<56 ("’(‘”)” 70 )I)’
s = V2| < [Vs? = V2| <

1[|82—2|
n

1 2 (x)] 10" (2)] 2 1
52@2[,,,,/(0” +2 s + 80 “'( 70 (>2+<—p"(0>)3)]'

As a last preparation step due to Lemma 4.3.2 we see that the constant term not dependent
on z in the definition of g(z) in equation 4.44 can be written as:

P(Z(0) > b, Z(hn) < b]* ~
2 40 = —V2g(b)r? / " waduwnd (ﬂ) O R (4.46)
2w J oo V2 2" Vow
Repeated use of the mean-value theorem together with the preparations above allows us
now to rewrite equation 4.43 as:

P[Z(0) 2 b,Z(hy) <b,Z(z) > b, Z(x + hy,) < b] ~

Va0 [ b (L2 1000 - €0©01(0) l; . (ﬁ - %)]
{mcp( ) [V2+ (s - \/5)] [6(0) — v$() As(x)]} dus, (4.47)

Hence we recognize that (besides the m®(.)-term) the integrand in equation 4.47 is up to
a constant of the form (a + b)(c + d)(e + f)(g + h) and comparing with equation 4.46 we
sec that with these abbreviations the integrand in equation 4.46 equals up to the same
constant the term aceg. If we now use the decomposition:

(a+b)(c+d)(e+ f)(g+h)—aceg = b(c+d)(e+ f)(g+h)+ad(e+ f)(g+h)+acf(g+h)+aceh,
consider the m®(.)-term separatecly and estimate ¢(.) < 712? and ®(.) <1, we can write:

P[Z(0) > b, Z(hs) < b, Z(z) > b, Z(z + hy) < b] = P[Z(0) > b, Z(hn) < b)? | ~ V2¢(b)

{%—; " st (42) im@t s + G2 [* | zlcb(f) )31 (@)

vz [ zlas(ﬁ) — 1

1 /0 Wy
“la el ! 22 ) 1s(2) — V2! duw:
wy + - /_Oo |wz|¢(\/§) |s(x) ~ V2| dwy
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As we have scen further above, the quantities [m(z)|, |£(z)A1(z)),]1/Z11(2) —1/2],]s = V2
and |v(x)A(z)| can be estimated from above by summands each of which containing one
of the terms |p(z)|,|p'(z)| or |p”(x)|. Hence the integrability of p(.),p’(.) and p”(.) carries
over to g(.) in the sense that the leading term in the probability difference considered in
equation 4.48 can be bounded by summands of the form:

: oo wa ; .
const - |p(:1:)(‘)|/ lwa|*¢ | ———= | dws = const - |p(x)@|, i€ {0,1,2},
0 v —"(0)

because the involved Gaussian integrals exist and arc finite. Hence in total we see that:

‘/oo|9(:1:)|da:SKo./mlp(a:)|da:+Kl-/m|p'(g;)|dw+[(2./Oo|pﬂ(w)|dwgoo,

xg fe oy} o o

where K;,i € {0,1,2} are some constants, which finally shows the x-integrability of g.

Plecasc note that in the proof we have only used the integrability required for
p(z),s € {0,1,2}. However from equation 4.38 it becomes clear that to ensure
that Var (5,) has the order of magnitude stated in the theorem, also z - g(x) must be
integrable. Obviously the same proof can be repeated to show the integrability of x - g(x)
under the condition that z - p®(z),i € {0, 1, 2} are all integrable. O

For the proof of asymptotic normality because both the number of grid points n and
the grid-spacing h, arc variable during the limit process we must resort to a central
limit theorem for dependent random variables in a triangular array which usually involves
proving some type of classical Lindeberg-condition. For both the On-Off-System in the -
appendix and also the Thresholded Gaussian Field Model below a fundamental result from
(Peligrad 1996) about strong mixing arrays proves to be useful. Before we present this
theorem, we need to introduce the concept of strong mixing:

Definition 4.5.3. (Mizing)
i). Let (2, A, P) be a probability space and Ai, As be sub-c-algebras of A. Then we
~ define by

a(A, Ag) = sup |P[A1 N A2) —P[A;] P [Ag] |
(A1,A2)€A1 x Az

the strong mixing coefficient of the o-algebras A, and As. Similarly we denote:

P[A1NAy) —P[A;]P[A
$(A, Ag) == sup [Ay z%) | [A4 P [4a] |
(A1’A2)€-A1X-A2,P[A1];£O [ ]_]

the ¢p-maxing coefficient of Ay and A and:

p(Al’AQ) = sup ICOTT'(f, g)|)
feLa(A1),g€L2(Az)

the mazimal coefficient of correlation of the o-algebras A, and As.
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it). Let (X;)icz be a stochastic process. Then the strong mizing coefficients of (X;)icz
are

a, :=supa(Fi—r, Gt),
LeZ
where F; = 0(X;,1 <1) is the past and G, = o(X;,i > 1) is the future of the process
at time . Similarly:

Cb'r = sup QS(Ft—Ta gt)7 pPr = Sup p(ﬂ—T7 gt)7
teZ teZ

are the ¢p-mixing coefficients and maxzimal correlation coefficients of (X;)icr
- respectively. If {X,;,1 <1i<kp} is a triangular array we analogously define:

nk = supa(o(Xp;),i <t,o(Xp;j>t+k)), and o :=supapg,
teZ n

Ong = sup@(0(Xn;),i <to(Xnj,J =t+k)), and ¢g :=sup ¢k,
teZ n

Pk = SUIZ)p (0(Xnyi),i <t,0(Xn,;,7 > t+k)), and pg :=supppp.
te 7

iii). We say that a stochastic process (X;)icz satisfies the strong mizing condition (or
is strongly mizing) if a, —> 0, whereas the triangular array {X,i,1 < i < k,}
18 called to satisfy the strong mixing condition if limy_,o ap = 0.

Similarly the process (X;)icz is called ¢p-mixing (or uniformly strong mixing)
if ¢ —30,, whereas the triangular array {Xni,1<i<ky} is called to satisfy the
¢-mixing condition if limg_,oo dr = 0.

Analogously the mixing coefficients can be defined for continuous processes (X;)ier. It
can easily be seen that ¢-mixing implies strong mixing. For a summary and discussion of
other mixing-conditions and their relationships, see for example (Lahiri 2003 pg. 45,46).
We now state the fundamental central limit theorem for triangular arrays:

Theorem 4.5.4. (Central Limit Theorem for Strongly Mizing Triangular Ar-
rays) Let {X,;,1 <i < k,} be a triangular array of centered random variables, which is
strongly mizing and has finite second moments. Assume further that limy_, . pr < 1. and
denote Sp, := ng L Xn,i and o2 := Var (S,,). If the following two conditions are fulfilled:

1 o
sup — Z E [X,%,i] < 00,
R ]

k L
Tl =

1 . .
Ve>0: ) E [Xi,ilﬂxn,nmn}] =70,
Ly}

then the Central Limit Theorem holds, ie. 22 < N(0,1).

Proof. (Theorem 4.5.4) see (Peligrad 1996).
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We now turn to the main result in this section, the proof of asymptotic normality of 5,
under moderate assumptions about the decay of the strong mixing coefficients of the
underlying Gaussian Field. Similarly as in the Markov case of the appendix we can
rely on the fundamental central limit theorem for strong mixing sequences, Theorem 4.5.4.

In the following we consider again the classical standardized linear combination a,, (8, —35).
From Theorem 4.5.2 we learn that to stabilize expectation and variance in the case of the
thresholded Gaussian field, we need:

n—oo — 00

Var[s] "=70 <= n-h, "=°

E [an(§ - 3)] e 1 < dap- h:i nIee ci,
2
Var (an(5—5)) "= ¢y = T N
n - hy

where ¢; and ¢ arc some constants. But then:
5
2 3

n an

/L1 n
an n

2
= /C1Cy <= Qp ~ N5,

o~

and thus h,, ~ \/t—n ~n

Notc that this relationship between n,a, and h,, is different from the Markovian situa-
tion in the appendix because in the thresholded Gaussian model the bias is of smaller order.

As already mentioned for the asymptotic normality of 5, we want to rely on the strong
mixing property (definition 4.5.3) of the underlying Gaussian Field. It can be seen that
stationary (Gaussian Fields arc strongly mixing under mild conditions concerning their
spectral density. For cxample if the spectral density of a Gaussian sequence is continuous
and bounded away from zero, it satisfies the strong mixing condition (Ibragimov 1971,
Theorem 17.3.3). But even the convergence rate of the strong mixing coefficients can be
controlled. The conditions in the following discrete-time theorem not only ensure that
a Gaussian process is strongly mixing but even provide information about the rate of
convergence of the mixing coefficients which will be useful for us later.

Theorem 4.5.5. (Convergence rate for strong mizing coefficients) Let (X;);cz be
a Gaussian process. A necessary and sufficient condition for

(1) = O™ P), where0 < B < 1,

is that the spectral density f(\) of the process permits a representation of the form f(\) =
|P(eM)2w()), where P(2) is a polynomial with zeroes on {|z| = 1} and where the function
w(A) is strictly positive, w(X) > m > 0, and is r times differentiable with the r-th derivative
satisfying a Hélder-condition of order 3.

Proof. (Theorem 4.5.5) The theorcm is mainly Theorem 8 in Chapter V.6 of (Ibragimov
and Rozanov 1978). There the statement is proved for the maximal correlation coefficient
but it is well known that in the Gaussian case the strong mixing coefficients are bounded
by the maximal correlation coefficients.
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Similar theorems with slightly more complicated conditions can be found for the continuous
case as well in (Ibragimov and Rozanov 1978). We can now state the main result of this
subsection:

Theorem 4.5.6. (Asymptotic normality of the surface-estimator in Thresholded
Gaussian Field Model) Let O(x)zer = l{z()>5) be a stationary continuous Thre-
sholded Gaussian Field with threshold b and assume the underlying Gaussian process
Z(x)zer is strongly miring with a covariance function p(h) which fulfills the integrabi-
lity conditions of Theorem 4.5.2. Assume further that ©(x)ycr s observed on a refining
sequence of lattices 'y, containing n points and lattice spacing hy, such that 'nh;g;L — 00
and lim,, .., nh3 < oco. Let the estimator 5, be defined as in equation 4.36. Then for
an = VNhy, the linear combination an(5, — s) converges in distribution to a Gaussian
variable with constant finite expectation and variance. Especially for the (with respect to

bias-variance-tradeoff) optimal lattice spacing hy, = n=/5 we get:

3

2 2 d 1 (=p"(0))2 ) (0) ETIRN
ns - (8, —s) >N (_E qu(b) ((bzq 1)+ W) y k1 +/ g(.}:)d.}:) .

—0

Remark 4.5.7. Before we prove the theorem we have to mention that the results of Theo-
rems 4.5.2 and 4.5.6 unfortunately are not new but independently rediscovered versions
of some known results. Because calculating the one-dimensional specific-surface-estimator
of cquation 4.36 basically means calculating the number of crossings of a continuous one-
dimensional Gaussian process, some results from the vast theory on (up-)crossings of
(raussian processes apply. We address here only the most important results in this context.
A complete survey on the actual state of the research in this area can be found in (Kratz
2006). We emphasize that throughout this remark we consider continuous stationary one-
dimensional Gaussian processes. We denote the number of crossings of a certain level
z in the interval [0,¢] by Ni(z) and the number of upcrossings by N, (z). Cramér and
Leadbetter in (Cramér and Leadbetter 1968) gave a condition for the finitencss of the
variance of the specific surface estimator if the threshold is zero:

Mgy M
36 > 0, such that M € L'([0,6], dz) = E [N3(0)] < o0 (4.48)

The condition on the covariance function on the left hand side of equation 4.48 is called
the Geman-condition. Cramér and Leadbetter also were able to provide quite an explicit
integral expression for this variance even for general threshold x involving joint densities
of values and derivatives:

t _s? b L N
B[N@)] = Lo % V=0 +2 [ (=) [ [#l316u(z.2.2.9) di djdu.

Recently Kratz and Leén in (Kratz and Leén 2006) generalized the result of equation
4.48 for a general threshold x and also showed that in fact the Geman condition is both
sufficient and necessary.

But the most important result for our purposes which directly implies the central limit
theorem of the 1D-specific surface estimator under the same integrability condition as in
Theorem 4.5.2 is the following result by Peterbarg;
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Theorem 4.5.8. (CLT for the Number of Upcrossings, Piterbarg, 1978) Let
Zi,t € R be a stationary Gaussian Process, mean zero, unit variance, satisfying the
Geman-condition from equation 4.48 and the integrability condition on the covariance
function and its first two derivatives from Theorem 4.5.2. Then:

Var (N; (z)) = ot (1+0(1)) as t — oo,

where:

/ / / yz(% B - \/T())Exp(y2+zz))dydzds+m>

20" (0) 2r

In addition to that, the central limit theorem for N (t) holds.
Proof. (Theorem 4.5.8) see (Piterbarg 1978) for details.
We now turn to the proof of Theorem 4.5.6:

Proof. (Theorem 4.5.6) The proof of Theorem 4.5.6 resorts to the same fundamental
central limit theorem (Theorem 4.5.4) as the proof of the asymptotic normality in the on-
off-Markov-system (Theorem 7.1.1, part iv)). Therefore for some arguments of this proof
we ask the reader to consult the proof of the aforementioned theorem in the appendix.
Instead of the estimator of equation 4.36 we may consider without loss of generality the
modificd estimator of equation 7.12 with E;, = {©(ih,) # O((i+1)h,)}. Again we
consider the standardized sum S, and introduce the block-variables X, as in equation
7.13. Now we can proceed as in the proof of Theorem 7.1.1, part iv). The strong mixing
property of the triangular array {X;,;,1 < ¢ < nh,} and limg_, ¢ < 1 both follow from
cquation 7.14 and the relationship between pj, and aj. The verification of condition i) in
Theorem 4.5.4 can be literally copied from the proof of Theorem 7.1.1 and can be done
analogously as in equation 7.15. For the verification of condition ii) in Theorem 4.5.4 we
see that:

7L—>DO

\/ nhfb

and thus Ve > 0 and Vi we have 1x, ;|>es,} = 0 for n large enough. Therefore condition
ii) in 4.5.4 becomes trivial. Hence the asymptotic normality follows from Theorem 4.5.4.
The moments of the limiting distribution are derived from Theorem 4.5.2. |

| X7, < 0,

4.6 The Generalized Thresholded Field Model

We now come to the more practical aspects of our survey of the Thresholded Gaussian
Model. Again as for the Boolean Model the goal is to simulate Thresholded Gaussian
realizations with preset values v; for the specific Minkowski-functionals in two and three
dimensions:

Vo(©),...,Va(®) = (vo,...,vq), d € {2,3}. (4.49)

Note that opposed to the Boolean Model the Thresholded Gaussian Field Model can be
simulated directly on a grid and hence no cumbersome discretization process is needed.
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The Gaussian Model is not of germ-grain type and hence its realizations do not consist of
physical entities which can be compared to corresponding entities in the real structure. In
this sense the Gaussian Model is more flexible than the Boolean one and doesn’t exhibit
the obvious defects of the latter such as overlapping grains or the restriction of the grain
shapes to a certain geometric family. Moreover because Gaussian Random Ficlds have
been studicd extensively in literature, the Gaussian Model also has the advantage of being
analytically easily tractable. However the Thresholded Gaussian Field Model as is has
been defined in definition 4.1.4 unfortunately cannot be used directly to produce artificial
binary structures with given specific Minkowski functionals. This can be seen from the
Adler-Tomita-formulae (Corollaries 4.2.3 and 4.2.3). In both the two-dimensional and the
three-dimensional situation the same problem arises. Once the specific volume is preset,
the threshold b is determined and besides this threshold b, all other specific Minkowski
functionals only depend on the second derivative of the covariance function in zero. Once
the specific volume is given, it is therefore not possible to specify morc than one further
specific Minkowski functional in advance. It is somchow surprising that to determine the
specific Minkowski functionals only very little information about the covariance function
of the underlying Gaussian field is needed and also that it is the very same information
for all of them. This fact also shows that at least in the Gaussian case the covariance
function contains much more information than the specific Minkowski functionals and
varying the covariance function outside a small region around zero might completely
change the appearance of the corresponding realized artificial structures whereas the
specific Minkowski still stay the same. This is again the indeterminacy-phenomenon
alrcady discussed for the Boolean Model before.

However already a slight generalization of the defining model equation 4.49 removes the
problem of dependent spccific Minkowski functionals. Instead of just truncating the un-
derlying stationary Gaussian field Z(z) when it exceeds a certain threshold b, we introduce
a sccond threshold a and also truncate Z(x) when it drops below the level a. This idea
can be generalized to introduce as much flexibility into the model as needed by consid-
ering truncation of more than one disjoint intervals. This leads us to the Generalized
Thresholded Gaussian Field Model:

Definition 4.6.1. (Generalized Thresholded Gaussian Field Model) Let Z(z),z €
R? be a (real-valued) stationary, isotropic and non-erratic Gaussian Field. Let further n €
{1,2,...,} and [a;,b;],7 € {1,...,n} be pairwise disjoint real intervals. The Generalized
Thresholded Field Model O(x),z € R? is then defined as:

O(z) = Y Lai<z@h-

=1

The Minkowski functionals in the Generalized Thresholded Field Model are still com-
putable due to the additivity property (Theorem 2.1.3, part vi).):

Corollary 4.6.2. (2D-Minkowski-functionals in the Generalized Thresholded
Gaussian Model) Let O(x) = Y| L4 <z()<p;} be a two-dimensional stationary,
isotropic and non-erratic generalized Thresholded Gaussian Field. Then its specific
Minkowski functionals can be expressed as follows:
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i

3(0) = > (2(h) - ®(a:)),

i=1
50) = \/g VIO S ((ai) + 6(b)
i=1

1 n
5= 70)- ; (bi - ¢(bs) — ai - P(ai)) -
Proof. (Corollary 4.6.2)
Because the sets {a; < Z(z) € b;} arc disjoint Vi we can use additivity and sum up all
contributions of the different intervals and restrict ourselves to the single-interval case
n=1:
ad ¥:
'ﬁ(l{aéZ(:z:)Eb}) =P [CL < Z(.L) < b] = (I)(b) - (I)(LL)

ad s:

F(Laczmy<sy) = 3(1z@)<a) + 51 (z()>b)
8(1(2(z)>~a) + 5(L{z(x)>b)s

where we have used Z(x) ~ ~Z(z) and 5(0) = 5(©°) and now use corollary 4.2.3 for the
two last summands.

ad x:
X(La<z@<) = —X({z@)<a) — X(1{z()>b)
= —X(L{z@>-a) = X(1{z(z)2b);
where we have used Z(z) ~ —Z(x) and x(©) = —%(©°) in two dimensions according to
Theorem 2.1.13 and now use corollary 4.2.3 for the two last summands. O

Corollary 4.6.3. (3D-Minkowski-functionals in the Generalized Thresholded
Gaussian Model) Let O(z) = >, 1(a,<z(x)<b;} be a three-dimensional stationary,
non-erratic generalized thresholded Gaussian field. Then its specific Minkowski function-
als can be expressed as follows:

n

9O) = ) (2(b) - (ar),

i=1

50) = V;_W-\/——p"(m-_Zw(a,:)w(bm,

M(®) = p"(0)- 3 (bi- ¢(bi) - ai - ¢(as))

XO) = o (0O Y (@ = 1) 6a) + (8 = 1) 9(0)].

(S

Proof. (Corqllary 4.6.1?.) Completely analogous to the proof of corollary 4.6.2 but here
we note that M(©) = —M(©°) which is clear from definition 2.2.5 and in three dimensions
x(©) = x(©°) which stems from Theorem 2.1.13. 0
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4.7 Simulation for the Whittle-Matérn-Covariance Model

The crucial step in the simulation of the Generalized Thresholded Gaussian Field Model
©(z) is of course the simulation of the underlying stationary Gaussian Random Field
Z(x) on a grid I'. This is usually easy in one-dimension and still well tractable in two,
but in three dimensions the curse of dimensionality leads to problems which are difficult
to overcome. The trivial solution Z(z) = v/ -Y, wherc Y is a vector of iid. univariate

N(0,1)-variables and /T is such that v/ - N equals the covariance matrix ¥ becomes
unfeasible for large grids T' because the numerical computation of X quickly gets too
difficult for general covariance functions p(h). However for covariance functions of finite
support direct simulation is still an option also for large fields because of the sparse
band-structure of the covariance matrix X. For simulation of general Gaussian Fields on
a grid various techniques are known in literature eg. the circulant embedding, turning
bands or random coin methods among which the circulant embedding technique is the
fastest for general Gaussian Fields. Gaussian random fields can also be simulated using
marked point processes. For an overview of simulation methods sce (Schlather 1999). The
same author provides algorithms for simulating Random Fields (not necessarily Gaussian)
implemented as a user-friendly software package called RandomFields (Schlather 2001)
written in the R language for statistical computing (R Development Core Team 2006) and
available at http://cran.r-project.org. For our experiments, we did always resort to
the RandomFields-package to simulate the underlying Gaussian Random Field. However,
it turns out that the simulation of three-dimensional Gaussian fields of considerable
size such as used in this thesis (800% &~ 10° pixels) may well exhaust the limits of these
algorithms for certain covariance models at least when a simulation result is expected in
reasonable time on an ordinary machine. Highly efficient algorithms and an exploration of
how far we can reach using contemporary computer power with respect to image size are
given in (Gneiting, Sevcikova, Percival, Schlather and Jiang 2006) for the two-dimensional
situation.

We should mention in this context also the R-package geoR (Ribeiro Jr. and Diggle 2001)
which was originally written for statistical analysis in geostatistics and is very helpful if
one attempts to fit not only specific Minkowski-functionals but whole covariance functions
or variograms to data.

In the following we restrict ourselves to considering the Whittle-Matérn-Covariance-Model
introduced in definition 4.1.9 for both our two and three-dimensional simulation algo-
rithms. This choice is to some extent arbitrary. We chose it because it is very popu-
lar in geostatistical modelling and offers a certain degree of flexibility because it is two-
parametric and the degree of differentiability of the underlying Gaussian Random Field
can be controlled (k > (2m +1)/2 implies that the field is at least m times differentiable).
But the plethora of other standard covariance models could be used as well because only
the second derivative at zero of the covariance function p(h) enters the equations for the
specific Minkowski functionals in corollaries 4.6.2 and 4.6.3.

4.7.1 2D-Simulation of Generalized Thresholded Gaussian Fields with
- the Whittle-Matérn Covariance Model

To simulate artificial images with predetermined specific Minkowski-functionals with the
2D-Generalized Thresholded Field Model © and the Whittle-Matérn covariance function,
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we use the expressions from Corollary 4.6.2 for (9(0), 3(0), x(©)). Because in two dimen-
sions we have only three Minkowski functionals, a model with only one single interval [a, b]
provides already enough flexibility. The four model parameters are then the two thresholds
a and b and the two Whittle-Matérn parameters x and v (see definition 4.1.9) which must
be chosen such that the three equations for the specific Minkowski-functionals are fulfilled.
The model is under-determined and thus we can choose the Matérn shape-parameter « to
control the covariance-structure of the model. The equation system from Corollary 4.6.2
can easily be solved numerically for the thresholds a and b and the second derivative of the
Whittle-Matérn covariance function in zero, py; ,(0). In general it is hard to express p;; , (0)
as a function of the two parameters x and v. However once an expression for pyl ;(0) is
available (which could be estimated for example by a simple polynomial approximation
for arbitrary &) we can use the relationship
17
(o) = 210 (4.50)

K,V 2
to determine the shape-parameter v. This follows directly from p.1(h) = pk(vh). The
shape parameter £ can be an arbitrary value in R*. However, if one contents oneself with
considering integer values > 3 for , then no estimation is needed at all. From (Abramowitz
and Stegun 1972, equation 9.6.28) we learn from the properties of the K-Bessel-function:

1 (”5 - 2)!
pn‘,l(o) = “m:

Hence once pj ,,(0) is determined using corollary 4.6.2 and the shape parameter & is chosen
we can use cquation 4.51 in conjunction with equation 4.50 to determine the remaining
scale parameter v. This procedure is summarized in the following algorithm:

Algorithm 4.7.1. (2D-Generalized Thresholded Field with Whittle-Matérn-
Covariance) To simulate on a finite grid I' a 2D-stationary and isotropic Generalized
Thresholded Gaussian Field-Model with a single interval [a,b], predetermined values
for the specific Minkowski functionals V;(©) and the Whittle-Matérn Covariance-Model
prv(h), proceed as follows:

k€N, k>3 (4.51)

i). Choose the Matérn shape-parameter kK € N, k > 3 to determine the covariance
structure of the underlying stationary Gaussian Field.

ii). Solve the equation system from corollary 4.6.2 numerically for a,b and P (0).

iii). Determine the remaining Matérn scalc parameter v according to:

- (k —2)!
o \/2 (=pL(0) - (s = 1)1 (4.52)

iv). Simulate a Gaussian Random Field Z(z) on I' with covariance model py ,(h) and
generate O(x) = Lia<z(z)<b}-

Remark 4.7.2.

i) In step i) we choose the shape parameter x. Of course & should be chosen to match
the covariance-function of the given structure as closely as possible. To achieve this,
we always estimated the covariance-function of the sand-structure first (see figure
1.2 for an example) and chose k to provide at least a reasonable optical fit. The
same remark applies for algorithm 4.7.3 below.
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ii) For step iv). for example the R-function GaussRF from the Random Fields-package
can be used. This fully-automated function has the advantage that it searches for
the fastest valid simulation method for the given model specifications itself.

4.7.2 3D-Simulation of Generalized Thresholded Gaussian Fields with
the Whittle-Matérn Covariance Model

The simulation of the Generalized Thresholded Ficld Model in three dimensions is com-
pletely analogous to the simulation in the 2D-casc described in subsection 4.7.1. Because
in 3D we have 4 specific Minkowski functionals we need to consider a model with two
disjoint truncation intervals [a,b] and [¢,d]. The model is then under-determined and our
experiments have shown that it is best to choose a target scale v € R* and a target shape
k € N, & > 3 in advance which then determine p; ,(0) via equations 4.50 and 4.51. We
then solve the equation system in corollary 4.6.3 for the four interval boundary thresholds
a,b,c and d. Note that it is crucial that the two intervals [a,b] and [c¢,d] are disjoint
and in the derivation of Corollary 4.6.3 it was implicitly assumed that a < b < ¢ < d
or ¢ < d < a < b. However it is possible that the solution (a,b,c,d) of the equation
system in corollary 4.6.3 violates both these restrictions. From a certain symmetry in-
herent in the equations of the system it is obvious that if (a,b,c,d) is a solution, also
(¢,b,a,d),(a,d,c,b) and (¢,d,a,b) are. Hence by permutation we have also found a feasi-
ble solution if c < b < a < dora<d<c<b. If the solution doesn’t exhibit either of
the four possible orderings one has to change the values for v and x. Because of the curse
of dimensionality it is not possible to generate very large realizations in reasonable time.
Images larger than the ones shown in section 4.9 (= 10 pixels) are already cumbersome to
work with. But fortunately the Matérn scale parameter v can be used to simulate low re-
solution images of large extracts of the porous structure. For example an 800-extract can
be simulated as a 2563-pixel image by simply choosing v = 256/800. Again we summatize
the simulation procedure in an algorithm:

Algorithm 4.7.3. (3D-Generalized Thresholded Field with Whittle-Matérn-
Covariance) To simulate on a finite grid T' a 3D-stationary and isotropic Generalized
Thresholded Gaussian Field-Model with two disjoint intervals [a,b] and [c,d], prede-
termined values for the specific Minkowski functionals V;(0) and the Whittle-Matérn
Covariance-Model p; ,,(h),

i). Choose the Matérn scale-parameter v according to the size of the image and the
desired resolution 7. To generate a cubic image of size n® pixels with a resolution of
r3 pixels, choosc v = -+ Also choose the Matérn shape-parameter x € N, £ > 3 to
determine the covariance structure of the model.

ii). Calculate pj ,(0) as:

” 1 K —2)!
pm,v( ):_ﬁz(T_)l)'

and solve the equation system from Corollary 4.6.3 numerically for a, b, c and d. The
solution is feasible if one of the following orderings holds:

a<b<e<d, e<b<a<d,
a<d<c<b c<d<a<h.
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If the solution is feasible, permute @ — ¢, b < d or both such that a < b < ¢ < d
holds.

iii). Simulate a Gaussian Random Field Z () on T with covariance model py (k) and
generate O(r) = ipeyz<py + yee Z(z)<d}-

4.8 2D-Results

In this section we show a few images generated with the Thresholded Gaussian Field
Model and the Whittle-Matérn covariance function according to algorithm 4.7.1. The goal
was to produce artificial structures which have the same specific Minkowski-functionals
as a cross-scction from the fine-sand specimen shown in the right image of figure 1.1.
We have tried out various choices for the shape parameter £ and we have also simulated
images of different size by varying the scale parameter » while always keeping the
resolution fixed at 800 pixels. Figure 4.1 shows an 800%-pixel-sized cross-section taken
from the center of the fine sand-specimen shown in figure 1.1 along with a realization
of the Generalized Thresholded Gaussian Field Model.  Both have the same specific
Minkowski [unctionals up to a negligible error.

Figure 4.1: An original 8002-pizel-cross scction taken from the 800%-pivel samples of
the HASYLAB-synchrolron sand data with fine
the left hand-side. The right image shows a realization of the 2D-Generalized Thresholded
Gaussian Field Model according to algorithm 4.7.1. The two structures share lhe same

granularily and side length = 1lpm on

specific Minkowski functionals. k was chosen to be 7.

Figure 4.1 shows that the Generalized Thresholded Ficld Model is able to generate a
granular structurce but compared to the real data cross-sections the "grains™ are to small.
An other obvious defect is that i, produces too many small black artifacts which inercases
the Buler characteristic and thus the system of black grains is too densely connected
to compensate for this excess in Luler characteristic coming from the small artifacts.
This elleet can be alleviated by choosing a larger s and hence imposing stronger positive
dependence. This inhibits too tiny black (or white) regions. But figure 4.2 shows that
the cffect cannot completely be removed. This is because the shift towards a stronger
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dependence due to a large k is compensated by a smaller scale parameter v because
according to equation 1.52 increasing £ rather quickly decrcases v. The influence of
K on the Whittle-Matérn-covariance function and the relationship between v oand w is
illustrated in figure 4.3 further below.

In figure 1.2 we display four more realizations of the Generalized Thresholded Gaussian
Field Model with Matérn covariance, each of which has the same specilic Minkowski
functionals as the original sand cross-section in the lell image of figure 4.1. The {our
realizations differ in the shape-paramcter 5. The top left image corresponding to the
smallest k-value 3 has the most artifacts whereas the bottom right image with £ — 100
has much less and also larger ones.  But apparently apart from increasing boundary
smoothness choosing w larger does not change the optical appearance of the realizations
substantially.

T g e d . .
o ‘,_"'- '°ﬁ"ﬂ"* u'.:' ,lt
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: TR -' #de

Figure 4.2: Four realizalions of the Generalized Thresholded Gaussion Model with Whit-
tle-Matérn covariance structure and the same specific Minkowski functionals as the original
800% pizel-fine sand cross-scction in the left image of figure 4.1. The shape-parameler
which controls boundary smoolhness was chosen to be v = {3,9,18,100} from left to right
and top to bottom.
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Figure 4.3 gives an impression how the Whittle-Matérn covariance function changes with
increasing x. For x larger than 100 the precision in matching the Minkowski functionals
of the original quickly decreases because the simulation of the covariance structure of
the underlying Gaussian Random becomes imprecise. Figure 4.3 also shows how fast the
scale v drops when & is increased.
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Figure 4.3: left image: The Whittle-Matérn-Covariance function for selected values of
the shape-parameter k. The scale-parameter v was held constant at 1. Increasing k means
increasing dependence. right image: In algorithm 4.7.1 the two parameters v and K are
dependent according to equation 4.52. Increasing k implies quickly decreasing v. These
two effects on the dependence structure partly compensate each other.

Finally figure 4.4 compares the original sand cross-section and the Generalized Thre-
sholded Gaussian Random Field on the micro-scale. The leftmost image shows a
2562-pixcl-sized extract from the 8002-pixel sized cross-section in the left image of figure
4.1 and two 2562 — pizel realizations from the Generalized Thresholded Field with the
same specific Minkowski functionals but different boundary smoothness.

Figure 4.4 illustrates that the Generalized Thresholded Gaussian Field Model, at lcast
if only the Minkowski functionals are matched, does not produce grains of the right size
and shape. The Gaussian grains are too lengthy or too clumped which is mainly because
the thin connections between the real sand grains are not accurately modelled. They
often arc too broad and thus clusters of separate grains appear to be a singlc one. The
figure also illustrates that on the micro-scale the effect of x on the boundary smoothness
is perceptible more clearly. The phase-boundaries of the left hand side realization (k = 2)
seem to be much rougher than the rather smooth ones of the right hand side realization
(k=T).
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Figure 4.4: A 2562 -pizel-sized catract from the 8002 pizel fine-sand-cross scction shown
in the left image of figure 4.1 (top) and lwo realizalions of the Generalized Thresholded
Gaussian Model with Matérn covariance function and k chosen to be 2 (lefl) and 7 (right).

4.9 3D-Results

In this short section we show a three-dimensional realization gencrated with the Ce-
neralized Thresholded Gaussian Field Model with Whittle-Matérn covariance funciion
according to algorithm 41.7.3 which shares its specific Minkowski-lunctionals with the
800%-pixel sized fine-sand cube displayed in the right hand side image of figure 1.1. The
realization is of size 256° pixels and the scale was chosen to be v = 256/800 in order
to achieve a low resolution image of a 800”-pixel sized Thresholded Gaussian-structure
which can dircetly be compared to the original fine-sand specimen. Both the original and
the artificial image are shown in figure 1.5.

The two images in figure 4.5 look quite similar although as alreacy in the two-dimensional
situation the Generalized Thresholded Gaussian Field Model produces small artifacts
which are not present in the original structure and it has too broad inter-grain-connections.
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Figurc 4.5: An 800% pivel-sized catract from the HASYLAB finc-sand specimen which
was already displayed as the right hand side dmage in figure 1.1 together with o 256°
pizel-sized realizalion of the 3D-Generalized Thresholded Field Model with Whillle- Malcérn
covariance funclion generated according lo algorithm 4.7.5. The two structures exhibil the
same specific Minkowski-functionals. k was chosen to be 25.

Please note that in the way algorithim 4.7.3 is formulated the two Matérn-parameters v
and # arc independent. llence s can be raised to reduce the number of artifacts without
transforing the model to a wrong scale. However our experiments have shown that the
matching of specilic Minkowski characteristics becomes imprecise if # is chosen too high.
We can conclude this section with the remark that for reconstruction purposes also in
the Gaussian Model one should not only consider the specific Minkowski functionals but
additionally include other geometrical characteristics (for example the ones of section
2.5) in the analysis. However these have been less intensively studicd so far than for the
Boolean Model and their distributional propertics are often not explicitly known in the
Thresholded Gaussian case.






Chapter 5

The Gibbsian Model

The last model we consider in this thesis is the so-called Gibbsian Model. Opposed to the
Boolean and Gaussian Models considered in previous chapters (3 and 4) it is a discrete
model that only makes sense on finite (or at least countable) lattices. Hence if the Gibbs
Model is to be applied, it is a necessity that discretized binary images such as the one
in figure 1.1 of the structure to be modelled are available. The idea of Gibbsian Fields
and most of the corresponding terminology originates from Statistical Mechanics. There,
Gibbsian Fields became popular descriptions for the cquilibrium states of large finite par-
ticle systems. This is justified by the variational principle (see section 5.4 for details)
which tells us that among all possible distributions of the states of a finite particle system
cxactly the Gibbs-distributions are the ones with the lowest free energy for a given po-
tential. In the case of finite lattices, the Gibbsian assumption for the distribution of the
lattice configurations is no restriction at all since every strictly positive probability distri-
bution on the configurations of a finite lattice can be written in Gibbsian form. The main
advantage of the Gibbsian viewpoint on a distribution is the close relationship between
Gibbsian and Markov random fields provided by the Hammersley-and-Clifford- Theorem
(see section 5.2) which will make the algorithms involving calculations of conditional distri-
butions very easy and fast for Gibbsian fields. Among these, the Gibbs-sampler is the most
prominent example of which we will present the adapted version to our problem in section
5.6. The restriction of the lattice I' being finite can be relaxed and Gibbsian-distribution
on countable sets can be defined. In the case of I' = Z¢, a Gibbsian distribution can be
defined by a so-called thermodynamic limit-procedure which basically means to consider
the Gibbsian-distributions on an arbitrary series of finite lattices I',, increasing to Z¢ and
taking the limit of these distributions. It can be shown that this procedure is well-defined
and that the limit does not depend on the series I',, that was chosen., An other approach
to define Gibbsian Random Fields on countable sets uses the idea of coherent conditional
kernels. For both these methods and properties of Gibbs fields on countable sets an ex-
cellent refercnce is the book of Guyon (Guyon 1995). The most famous example for a
Gibbsian Model on Z? is the so-called Ising-Model which has been studied extensively
in literature. It is one of the very few models so far for which both necessary and suf-
ficient conditions for the uniqueness of the Gibbs-distribution (and thus the absence of
phase transitions) are known. In general only sufficient conditions for the uniquencss can
be given. Another possibility to extend the finite Gibbsian Model would be to let the
lattice spacing h shrink to zero. This type of limit procedure is not very well known so
far. We will mainly restrict ourselves to the case of finite Gibbsian fields with binary
state space in the following. For Gibbsian fields on finite lattices with finite state space
the theory is relatively simple and a quick overview can be gained within the book by

147
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(Winkler 1995) which we use as a guideline to develop the theory in the following. To
simulate a Gibbsian Field with predetermined values for the Minkowski functionals many
different techniques are available, we have tried several of them for the simulation of ran-
dom porous media with quite dissimilar success. Of these techniques we will describe the
Pseudo-likelihood-Method (subsection 5.7.1), the Sequential Newton Method (subsection
5.7.2) and the Simulated Annealing-Method (subsection 5.8) which has turned out to be
the most promising. Because the algorithms involved to simulate from Gibbsian Fields are
equilibrium algorithms such as Markov-Chain-Monte Carlo methods, they are relatively
slow. This and the fact that the 2D-simulation results obtained with Gibbsian Fields
did not quite match our expectations prevented us from applying the Gibbsian theory to
3D-porous media so far and thus the results presented at the end of this chapter in section
5.9 unfortunately are only two-dimensional.

5.1 Definition and Properties

We start out with the definition of the d-dimensional binary Gibbsian Model on a finite
lattice. For this purpose let ' be a finite (cubic) lattice, I' C h - Z%. The space of binary
image configurations S can then be defined as & = [[,.{0,1}. The Gibbsian Model
is now given by a probability distribution on §. The Gibbsian Field is a random set ©
taking values in S. Note that S C F (and even R). We define © by giving its probability
distribution 7 on 8. It is the so-called Gibbsian distribution:

Definition 5.1.1. (Gibbsian distribution) The Gibbsian distribution on S is:

ro(s) = P (CH)
S res Exp (—H(®)’

where H(.) : § — R is the energy function.

(5.1)

Furthermore we denote by ©(z),z € T’ the random variables induced by © giving the
random pixel value at a lattice position . Similarly for s € & we denote s(z) the pixel
value of s in z € T'. Please note that for the denominator Z := 7, s Exp (—H(t)) on
the right hand side of definition 5.1.1 to make sense, the state space of the ©(z) must
be finite otherwise integrability conditions for Exp (—H(t)) with respect to a reference
measure would be needed. Also note that every strictly positive probability distribution
7 on S can be written in Gibbsian form by using the energy function H,(s) := —logm(s)
leading to Z = 1. Hence a specific distribution is specified only if the potential H(z) is
provided. On the other hand, as is obvious from equation 5.1, a Gibbsian distribution m¢
defines the corresponding potential function H only up to an additive constant.

Of special interest are those energy functions H which are driven by a potential U:
Definition 5.1.2. (Potential and its Energy)

i). A potential U is a collection of (real-valued) functions {U4 : A C T} defined on S
such that

a). UQ) = O,
b). Ua(s) =Ua(t) if 3 and t agree on A.
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it). The energy function H of a potential U is defined as:

HU(S) = Z UA(S).

Acr

The potential U and its corresponding energy function Hy are equivalent in the sensc
that the potential can be recalculated from the energy-function by Moebius-inversion (see
equations 7.28, 7.30). Among the potentials we are especially interested in those which
are constantly equal to zero for all subsets A but the cliques of a neighbourhood system
on I

Definition 5.1.3. (Neighbourhood-Systems and Cliques on T')

i). A collection § = {6(z),z € T} of subsets of T is called a neighbourhood-system
on T if:

w) © ¢ ),
b.) yed(z) =z € d(y).

it). The Cliques of a meighbourhood-system on T are the subsets C C T such that
every two distinct points x and y (x # y) are neighbours of each other, ie. y €
dz)Ve #yeC.

It is evident that each neighbourhood system can be represented by a graph with the lattice
points x € I" as vertices which are joined by edges if and only if they are ncighbours. The
cliques C' correspond to. complete subgraphs. Conversely each graph and hence each of
the adjacency systems discussed in this thesis so far induces a neighbourhood system in
a natural way. As an example the ordinary cubic lattice graph in 3D induces the 6-
neighbourhood in which each lattice point z is surrounded by the 6 neighbours to which it
is joined by the six edges that meet in x and arc parallel to the coordinate axes. The non-
trivial cliques consist of vertex pairs which delimit a lattice edge. For the three dimensional
26-ncighbourhood on a cubic lattice (which means including face and spatial diagonals as
edges) that we will need in the following, the largest cliques are the vertices of the single
lattice-cell-cubes. This neighbourhood will be interesting for us because all the vertices,
edges, faces and volumes of the adjacencies considered in this thesis and all the subsets
needed to calculate the different OM-estimators for the specific Minkowski-functionals are
cliques with respect to the 26-ncighbourhood.

Definition 5.1.4. (Neighbourhood potentials) Let a neighbourhood-system § on T be
given. A neighbourhood potential for § on S is a potential U such that Uq = 0, VA
which are not cliques.

We will call Gibbs-Fields with a Neighbourhood-Potential Neighbourhood-Gibbs-Fields
in the following. It will turn out that the potentials we will need in the following are
in fact neighbourhood-potentials with respect to the 26-ncighbourhood on the regular
finite cubic lattice I. As will be explored in the next section, the main advantage of
Gibbs-models © with neighbourhood potentials is that the conditional distributions
P [O(z) = $2| Nyyer yze} OY) = 8y] for sz, s, € {0,1} can be easily determined without
having to calculate the sum in the denominator Z of equation 5.1. This is crucial for
the algorithms in later sections to attain the desired results in reasonable time. Note
that already in the binary case the number of summands in Z grows exponentially, ie. if
IT'| = n, we have || = 2"
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The next section is devoted to the Hammersley and Clifford- Theorem which cstablishes the
connection between Gibbs Models with neighbourhood potentials and Markovian Random
Fields and thus justifies why such Gibbs Models can quite easily be simulated.

5.2 The Hammersley and Clifford-Theorem

In this section the connection between neighbourhood-Gibbs-Fields and Markovian Ran-
dom Fields is established. For this purpose, we quickly recall the notion of Markov Random
Fields in our setting:

Definition 5.2.1. (Markovian Random Fields) A random field © is called a Markov

Random Field on T with respect to a neighbourhood-system 8 if Vs € S and Vr € T the
following holds:

P[O(x) = s2|0(y) = sy,y # ] = P[O(z) = 5:|0(y) = sy, 4 € §(x)]. (5.2)

For simulation algorithms involving the successive update of single pixels (or regions) of T
conditioned on the rest of I", the Markov property of equation 5.2 is most welcome. The
following well-known theorem by Hammersley and Clifford shows that the Neighbourhood-
Gibbs-Fields and Markovian-Fields are in fact the same class.
Theorem 5.2.2. (Hammersley and Clifford) Let § be a neighbourhood-system.

i). A random field © is a Markov Field if and only if it is a Neighbourhood-Gibbs-Field.

ii). For a Neighbourhood-Gibbs-Field © and an arbitrary subset A C T':

PlO(z) = 85,z € AlO(y) = sy, y € A ] =P [O(x) = 55,7 € A|O(y) = sy, y € 64],
where 0A := Ugeca 0(x) \ A.

Proof. (Theorem 5.2.2)

We show part ii). first.

ad ii): We can write:

r(s) = Exp (— Y cer Uc(s))
’ EteS Exp (_ chp Uc(t)) ’

where the sum in the exponential runs through all the cliques C' C T’ with respect to 4.
For A C T" we define the following partition of the sct of cliques C:

Ca:={C Cliqueof I': C N A # §}, Cae = {C Cliqueof I' : C N A = (}},

then we have for s with s(x) = s;,2 € 4 and s(y) = s,y € A%
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Exp (— e Uc(s))
ZtES,t(y)zsy,yeA“ EXp (_ ZC’EC UC(t))

Exp (— Ycec, Ue(s)) - Exp (— Toec,. Uols))
2 168,(y)=s, yeae EXP (— > ceca UC(t)) -Exp (— 2o0eC e UC(t))
B Exp (— 2oceca UC(S))
' Lresutnmsywess B (= Toee, Vo))

P[O(z) = 57,7 € A|O(y) = 5,y € A°] =

where we have used that for C € C4c and t € S : t(y) = sy, y € A® we have U,(t) = Ue(s)
by definition 5.1.2, part i)b).

If we now exploit that for C' € C4 we have C' € AU JA, we can conclude:

PO(z) = s,,x € A|O(y) = sy,y € A =

Exp (— > cec, Uc (5)) * D teSit(z)—snweAUsA EXD (“ 2 CECe UC(t))
ZLES,t(y)=sy,yEAC Exp (_ ZCecA UC(t)) . ZtES:t(m):sm,meAUJA Exp (_ ECECAC UC(t))
- ZteS:t(w)zsx,wEAudA Exp (_ >cecUc (t))

ZtGS,L(y)=sy,y€A° ) EleS:l(w)zsm,meAUJA Exp (— ZcecA Uc (t)) - Exp (— ZCECAC UC(l))

_ D tesit(z)=se meavsd BXD (= Loee Uc(t))
ZLES:t(m)=s,,,,rI:€5A Exp (— YcecUc (75))

which was to show.

= P[O(x) = 84,7 € AO(y) = 5,,y € 04],

ad i): The fact that Neighbourhood-Gibbs-fields are Markov fields follows immediately
from ii). by specializing A = {z} for arbitrary # € T. It remains to show that Markov
Random Fields must be Gibbs-Fields with a neighbourhood-potential.

The converse direction of i). is not directly relevant for us in the following and can thus
be found in the appendix (subsection 7.4.1). ]

From the proof it becomes clear that the theorem holds for arbitrary finite state spaces
and that a restriction to binary fields is not necessary. It should also be mentioned here
that the Hammersley-and-Clifford-Theorem holds in a more general sctting where the
state space is allowed to be discrete and infinite. For details please refer to (Guyon 1995,
Theorem 2.2.1).

With the Hammersley-Clifford-Theorem at hand it becomes clear why Gibbsian Fields can
easily be simulated by MCMC-type algorithms such as the Gibbs-Sampler (see section 5.6).
For example in 2 dimensions with the usual 4-neighbourhood induced by the edges of a
square lattice I', the conditional distribution needed to update a single pixel of a Gibbs
field at a particular lattice point z € T' conditioned on the pixel values of all the other



152 Chapter 5. The Gibbsian Model

lattice points thanks to the Markovian structure only depends on the 4 neighbouring pixel
values regardless of the size of the finite image lattice. With image size the number of
possible (binary) configuration grows exponentially and to implement a Gibbs-sampler on
large images (= 10° pixels) where each pixel (or block of pixels) has to be updated a
myriad of times (= 10° runs) until the equilibrium has been reached, the Markov property
is absolutely crucial.

5.3 Choice of the Gibbs-Potential

We will now start adapting the Gibbsian Model developed in the former sections to our
problem of simulating porous binary structures with predetermined specific Minkowski-
valucs. The important question to answer here is how we should choose the energy function
H for our Gibbs-Model. The model has to distinguish configurations in & by means of their
Minkowski-functionals V;(s),j € {0,...d} and configurations with the same Minkowski-
functionals should be assigned the same probability under the Gibbs-Model. Hence the
natural choice for the energy function H for our purposes is a linear combination of the
Ohser-Miicklich estimators V;(s) as defined in subsections 2.3.1, 2.3.2:

Definition 5.3.1. (OM-energy) Let \%(s),j € {0,...,d} be the OM-estimators for the
Minkowski-functionals V;(s) of the binary configurations s € S. Then the energy function

d

Houm(s) =Y 8- Vi(s),

j=0
where the (3; are real coefficients, is referred to as the OM-energy in the following.

Please note that we work here with the OM-estimators V] for the unspecific Minkowsk:
functionals V;. The field volume h® - |T| enters the formula for Hoy only implicitly as a
contribution to the coefficients 5;. Assume that the grid T' consists of n voxels with grid
constant h. The parameters ﬁj for a differently sized extract of size i voxels with grid
resolution / can then calculated by the following rescaling formula:

Bi Ak

5 nht

For the Gibbs Model with energy function Hops every choice of a parameter set 3;,j €
{0,...,d} defines a random set © on S with different Minkowski functionals per unit vo-
lume, V;(©). One would like to choose the parameters 3; such that the basic modelling
equation 1.1 is fulfilled, ie.,

vj(s0) = ¥;(©), j €{0,...,d}, (5.3)

where the v;(sq) are the predetermined values for the Minkowski functionals per unit vo-
lume which possibly stem from some digitized reference image sy € S. Note that it doesn’t
make sense here to consider the specific Minkowski-functionals as defined in 2.4.3 since
the realizations of the Gibbsian Model © are restricted to a finite lattice and therefore not
stationary in R%. Therefore VJ(@) simply means here the expected Minkowski-functional
V; per unit volume. Unfortunately the specific Minkowski functionals for the Gibbsian
Model are unknown analytically and thus instead of solving equation 5.3 one has to resort
to considering:
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, E|Vi(©)
v;j(s0) = —v—[l—vvl—-—l, jedo,...,d}. (5.4)

Solving equation 5.4 for a parameter set 3 corresponds to finding the Mazimum-Likelihood-
estimator SMLE, In fact the solution of the optimization problem

Exp (— Y404y - Vilso)
Tees Bxp (= S0 - U5(9))

is given by the following equation-system for jo € {0,...,d}:

BM LE

— max

d d
0= Bxp [ =Y BMEE . Vi(s) | - (~Vig(s0)) + 3 Vi(s) - Bxp | — Y AMEE . Uy (s)

s€s i=0 €S =0

which is equivalent to equation 5.4 after dividing by the field’s volume.

As can easily been seen from the definitions of the OM-estimators in subsections 2.3.1,
2.3.2 the energy-function Hops corresponds to a neighbourhood-potential for the 8-
neighbourhood in 2D and the 26-neighbourhood in 3D on the squared (cubic) lattice
respectively and hence the Hammersley-and-Clifford-Theorem (Theorem 5.2.2) may be
applied and the Markovian structure with respect to these neighbourhoods may be ex-
ploited. In fact the estimators boil down to counting vertices, edges (lattice cell edges, face
diagonals and spatial diagonals, and planes (lattice cell faces, diagonal faces, triangular
faces) within certain selected pixel configurations. All these are cliques with respect to the
8-(26-)-neighbourhood and hence all the information needed to calculate the estimators
can be calculated by considering the cliques which are subsets of lattice squares (or lattice
cubes). It will turn out in section 5.7 that not only simulation of the Gibbsian Field
but also determination of the parameters 3; becomes much easier because of the Markov
property.

5.4 The Variational Principle

In this section and the next onc we can give two justifications why the Gibbs Model is
a natural choice when it comes to modelling porous media. The wvariational principle
discussed in this scction is in fact a mathematical formulation of the maximum entropy
principle which is one of the most fundamental principles at the very heart of physics in
general and especially statistical mechanics where it is usually referred to as the second
law of thermodynamics. In simplified terms, the maximum entropy-principle means the
fact that any self-supporting process in any isolated system of free particles increases the
physical entropy S of the system and thus the system spontaneously organizes itself in such
a way that the physical entropy is maximized and equivalently the amount of free energy
available in the system is minimized. In stochastic terms the maximum-cntropy-principle
can be formulated as the so-called variational principle. This is the core statement of this
section and means the following: For a random physical particle system with a certain
constant amount of intrinsic energy U, the distributional law which maximizes entropy and
thus according to which matter organizes itsclf is exactly the Gibbsian distribution for this
energy function. This crucial result explains the importance of the Gibbsian distribution
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for statistical physics and why it originated from there. If we understand the natural
formation process of porous media as a random system and if we agree upon the fact
that nature respects the maximum entropy principle during this formation process, then
the distribution of the porous structures that can be observed in nature should follow a
Gibbsian law and thus the Gibbsian Model should perform well when it comes to modelling
such structures. It is important to know that the variational principle as a mathematical
statement only holds for systems on the infinite lattice h - Z? and thus only after passing
to the thermodynamic limit with the necessarily finite lattices I' we use in practice. In
order to give a more precise formulation of the variational principle, we need to introduce
some basic definitions of entropy in probability theory in the following. We will not recall
here the basic notions of energy and physical entropy of thermodynamics since they are
discussed in every basic textbook about statistical physics, but we will make use of the
following fundamental relationship:

Definition 5.4.1. (Free energy) The Free energy F of a physical system is

F=U-T-5,

where U is the intrinsic energy of the system, S is its (thermodynamic) entropy and
T is the temperature.

An entropy concept also exists in probability. For two arbitrary finite measures p and v
we can define their relative entropy (or equivalently Kullback-Leibler-divergence) in terms
of the following non-symmetrical ”distance”:

Definition 5.4.2. (Relative entropy) Let p and v be two finite measures on Z% and
denote by ur and vr their marginals on a finite subset T C Z%. Then the relative entropy
Er(plv) of u with respect to v on T is defined as:

_ ur ;

—00 otherwise.

The concept of Kullback-Leibler divergence is of course by no means restricted to Z¢ and
can be introduced for general probability spaces. To an arbitrary stationary probabil-
ity measure p on Z? we can now assign its specific entropy by a thermodynamic limit
procedure:

Definition 5.4.3. (Specific entropy) Let I',, be an increasing sequence of lattices with
limy 00 [y, = Z% and let p be a stationary probability measure on Z4 with marginals pr,, .
Then the specific entropy E(h) of u is defined as the thermodynamic limit of the relative
entropy of p with respect to the counting measure X on the sequence I'y,:

E(w) = lim &, (uA) = - lim E, (logur,)-
With these definitions at hand, we can now formulate the variational principle:

Theorem 5.4.4. (Variational Principle) Let P(Z?) be the set of all stationary pro-
bability measures on the set of binary configurations over Z.% and denote by H : & — R
an energy function and ug the corresponding Gibbs measure according to definition 5.1.1
after passing to the thermodynamic limit. Then:

pG = arg mmd) [ELH] —E(w)]. (5.6)
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Proof. (Theorem 5.4.4) The variational principle is an immediate consequence of
(Guyon 1995, Theorem 2.1.4, p.54).

In thermodynamics the energy function H(s) corresponds to the physical cnergy of the
state s scaled by inverse temperature T' (and eventually the Boltzmann-factor kg). The
quantity E,[H] then plays the role of U/T and if we treat the temperaturc as constant
equation 5.6 becomes:

Ho =arg min F(u),

hence the Gibbs measure is in fact the distribution on Z¢ which minimizes the amount
of free energy. In our case the energy function H is the OM-energy Hops according to
definition 5.3.1 with the ; chosen such that the basic modelling equation 5.4 is fulfilled.
Therefore we conclude that among all distributions in P(Z%) which lead to the same prede-
termined values for the specific Minkowski-functionals v;(s), the Gibbsian distribution 7¢
with energy function Heps is the one which maximizes entropy (or equivalently minimizes
free encrgy). One should bear in mind that the variational principle gives a justification
in favour of the Gibbs Model on Z¢, and thus only after the thermodynamic limit proce-
dure, however it is almost trivial to see that on a finite grid I", the Gibbsian distribution
maximizes entropy as well. For later reference we provide the argument here. On a finite
grid I' the maximum entropy problem reduces to the following optimization problem with
side-constraints:

mox, { > p(s) logp(b} (5.7)

seS
subject to:

D Vi(s)-p(s) = V(so) forj€{0,...,d}
s€S
Zp(.s) = 1.

sES

where V' (sg) are the predetermined unspecific Minkowski values. This can easily be solved
by introducing the Lagrange-multiplicators Aq, ..., Ag for the first set of constraints and
A for the last. We then must have:

—log p(s —1_2,\ V(s

and thus:

p(s) = Exp ZA - Vj(s) ,

where A can be determined by summing up the last equation over s € § and using the
constraint that p must be a probability distribution on I'. We find:

Bxp (S0 - Vi(s))
2 tes Exp (_ D=0 ‘/J(t)) ’

p(s) =
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which shows that in fact p = m¢ for the OM-encrgy function and with Bi = Aj,J €
{0,...d}. The only drawback here is that the Minkowski-functionals V;(s) cannot be
determined exactly and thus the OM-energy function uses their estimators V](e) instead.
In the next section we will see that on a finite grid I' among all probability distributions
concentrated on binary images with the same Minkowski functionals, entropy is maximized
for the uniform distribution. The maximum entropy principle will enable us to establish
a connection between the Gibbsian distribution and the uniform distribution on the set of
images s € § which share the same Minkowski-functionals.

5.5 Julész-Ensembles

In this section we discuss the fact that the Gibbsian distribution with the OM-energy
function converges in the thermodynamic limit to the uniform distribution on the set of
images with the same specific Minkowski functionals. Such a set will be called a Julész-
ensemble, named after the famous Hungarian experimental psychologist who revolutio-
nized the theory of visual perception with his studies about ensembles of neurons. The
convergence of the neighbourhood-Gibbs distribution to the uniform distribution on the
Julész-ensemble still holds if we replace the OM-energy with a finite linear combination
of arbitrary image statistics as long as they arise from a neighbourhood potential and
thus can be calculated as spatial averages of local image features. These image features
() S = R,j€{l,...,n} in our case must be computable from the 92 specific binary
vertex combinations i of the 2¢ vertices of the unit cell of the cubic lattice I". Similarly as
for the OM-estimators for the Minkowski-functionals in Chapter 2 such an image statistic
is computable from the summary statistics (or configuration vector) h whose components
h(i),i € {0,...,22" - 1} indicate how often each of the vertex configurations can be found
among the voxels of the lattice I'. For simplicity we assume for the rest of this section that
all considered lattices I have the same unit lattice spacing. It is often more convenient to
work with the specific configuration vector h(s) := h(s)/|T'| which indicates the relative
frequencies of the 22" vertex configurations in an image §. The summary statistics ¢(.)
we consider in this section can then be obtained by multiplying the configuration vector h
with a 22°-contribution vector ¢, whose components ¢; give the contributions of a specific
vertex configuration i to the statistic ¢(.) Analogously the specific summary statistic ¢ is
obtained by multiplying ¢ with the specific configuration vector h:

2271 22% 1
os) = ci-h(@),  Bs):= Y. ki) (5.8)
=0 i=0

Furthermore the Gibbsian energy functions H we consider here are of the following form:

H?(s) := Zﬂj - @ji(s), (5.9)

where the f3; are chosen to fulfill the basic modelling-equation Er , [¢;(©)] = v; and
the v; are preset values for the specific feature statistics. It is easy to see that the
OM-estimators V;(.) of subsections 2.3.1 and 2.3.2 constituting the OM-energy defined in
5.3.1 arc in fact of this type.

It is even possible to establish an equivalence between the thermodynamic limits of the
Gibbs-distribution and the uniform distribution on the Julész-ensemble. An introductory
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discussion of this equivalence and its derivation can be found in a scries of computer
science papers by Wu, Zhu and Liu: See (Wu, Zhu and Liu 1999, Wu, Zhu and Liu 2000)
for the theoretical aspects and (Zhu, Liu and Wu 2000) concerning simulation.

Let us now dcescribe the ensemble-equivalence in mathematical terms. We consider an
increasing sequence of finite lattices I',, with lim,—o I'n = Z% and denote the correspon-
ding configuration spaces with &,, := {0, 1}|F"|. The uniform distribution on &,, we denote
by Ur,. We are intercsted in those configurations s € &, which share the same specific
Minkowski-functionals V;(.) or more generally the same values v; for the specific feature
statistics ¢;(.). We write v := (v;) je{l,..,n} for the vector of target feature statistics and
introduce the notation

QI‘n(U) - {3 €8n: ij(s) = vy, Vi e {1, R ,’I’L}}

to denote the set of all configurations over I',, which share the same values for the specific
feature statistics. Similarly Q4(v) for a sub-lattice A € I',, denotes all configurations
over the sub-lattice A whose values for the specific images statistics ¢ arc vj. Note that
because the specific configuration vector h can only attain discretely many values, it is well
possible that the set Qr, (v) is empty for a specific value of v. This minor complication can
be handled by considering a small set V containing v and its nearest attainable discrete
approximation and arguing for V instead of v. However for the sake of simplicity we will
ignore this problem in the following and directly work with v instead. We write U, ,, for
the uniform distribution on Qr_(v), ie:

Un o(s) i= { 1/1Qr,(v)| if s € Qr, (v)
MO 0 if s € S\ Qr, (v).
The Julész-ensemble can then be defined as the thermodynamic limit of the uniform
distributions Uy ,(s) for n — co:

Definition 5.5.1. (Julé_sz-Ensemble) Given a set of specific feature-statistics-values
v = (vj)je{1,....n} for the ¢;, the corresponding Julész-ensemble is the limiting distribu-
tion of Up,(.) as Ty, — ze.

We are well aware that definition 5.5.1 is a little vague because we do not describe the
limit process in detail neither take into account any boundary conditions. However to
establish the ensemble-equivalence to an extent which suffices for our purposes, this is
not necessary. Often besides to the limiting distribution the term Julész-ensemble also
refers to the set of all configurations over Z¢ which have the values v; for their specific
feature characteristics. In thermodynamics the Julész-ensemble corresponds to the so
called micro-canonical ensemble which describes an isolated particle system with a certain
fixed energy. On the other hand the Gibbs-ensemble corresponds to the so called canonical
ensemble which describes a system which is in equilibrium with a heat reservoir of constant
temperature T'. Likewise the Gibbs-ensemble can be defined as a thermodynamic limit of
the Gibbs-distribution:

Definition 5.5.2. ( Gibbs-ensemble) Given a set of specific feature-statistics values v =
(’Uj)je{l’__.’n} for the ¢;, the corresponding Gibbs-ensemble is the limiting distribution of
the Gibbsian distribution m¢,, on S, with the energy function H?® as T, — Z&, where:

Exp (— 3271 67 - 64(5))

P 1
= , B" such that Egn[¢;] = vj.
ies, Bxp (= X 87 44(1)) ’

7TG’,TL(S)
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Hence the main difference between the ensembles of definitions 5.5.1 and 5.5.2 is that
the Julész-ensemble selects configurations s over Z¢ which satisfy the hard constraint
¢;(8) = v; whereas the Gibbs ensemble only implies the soft constraint Erlé5] = vj,
thus in the Gibbsian-ensemble the predetermined values v; must only be met in average.
Note that the Gibbs distribution 7., assigns positive mass to all configurations s € S,
whereas Uy, ,, is concentrated on the Julész-ensemble only. Using the above terminology
the ensemble-equivalence can now be described as follows: Under certain regularity
conditions the distribution 7 ,(s) finally concentrates its mass uniformly on the Julész-
ensemble and therefore the two ensembles (over Z?) can be regarded as equivalent.

A heuristic argument for the ensemble-equivalence relies on the variational principle for
the Gibbs-distribution. On finite lattices I" we have seen in section 5.4 that the Gibbs
distribution with E [Q_SJ] = v; is the solution to the maximal entropy problem 5.7. It is
equally easy to see that on finite lattices I' it is the the uniform distribution U on & that
maximizes entropy, ie. U is the solution to:

— -1 ) s 5.10
pg}Paé){ ;Sp(S) ng(b)} (5.10)
subject to:
> p(s) =
se8

This can be seen as follows: The entropy Sy of the uniform distribution U is:

log — = log |S].
== 57 s gy = 1S

sesS

If p= (py,..., Pis|) is an arbitrary other distribution on § with entropy Sp we have:

Inz <z—1 VzeR™,

1 1
log( )5 -1 viedl,...,|S|},
\STw) S &n {81

— P; ViE{l,...,|S|},

l

1
<= —pi (log|S| +logp;) < I-S:'-
Zs &
=% —log|S]+Sp <0
=  Sp <loglS| = Sy.

Obviously this argument still works if we look for a distribution with maximal entropy
on a subset of S. Thus U, , is the entropy maximizing distribution on Q- (v). If we
summarize so far, we have that the Gibbsian distribution 7 ¢, maximizes entropy under
the soft constraint E, [qBJ] = v; and the uniform distribution U, , maximizes entropy
under the hard constraint ¢; = v;. The equivalence of ensembles then follows if we can
resort to a law of large numbers in the following sense:

In Pn—>Z .
vj=¢; — Er, [(]5]] =v;, Vie{l,...,n}

Of course this can also be proved more rigorously. The following theorem is proved for
example in (Wu et al. 1999) and a sketch of its proof is provided in the appendix:
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Theorem 5.5.3. (Equivalence of Ensembles) If there is a unique vy, where sg(v)
(defined as in equation 7.32) attains its mazimum, then the Gibbs-distribution ¢ for
I, — Z% eventually concentrates its mass on the Julész-ensemble corresponding to vy,
and conversely the uniform distribution Un,, for T'n, — Z% converges to the limit of the
Gibbsian distribution ng .

Proof. (Theorem 5.5.3) see Appendix, subsection 7.4.2.

The equivalence of ensembles will give us a powerful tool to simulate from from the Gibb-
sian ensemble or more precisely from an approximation of it on a sufficiently large lattice
I'. In subsection 5.8 we will simulate from an approximation to the Julész ensemble in-
stead which is a parameter-free model and hence the Gibbs-Model can be applied via the
cquivalence of ensembles without having to estimate any parameters at all!

5.6 Gibbs-Sampling

5.6.1 General Definition

We have now accumulated enough theoretical facts to be ready to apply the Gibbsian
Model to the simulation of porous media. The basic question we have to answer when
attempting to do so is how to simulate from the Gibbsian distribution (definition 5.1.1).
Especially in the case of neighbourhood-potentials (definition 5.1.4) the well-known Gibbs-
Sampler is perfectly suited to accomplish this task. In this section we will briefly recall the
Gibbs-Sampling algorithm and exemplarily describe its most important application for
us, namely the simulation from the Gibbsian distribution with the OM-energy (definition
5.3.1). For all techniques to simulate artificial porous structures with predefined values
for the specific Minkowski-functionals that will be presented in section 5.7 it is always the
Gibbs-sampler which we now describe that is used to simulate from the Gibbsian distribu-
tion and the methods only differ in choosing an appropriate parameter set 8 = (Bo, ..., B4)-

The Gibbs-Sampling-Algorithm can be used (in principle) to simulate from an arbitrary
multidimensional distribution whose density we denote by f. Note that Gibbs-Sampling is
a truly multi-dimensional procedure which makes no sense in the one dimensional setting.
Thus let d > 2. It is crucial for the Gibbs-Sampler that the density f from which we
intend to simulate is known analytically and all its one-dimensional conditional densities
fi(zil#1,- -, 2i-1, Zit1, ..., 24) are known and can be simulated. The Gibbs-Sampler is a
Metropolis-Hastings-type MCMC-algorithm and therefore itcratively generates a Markov
chain which has f as its limiting distribution regardless of the starting value zo which
must be provided. The main advantage of the Gibbs-Sampler over the usual Metropolis-
Hastings procedure is that no simulated values are wasted, ie. each simulated value gets
accepted with probability 1. If the above conditions are met, the algorithm works as
follows:

Algorithm 5.6.1. (Gibbs-Sampler)

i). Choose an arbitrary starting value z(0) = (29,...,29)

ii). For t =0,1,2,3, ... update the vector 2® as follows:

e First draw zgtH) at random from f (zl|zg), - ,zg)).
e Then for i = 2,...,d-1 draw zZ(tH) from fi(zi|z§t+1), ey zi(t_tl),zgr)l, . ,z((it)).
e Finally draw zc(itﬂ) from fd(zd]zgprl), e, z((iL_“Lll)).
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iii). Repeat step ii). sufficiently often until the chain has reached it stationary distribu-
tion. Then (z1,...,2q4) ~ f.

The correctness of the Gibbs-Sampler can be proved under mild regularity conditions.
A detailed discussion with many application examples including proofs can be found in
(Robert and Casella 1999, Chapter 7).

Although simulating from an (in principle) arbitrarily high-dimensional density each step
of algorithm 5.6.1 only involves simulations from one-dimensional distributions. But often
these distributions are not even analytically calculable or are at least difficult to simulate.
However, for ncighbourhood-Gibbs fields because of the Markov property (definition 5.2.1)
it turns out that applying the Gibbs Sampler becomes very easy.

5.6.2 The Gibbs Sampler for Neighbourhood-Potentials

We will now specialize algorithm 5.6.1 to the case where we want to simulate from the
Gibbsian distribution with the OM-energy (definition 5.3.1) on the space of binary con-
figurations S over a finite grid I'. The neighbourhood used in our experiments was the
classical 8-neighbourhood in two dimensions on the square grid but other neighbourhoods
on other grid types (eg.a hexagonal grid) would as well be possible. In our case the density
from which we want to simulate has the dimensionality of the grid size |I'| and the com-
ponents s(z;) of the Gibbsian target vector © = (O(x;),,er) we intend to simulate are the
black /white-pixel values corresponding to the lattice point in an arbitrary but fixed order.
In each iteration of the Gibbs-Sampler only a single pixel ©(z;) is updated according to
the conditional distribution f;(©(x;)|0(x;),j # i) given all the other pixels of the image.
Because of the Markov property (definition 5.2.1) only the pixels in the neighbourhood
0(x;) of z; have to taken into account which in case of the 8-neighbourhood arc only 8
pixels instead of |I'| — 1 in total or equivalently the 4 vertex configurations in a square
of 2 x 2 lattice cells centered at x;. This makes the Gibbsian approach computationally
feasible also for large three-dimensional images. If we order the configurations s € § in
an arbitrary way, ie. s = {s1,..., s} and if we denote by a slight abuse of notation
s§ ={s1,--.,8i-1,8i41,..., 8|} the sub-image of s image when leaving out the 7.th-pixel
value and by ds; = {s; € 5: x; € 6(x;)} the sub-image of s consisting of the pixel values
at neighbouring lattice points of x;, we can write:

P[O(z:) = 8i|O(xk) = sk, z € T, k # i
Bp (= Yoo By Vylo Us9)

Exp (= S0 - Vilss Us)) + Exp (= S 8y - V(1 - 50) Us5))
Exp (~ X250 85 - Vi(si U 6s,))

Bxp (= 50 8- Viloi U ds)) + Bxp (= i B - V(1 — ) U s:))

because all the pixel values of s which correspond to lattice points outside the neigh-
bourhood 6(z;) show up in the exponential of the numerator and both summands of the
denominator as well and thus cancel out.

, (5.11)

How conveniently the Gibbs-sampler-algorithm adapts to our problem can be demon-
strated best if we write the unspecific OM-estimators in the form of equation 5.8 and de-
note the 4 lattice cells meeting in z; by I'y, (upper right), F?I"ﬁ (upper left), T4, (lower left),
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I“lji (lower right). We further denote the set of the corresponding vertex-configurations
€ [0,15] of an image s after setting s; := 1.

I(SI-,‘ = {’L]_":Ié:, Zpgf , i[\ﬁnl,i , Z]_*‘l[r' } (512)

accordingly. Then with the help of the proposed configuration vector difference Ah(i),i €
[0,15] whose components we define according to the vertex nomenclature introduced in
Chapter 2 (basically figure 2.1) to be 0 except for:

Ah(ipy ) =1, Ah(ipy —1) = =1, Ah(ire): Ah(irur —2) := —1,

=1,
Ah(ipy ) i=1, Ah(ipy —4) = —1, Ah(ipg)i=1, Ah(ipg —8) =1, 1)

it is easy to see that we can rewrite equation 5.11 as:

1
1+ Bxp (= g Si20 B - c5i - AR(D))
P (O(z;) =1|0(zx) = 85,2, €T,k £i] = 1-P[O(x;) =0|0(zx) = sj,xp € Dk #1],
(5.14)

P[O(z;) = 0[0(zx) = sj,ax € T,k #£14] =

where the ¢;; are the contributions of configuration ¢ to the OM-estimator of V;. This
demonstrates how easily the pixel updates can be performed by simply keeping track
of the change Al in the configuration vector h. The proposed configuration difference
vector Ah describes the change in the configuration vector h if the pixel z; flips from
0 to 1. However if the actual flip when updating the pixel is the other way around,
we must of course also keep track of the real change in the configuration vector which
can be similarly done. If the pixel doesn’t flip its value at all, there is evidently no real
change of the configuration vector at all. After a pixel has been updated the updating
probabilities for the next pixel in equation 5.14 can again be computed using the new
proposed configuration vector change Ah given above.

As a starting point for the Gibbs-sampler an arbitrary image s € S will do. We mainly
used onc of the following three natural choices for our experiments:

o Completely white image s; = 0, Vi or completely black image s; = 1, Vi.

e White noise image as a realization of © with P [©(x;) =0] = P[O(z;) =1] = 0.5
independently for all i.

e The true image for which an artificial Gibbsian realization with the same Minkowski-
functionals should be created.

Of course the last choice should only be used to test the Gibbs-Sampling-Algorithm in
the case of convergence problems. In general of course, the algorithm should be able to
find the cquilibrium distribution on its own.

Evidently, the Gibbs-sampler algorithm works not only for the OM-energy but analogously
for gencral image feature statistics ¢(.) defined according to equation 5.8. We can sum-
marize the above arguments about the Gibbs-sampler with potentials of the form given in
equation 5.9 in the following algorithm:
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Algorithm 5.6.2. (Gibbs-Sampler for H?-energies) Let a finite 2-dimensional square
lattice I' = {z1,..., 2} with a specified ordering of its lattice points be given and denote
by S the space of binary configurations over I'. By h{*?) we denote the configuration
vector of the actual image after ¢ pixels have been updated in the ¢-th image-sweep and
59 denotes the actual image after ¢ pixels have been updated in the ¢-th sweep. Further
let the ¢;; be the contribution of the ith configuration to the OM-estimator of the jth
Minkowski functional. To simulate a random image © = (©(x;))s,er as a realization from
the Gibbsian distribution driven by an energy function H? of the form given in equation
5.9 with known coefficients 3;,7 € {1,...,n}:

i). Choose an arbitrary starting image s©% from S and determine its configuration
vector A(00),

ii). For t € {0,1,2,3,...} sweep the image by updating for ¢ € {1,...,|T|} the pixel
values corresponding to the lattice points x; according to the pre-specified order.
The update of a single pixel at z; is done with the following procedure:

1. Determine the configurations the neighbouring lattice cells to z; would have if
s; were 1 (see equation 5.12 and preceding paragraph):

. . . . 4
I&Ei = {ZT‘?J.:L;‘, 711—".:;:1‘ s ’lrgcli ) 7’1—‘_4,:";:} [ [0, ].5] .

2. Calculate the proposed configuration vector difference Ah(z) for the configura-
tions Zs,, given in cquation 5.13.

3. Gencerate a realization U(w) of the uniform random variable U ~ Unif|[0,1].
4. If

1
Ulw) < R —

set sgt’i) := 0, otherwise sct sz(-t’i) := 1. Set further s.,(-L’i) = Sgt’i_l) Vi #i.

ot

Because due to the pixel-update the vertex-configurations of the four lattice
cells T3, I",‘Ifﬁ, I‘ﬁi, I’ meeting in z; might have been altered, update the
configuration vector h(t~1 to h(t) by changing the 8 relevant entries if a
pixel-flip has occurred (ie. if sgt’i) +# sgb’i_l)), otherwise set (i) ;= plti=1) If
i = |[|, set s(t+10) .= 5T and pU+1.0) .= p®ITD)

iii.) Repeat step ii). until the equilibrium has been reached. The actual image 509 (for
1o large enough) is then a realization from ©.

Remark 5.6.3.

i). The update of the configuration vector in step ii), part 5 in case of a pixel flip is
done according to equation 5.13 if the pixel flips from 0 to 1: A2 .= plbi=D L A(p).
If the flip is from 1 to 0 the configuration vector change is also given by equation
5.13 after flipping signs: A9 = plti=1) _ A(p).

ii). Obviously the pixels at the boundary of T' cannot be updated according to the
above algorithm because they have no complete neighbourhood. Either one uses a
slightly modified update-procedure by just considering the alterations in the vertex-
configurations of the one or two lattice cells meeting in such a boundary point or
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iii).

iv).

one simply keeps the boundary fixed. For this second method a good choice for the
fixed boundary would be to take the boundary of an image of the real structure one
intends to model. Of course one can also create a boundary at random.

Instead of updating the pixel according to a fixed order one can also draw the index
number of the pixel to be updated at random according to the uniform distribution
on the lattice I'.

The same algorithm works also for 3-dimensions. For every pixel update the 256-
dimensional configuration vector then might change in 16 entries because on the
squarc lattice there are 8 cubic lattice cells which meet in an inner lattice point.

. The algorithm can easily be generalized to work for general neighbourhood poten-

tials, the form of H? encrgies given in equation 5.9 is by no means mandatory, and the
Markov property can still be used to keep the simulation simple. However for such
potentials the update probabilities no longer depend on the configuration vector only
and equation 5.11 must be used with the VJ() replaced by general feature statistics
¢(.) which are no longer calculable locally. To calculate the probabilities in equation
5.11 efficiently onc must keep track of the influence of a single-pixel update on these
feature statistics. For example in our experiments we used potentials including the
two-point-covariance function (definition 2.5.1), the chord-length-distribution (defi-
nition 2.5.3) and also the Minkowski-functions (see definition 2.5.5). The influence
of a pixel-flip on these quantities is more subtle than for the configuration vector,
for example in case of the chord-length-distribution flipping a pixel from 0 to 1 may
or may not give rise to an increase or decrease of the total number of chords in the
image depending on the state of its neighbours. To determine the influence of a
pixel swap on the Minkowski-functions as functions of the dilation radius is much
more difficult and time-consuming, because the change of Minkowski-functions can
obviously no longer be determined by simply considering the 8-neighbourhood of a
pixel. This means that a potential including the Minkowski-functions is no longer
a neighbourhood-potential with respect to the 8-neighbourhood and the Markov-
property can no longer be exploited. Of course one can make any potential a
neighbourhood-potential by just enlarging the neighbourhood, but evidently this
does not help reducing the computational workload because the Markov-property
quickly loses its value when the neighbourhood becomes large. Nevertheless we ac-
tually did also include the Minkowski-functions in our experiments (see section 5.9).

As an alternative to updating only one single pixel in every step one could employ a
Block-Gibbs-sampler strategy instead where a whole block (eg. a square sub-lattice) of
the image is updated in a single step. The advantage of this procedurc is the by a
factor 1/block-size decreased number of update steps but the drawback of this block-wise
updating is that the multi-dimensional conditional distributions for the blocks are far
more difficult to handle.

What remains to answer for the simulation of random porous structures with the Gibbsian
model once we know how to simulate from the Gibbsian distribution is the problem how to
determine the parameters 3. This crucial question shall be addressed in the next section.
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5.7 Parameter Determination

Our goal is to simulate from the Gibbsian distribution which corresponds to a random
set © that fulfills the basic modelling equation 5.3 and whose realizations thus in average
exhibit the predetermined values for the specific Minkowski-functionals. Equation 5.3 can
be satisfied by choosing the parameter values 3 of the Gibbsian distribution accordingly. In
section 5.3 the problem of choosing the right parameter set 3 = (By, ..., 3q) has basically
been solved: Equation 5.5 tells us that 3 has to be chosen to be the maximum likelihood
estimator /§M rE under the Gibbs model. Unfortunately this is not feasible for numerical
optimization in practice -at least for reasonably sized images - because the denominator
of the likelihood Z(() involves 2/U! exponential terms which would have to be evaluated
in each optimization step. A natural way out of this problem is to consider a pseudo-
likelihood to be minimized which is more amenable for numerical optimization. This is
going to be our first parameter-estimation method which we describe in the following:

5.7.1 Pseudo-Likelihood-Logistic-Regression-Method

As mentioned above it is hard to calculate probabilities of the form P [O(z;) = s;,7 € I'] in
the Gibbs model but conditional probabilities of the form P [©(x;) = s;|O(zx) = sk, k # 1]
are easy to dcal with because of the Markov property. Therefore a natural substitute for
the likelihood to consider is the following quantity:

Definition 5.7.1. (Pseudo-Likelihood) Let s € S be a given pizel configuration over
I'. We define the Pseudo-Likelihood for s in the Neighbourhood-Gibbsian Model © to
be the quantity

PSLy(B) = [ PO(:) = 5:lO(x) = sp. kb #i] = [[ PO(x:) = 5:l©(w) = s, zx € 8(21))].

x; €l r; el

For a given image s € & (usually the image whose Minkowski functionals our artificial
structure © should reproduce in average), we then estimate the Gibbsian parameters 3
as:

Bps1 = arg max PSLs(f) (5.15)

In case of thec OM-energy (definition 5.3.1) this optimization problem becomes:

Exp (— Y08 V(s U 581))
z;eT Exp (— ‘;:0 B Vi(si U 681)) + Exp (— Z?:o B Vi((1 — ;) U 5-%))

Bpsr = arg max

b

which is a convex optimization problem whose target function for a given By can easily
be calculated in a single sweep of the image s. However for computational reasons it is
better to maximize log PSLs(8) which is a sum of negative terms instead of a product of
small ones.

Of course the estimator Bpgy, in general will not fulfill the basic modelling equation 5.3
but it can be understood as an cstimate of the maximum-likelihood-estimator BMLE
which does. The pseudo-likelihood-approach is well justified because it is a well-know
fact, that the pseudo-likelihood estimator is consistent in the thermodynamic limit, ie. it
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converges to the BM rE in the thermodynamic limit with probability one. (for a proof in
a very gencral context, see (Comets 1992)).

The above optimization problem (equation 5.15) can be written as a logistic regression
model and thus the optimization can be done using the optimized functions for logistic
regression of standard statistical software packages. To see this exemplarily in the case of
the OM-encrgy we note that from equation 5.11 we can write:

P[O(z;) = 5i|O(xx) = sk, xx € L', k # 1]
Exp (__ E?:o Bj - [V](‘?z Uds;) — V(1 —si) U 531')]) _ Exp(B8-n)

1+ Exp (_ E?:OB.? : [V](Sz Uds;) — V;((1 —s;) U 53,5)]) T 1+Exp(B8-n)’

where we have introduced the vector 7 with components 7; = M‘Afj(siuési)+‘7j( (1—s;)Uds;)
and we can recognize the cumulative distribution function of the logistic distribution on
the last line. Hence we have the equivalence to the following logistic regression model:

P[O(x;) = 5|O(xk) = sk, €T, k # 1] B

log P =Y N —— ) =8
P [@(.Li) =1- ép,;l@(.L‘k) =sp,zr €1,k # L]

where 7 plays the role of the vector of the d+1 explanatory variables. If we now treat the

pixel values s;,i € {1,...,|'|} as independent realizations of a binary response variable Y’

with

P[Y; =1]:=P[O(x:) = 1|0(zx) = s, ax € T,k # 1],

in the above logistic regression problem, then the likelihood of the logistic regression
problem evidently agrees with the pseudo-likelihood in definition 5.7.1. Because the stan-
dard estimation procedure for the logistic regression coeflicients is maximum likelihood,
the logistic regression coefficients B estimated by standard logistic regression programs
are exactly the solution to the optimization problem of equation 5.15.

Our experiments have shown that the pseudo-likelihood-approach may perform poorly
to find a good paramcter sct G which at least approximately fulfills the basic modelling
equation 5.3. It can be refined by a grid search to invert the functions

g : B — Eg[V;(©)] (5.16)

in the neighbourhood of the parameter Spgy, proposed by the pseudo-likelihood-method
and then choose as a final parameter set the Bgina which minimizes E;-lzo |95 (Banat) — Vi(s0)|
where the Vj(sp) are the predetermined values for the unspecific Minkowski functionals.
To perform such a grid search is difficult because to approximate Eg,[V;(©)] for a specific
parameter vector 3y a sample of images s; must be generated by Gibbs-Sampling, then the
Vj(si)-values must be computed and averaged. It is obvious that it would be extremely
inefficient and time-consuming to run a different Gibbs-sampler for each [ of the grid.
However the techniques of reweighting mixtures and reverse logistic regression introduced
by (Geyer 1991) can be used which allow us to perform a Gibbs-sampling only for a few
well-chosen evenly spread 3 of the grid and estimate Eg[V(@)] for the other parameter
values 3 in between without further Gibbs-Sampling. We will briefly summarize these
techniques in the following.
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Let us assume that g is a measurable real-valued function and that X ~ 7 for an arbitrary
distribution 7 (absolutely continuous with respect to Lebesguc measure). We further
assume that about m with density f, we only know its unnormalized density h,. To
approximate the expectation E.[g(X)] by means of a sample X;,i € {1,...,n} follo-
wing another distribution v, with (unnormalized) density h,, the well-known importance
sampling technique can be used: Because of

Er[g(X)] =

g(z f“x
Jx ()

where we have used in the last equation that E, [ 7, (1;)] = 1, we can estimate:

Erlg(X)] =~ Zw(X,;) -9(X3), where  w(z) = ’f_bj(;ztj(/:zil)u/(i:,,)(a') (5.17)

i=1

Note that by using the special form of the importance sampling weights w(.) introduced in
cquation 5.17 we can used the unnormalized densities because the normalizing constants
of m and v cancel in the expression for w(.). It is obvious that importance sampling makes
sense only if the two distributions 7 and v have similar support and mass allocation, hence
in our case it is certainly not enough to use a single Gibbsian distribution 7q, 3y to calculate
the expectations given in equation 5.16 for all the other 3-values of the grid. But assume
that we have used Gibbs-sampling to generate samples s;;, k € {1,...,m},i € {1,...,}
for a selection of evenly spread [-vectors {o1, - - -, Bom } of our parameter grid and suppose
we want to calculate the expectation of equation 5.16 for another 3 of our parameter grid
lying for example in the convex hull of the Fox. We could use each of the samples s ; to
propose an estimate for the desired expectation with g(.) = VJ() calculated according to
the ordinary importance sampling equation 5.17 leading to m different estimates. If we
denote by

I_l

he,po(-) = ek - 76 a0 (1)
the unnormalized versions of the Gibbsian densities 7¢ g,, for the parameters Gor with
normalization constants ¢; a much better single estimate can be produced as follows:
Consider the mizture-distribution with density

m

_ Nk B UL ha g, (8)

Tmiz(8) 1= ; P TG, Bok (s) = ; P T, (5.18)
where n = )7, n; and assume that the joint sample s of the s;; was generated by this
distribution. We would then like to use this mixture distribution as a sampling distribution
for importance sampling. Unfortunately the formula for the mixture-distribution involves
the normalization constants ¢ which cannot be calculated for the Gibbs-distribution with
reasonable effort as we have mentioned several times now. However, it turns out that the
¢ can be estimated up to a common proportionality factor ¢ by reverse logistic regression
which we describe later. Hence if we set Cy, := c¢-¢; and use the the following unnormalized
version of the mixture density,

m

Nk h(,, (s)

h'mz.z } :? ﬂo;« :
k=1
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with Ci being the estimate for Ck, we can usc the importance sampling scheme of
equation 5.17 with g := Vj, hy == Z(B3) -7 s and h, := hpy, to produce a single estimate
of E[V;(©)] cxploiting the information of all the generated samples s;; simultaneously.
Note that the C'j need only to be estimated once and hence the mecan Minkowski
functionals per unit volume can be estimated for many different parameter scts 3 always
using the same mixture distribution. Furthermore because the normalizing constants
Z(f3) and ¢ don’t have to be calculated this estimation method is very efficient. Please
note also that this procedure only works because for importance sampling according to
the scheme 5.17 both the target and the sampling distribution only nced to be known
up to a proportionality factor which may be different for the two distributions. Using
importance sampling in this way when assuming the pooled sample stems from the above
mixture distribution is referred to as the method of reweighting mixtures.

It remains to describe the method of reverse logistic regression used to cstimate the Cj.
Note that because of the positivity of n, n; and ¢ the mixture density of equation 5.18
can be written as:

m
Tmiz(8) = Z ha oo (8) - €7,
k=1

with 7 := —log cx + log °%. Furthermore we denote

_ __hcpn(s) - en

pk(3,77) - Z'lnll hG,,Goz(S) e (519)
which is the probability that if an image s € & was observed in the joint sample s, it
belongs to the k-th sample s ;. We now estimate the 7; by maximizing the log-quasi-
likelihood 1,,(1) defined as

m ng
ln(m) =YY log pi(sik:m) (5.20)
k=1 i=1
with respect to n. This is a concave optimization problem which can be solved computa-
tionally. Finally we find the estimates C}, to be:
A n
Ck =e k. _lc_
n
Note that from cquation 5.19 it is evident, that the 7; are only determined up to addition
of a common constant and hence the C} only estimate the normalization constants up
to a common factor of proportionality. To make the solution identifiable we use the
convention 7,, = 0 in our experiments.

The optimization of /,(n) in equation is more complicated that it might seem to be at
first glance. To demonstrate this let us assume for simplicity that all the m samples are
equal in size, ic. ny = N Vk and hence n = m - N. With the above convention the
log-quasi-likelihood then reads:

m—1 m

N ™m
Iy(n) = N - Z M — ZZlog [Z Exp (771 — Boi - V(Sik)):l + 4, (5.21)
k=1 1=1

k=11i=1

where A collects the remaining terms not containing 7 and V denotes the vector of the
joint Minkowski-functionals for j = 0,...,d. It is obvious that it is easily possible that
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complitational overflow may occur in equation 5.21 when calculating the argument of the
logarithm. It is therefore wise to transform equation into the following more computa-
tionally stable form before optimizing:

m—1

Ip(n) —A=N-Y " m—
k=1

m N
> Mk = Bouis - V(sg) +1log [ 1+ D Exp T g~ (Bor — /3015‘)k)v(3ik)J ;

k=1:1=1 LALF

<0
where [{f := arg max, (m — Bor V(sik)).
This makes all the n arguments of the exponentials negative and thus prevents overflow.

Our experiments have shown that even with the pseudo-likelihood-method refined by the

grid-search involving reweighting mixtures and reverse logistic regression, determining

a parameter set O solving the basic modelling equation satisfactorily close for all j €

{1,...,d} is sometimes difficult. It seems promising to split up the task of finding all d

Gibbsian parameters [3; simultaneously into smaller and easier problems and find them

sequentially instead. This approach is pursued by the Sequential-Newton-Method discussed
in the next subsection.

5.7.2 Sequential Newton-Parameter Determination

In this subsection we present a trial-and-error method for the determination of a Gibbsian
parameter vector 3 which solves the basic modelling equations 5.3 for the Gibbsian model
© with the OM-energy (definition 5.3.1). The method iteratively proposes ncw paramecter
values according to a Newton-scheme. This iterative procedure allows us to determine
the parameters sequentially. The method consists of two nested iteration cycles. For
the outer iteration we start out with the uniform distribution over & corresponding
to the Gibbs-parameter vector = (0,...,0). In the first iteration step we find a
vector B° = (83,0,...,0) which fulfills only the modelling equation for the volume, ie.
E[Vo(©)] = vo. This solution fp is found by means of the inner iteration cycle which
uses the ordinary Newton-method to approximate the solution of the modelling equation
for the volume. The parameter vector Gy is then used as a starting vector for the second
outer iteration step in which we find a solution 3! = ([3(1,, A1,0,...,0) such that the first
two modelling equations Ez [‘2/](@)] ~ vj,j € {0,1} hold simultaneously. This is achicved
again by the same inner iteration Newton-scheme. We proceed in this way finding in
each step a parameter vector with one less zero entry that fulfills one more modelling
equation until a solution 8 = 3¢ = (84,..., g) is found which (at lecast approximately)
makes all the d+1 modelling equations hold true. Please note that the Newton method
changes also components that have been found in an earlier outer iteration step and thus
Bt # Bifori # j. The obvious advantage of this sequential procedure over a method
that fits all the d+1 paramcters simultaneously is that the original problems is divided
up into smaller subproblems which may be easier to solve. The main drawback as with
every Newton-type algorithm is that onc may end up cycling between wrong parameter
sets and never reach a satisfactorily precise solution.
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We now come to the precise mathematical description of the Sequential-Newton-Mcthod.
For this purpose we need to introduce some more pieces of notation. In the following
the first superscript k € {0, ...,d} in the notation B%:1) indicates that the vector By was
produced in the k-th outer iteration step (where counting iteration steps starts with 0)
whereas the second superscript n refers to the n-th inner iteration step. All considered
vectors are of the following form:

B = (g™, g™ o o) € RE, (5.22)

hence of the vectors considered in the k-th outer iteration step only the first k+1 com-
ponents are possibly different from zero and ﬂ(k ) = 0,s € {k+1,...,d}. Furthermore
by V = (W,..., Vy) we denote the vector of preset (unspecific) Mmkowski~values and for
an image s € S we use V(s) = (Vo(s),...,Va(s)) for the vector of OM-estimators of its
(unspecific) Minkowski functionals. Similarly as above the vectors

VE = Vo, ..., ,0,...,0),  VF(s):= (Vo(s),...,Vk(s),0,...,0)  for k€ {0,...,d}

are built form these Minkowski-vectors V and V(s) by setting all but the first k+1 entries
to zero. The notation 3%°PY) is used to denote a (not necessarily unique) optimal solution
which is the goal for the k-th iteration step of the outer iteration, ie.:

V¥ & Eghopn [VF(O)].

Unfortunately there is no way to analytically cvaluate expectations of the form Eg[V*(0)]
in the Gibbs model. We only can approximate them by averaging the Minkowski-values
V¥(s;) of a sample of images s; € S where s; ~ map.t € {1,...,T} are produced by
Gibbs-sampling and T denotes the size of the sample. In the following we use the notations
sl(tk’n) for sample images with sﬁk’") ~ T gkm and sg’“""’t) for sample images with sgk’c’pt) ~
T glkopt) . Lhe definition of B*:0Pt) must therefore be relaxed in the following way: §®*°pt)
denotes a (not necessarily unique) solution to the equation:

TZV (5£°7) & Bginonn [VF(O)], (5.23)

To be a little more precise, in the k-th outer iteration step, 3%°P%) is found by an inner
iteration producing a Newton sequence of paramcter vectors 3™ until equation 5.23 is
satisfied up to some predefined tolerance, ie:

/B(k,opt) = ,H(kv’"'k)

with

7 = Mmin {[3(k i
n

Z VEsEM < e} . (5.24)
El

For simplicity we use the same sample size T for all £ (and also for all pairs (k,n) re-
spectively) although this is not necessary as long as the sample sizes for the averages
approximating the expectations are chosen large enough. We must now describe how the
Newton sequences 3% for a given k are generated. For this purpose we consider the
functions f* : R4 — Rt on the k+1-dimensional subspace of R4™! which is spanned
by the first k-4 1-unit vectors.
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o s VE6) Bxp (=08 Vi)
vk = ~ vk,
Yoes Bxp (= 5o - Vis)

Obviously f¥(3) is the objective function of which we search a root by the Newton-
algorithm in the k-th outer iteration step. Note that because we only consider f; on the
subspace spanned by the first k+1 coordinates, the sums in the exponentials only involve
the first k41 terms. For the Newton method we need to consider the derivatives

FH(8) = Eg(V*(©)] -

off  Lues Vil&)Vio(9) Bxp (= S5 8- V5(9))

Win  Sosop (- Xhofy V5(s))

N (Cees Vi) Exp (=08 V5(9)) ) - (Sues Viols) - Bxp (= Tho 5 Vi(s)) )
(Soes B (- Sheo - 75()))

where 0 < jo < k and thus returning to matrix notation we conclude for the derivative:

b

df’”
B

where only the upper left k+1 x k+1 square sub-matrix is non-zero. Applying the Newton-
algorithm gives us the following update-step for the inner iteration:

= [Bsl7*©)]] - [EslV*©)] - Esli(8) - (V5(©)T] = —CouslV*()], (5.25)

ﬂ(k,'rﬁ—l) — ﬁ(k,n) _ [%_f;(ﬁ(k,n))} - X fk(ﬂ(k’n))
= 557+ [Cougon [PHO)] - (Bgam 4@ - 1),

where again the expectations must be replaced by sample averages. The sample version
of the update-step of the inner iteration thus reads:

lg(k,n—t—l) o I@(k,n) —

(kn) (kn 4 (kn) 1 & ~k o (ko) ’

Dt () - (R ) (rR ) |
T

fime)

(k,n)

where we recall that the s, ~ T akny are independently generated by Gibbs-sampling.

N[ =
_Mﬂ

Pleasc note that in the light of equation 5.25 alternatively the mcthod of reweighting
mixtures presented in the last subsection can be used to estimate the covariance matrix
in 5.25 to speed up the algorithm and reduce the number of samples.
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Computing the inverse in the typical cases d = 2,3 is neither difficult nor time—consuming
and in the unlikcly event that the sample covariance is singular one can for example

resort to averaging over a sufficiently large subsample of the sgk’n).

As a starting value for the inner iteration used in the k-th step of the outer iteration we
use the optimal solution found in the k-1-th step, ie.:

ﬁ(kso) = IB(k_laopt‘) ,

whereas at the beginning for the outer iteration step k = 0 we simply use 3% := (0,...,0) ‘
as a starting value. The final solution 3°P* is of course the parameter 3Pt := g(doPt) We
summarize the procedure in the following algorithm:

Algorithm 5.7.2. (Sequential Newton Parameter Determination) To detcrmine
a parameter set 3°Pt € R which approximately satisfies the basic modelling equations
Epgert [V;(©)] = V; for the Gibbsian Model © with the OM-energy, one can proceed as
follows using the notation introduced further above in this subsection:

i). Set B0 = (0,...,0) € R? as a starting value.

ii). (inner iteration) For k = 0, iterate n = 0,...,n — 1 computing F*"*+1) using
the Newton scheme from equation 5.26 until a %) has been found such that the
tolerance of equation 5.24 is met. Set 3k:opt) .= glknz),

iii). (outer iteration) Repeat step ii). for k = 1,...,d + 1 instead of k¥ = 0 using the
initialization g0 = glk—Lopt)

iV.) Set IHDpt = ﬁ(d:(’pt).

We conclude this subsection with the remark that the choice of the Newton method in al-
gorithm 5.7.2 is by no means a crucial one. One could devise similar sequential algorithms
involving other iterative root-finding techniques for multidimensional equation-systems.

Our experiments have shown that in the Gibbsian Model the (specific) Minkowski-
functionals V;(©) are rather sensitive to slight changes in the parameter vector 3 (see
the results in section 5.9) which makes the estimation of a useful parameter set a dif-
ficult task. However, in the next section we present the so-called Simulated Annealing-
method which can simulate from the Gibbsian distribution 7, p without any parameter-
estimation at all! This seems quite surprising at first glance but can be justified by the
equivalence of ensembles-principle discussed in section 5.5. The advantages of such a non-
parametric method are evident and sensitivity of the Minkowski-functionals with respect
to the Gibbs-parameters becomes a negligible issue.

5.8 Simulated Annealing-Method

In this subsection we discuss a non-parametric method to simulate from the Gibbs-
ensemble without knowing the Gibbsian-parameter-vector 5. This can be justified
by the equivalence of ensembles discussed in section 5.8. Hence for this method the
problems one faces when applying the parameter estimation techniques from section
5.7 are completely irrelevant. We present the method as it is described in (Zhu et al.
2000) and call it Simulating-Annealing-Method in the following because it involves the
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well-known Simulated-Annealing optimization algorithm adapted to our setting. The
simulated annealing method for stochastic reconstruction has been extremely popular
in recent ycars especially with the geo-physical and geo-statistical communities. Exem-
plarily we refer to (Talukdar, Torsaeter, Ioannidis and Howard 2002) for an example of
three-dimensional chalk reconstruction from two-dimensional sections. Among all the
simulation methods we have applied in our experiments and described in this thesis,
the Simulated-Annealing-method has performed best (sce results-section 5.9 for details).
Another reason why we prefer the Simulated-Anncaling-Method to others is its flexibility.
It can be used (at least in principle) to match an arbitrarily large number of image
statistics and to include additional image features to be matched by the algorithm
can be done very easily. Hence the method not only allows one to gencrate artificial
Gibbsian structures with the same specific Minkowski-functionals as an original image
but also with the same chord-length-distribution-function (definition 2.5.3), the same
covariance-function (definition 2.5.1), the same pore-size-distribution (definition 2.5.4),
the same Minkowski-functions (definition 2.5.5) and even combinations of these. How-
ever, in practice unfortunately, as the number of images features to he matched grows,
the performance of the method quickly decrcases. Bcefore we describe how Simulated
Annealing is used in our setting, we are to bricfly recall how Simulated Annecaling works
in general.

Simulated Annealing owes its name and terminology to the physical annealing process
used in metallurgy to grow crystals which exhibit as little defects as possible. Simulated
Annealing starts with an arbitrary state of the system and sequentially performs small ran-
dom alterations of the present state while forcing the sequence of visited states to converge
to the optimum. To measure the distance of an arbitrary state from the (not necessarily
unique) optimal state a distance-measure d is introduced. If the random alteration of
a state reduces the distance from the optimum, it is accepted with high probability (or
even for sure in some versions) and if the random alteration increases this distance it is
accepted only with a small probability. At first glance it may seem unlogical to accept
alterations increasing the distance from the optimum but this has the purpose to prevent
the algorithm from getting trapped in a local minimum of the distance d. However, as
the algorithm proceeds over time, the acceptance probability of such "bad” alterations
successively gets smaller. The rate at which this happens is controlled by the so-called
cooling schedule. In the end, the algorithm finishes hopefully with a state close enough to
the optimal one. To be a little bit more precise, in a system with the optimal state s°P*
(and thus d(s°P*) = 0) the acceptance probabilities in the n-th step p,(s,s’,T) of a state
s’ when the system is currently in the state s are of the form:

d(s) — d(-ﬂ’)) .

(s, s, T(n)) = const - Exp ( )

where the strictly decreasing sequence T'(n) which we call the temperature - according to
its significancc in the physical model process - determines the predefined cooling schedule.
For small n and thus large T'(n) an increase of the distance to the optimum is accepted
roughly with the same probability as a decrcase of the same size. But as n increases
and T'(n) decreases, the probability of accepting a state switch with a decrease of the
distance to the optimum becomes overwhelmingly morc probable than an equally sized
incrcase. It can be proved that for every finite optimization problem the probability that
the Simulated Annealing algorithms ends up in the optimum approaches 1 if the cooling
is performed infinitely slow. However, this theoretical result is of not much practical use,
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since we have to find a sufficiently close solution in a reasonable time. Unfortunately in
practice it is well possible that the convergence of the distance to the optimum approaches
zero too slow to be of practical use or even that the algorithm gets trapped in local
minima. The selection of an appropriate cooling schedule is crucial for the success of
the method and although guidelines for the sclection of a cooling schedule exist, a good
cooling schedule can often not be found without some heuristic experimenting.

We now describe how the Simulated Annealing approach can be used to simulate from the
Gibbsian Model with predetermined Minkowski-functionals. The key idea is that because
of ensemble-equivalence (see section 5.5) we can simulate from the Julész-ensemble (de-
finition 5.5.1) instead of the Gibbs-ensemble (definition 5.5.2). But the Julész-ensemble
is simply the uniform distribution on the set €254(v) of all images on Z? whose specific
Minkowski-functionals agree with the preset values v. Although this uniform distribution
is completely parameter-free, it is still quite difficult to simulate from the Julész-enscmble
because among all binary images over Z¢ the Juléz-enscmble only has negligible volume.
Please note further that ensemble-equivalence in the sense of section 5.5 only holds on
the infinite lattice Z% but for practice we are bound to deal with finite lattices instead
and the equivalence of cnsembles does not hold. However, for large enough lattices I' the
use of the equivalence of ensembles can be justified.

To apply Simulated Annealing we need to define a distance d which measures the distance
of a given image s € § from the Julész-ensemble. Any image in the Julész-ensemble can
be considered as an optimum state. The most natural choice for d is the following;:

d

d(s) = Z

5=0

‘Z(s) - v, (5.27)

where again V denotes the OM-estimators for the specific Minkowski-functionals from
subsections 2.3.1, 2.3.2 and v is the vector of predetermined specific Minkowski-functionals.
Of course, because we work on a finite lattice I', one could also work with the unspecific
quantities V and V instead or replace the £1-norm by some other reasonable distance (eg.
the usual £?-norm). Our experiments have shown that different choices do not affect the
performance of the method severcly. From the theory of simulated annealing it is then
clear that the sequence of distributions on S

A

1 dis)\ 1 Z;lzo' 5(s) — vy
q(s,T) = Z0) Exp (—«1-:-) ) - Exp (— T ) , (5.28)

converges to (the finite version of) the Juléz-ensemble if T — 0 sufficiently slow. As for
the Gibbs-distribution, Z(T') is just a temperature-dependent normalizing factor. The
distribution g(s,T') is perfectly amenable to Gibbs-sampling and hence the combination of
Simulated Annealing and Gibbs-Sampling leads us to the following algorithm to simulate
from the Julész-ensemble:

Algorithm 5.8.1. (Simulated Annealing Method) Consider a finite grid I' =
{z1,... ,Zr)} whose gridpoints x; are enumerated according to some predefined order-
ing, eg. row- or column-wise. To simulatc a realization s € § of the Gibbsian Model
© with the OM-energy function and predetermined specific Minkowski-functionals v, one
can use the following parameter-free procedure:
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i). Define and initialize the cooling schedule, eg. for n € N choose a decreasing real-
valued function T'(n) with the property T'(n) | 0 as n — co. Further determine an
‘approximation tolerance € > 0.

ii). Initialize an image $(09) € § arbitrarily, eg. as completely black SEO,O) =1, Vz; €T,

L (00 . .. . . .
completely white sg 0 - 0, V; € I or as white noise in which case 50 is a realiza-

tion of the random set ©g with P [O¢(z;) = 1] = P [©¢(z;) = 0] = 0.5 independently,
Va, € T,

iii) For n = 0 do an annealing step by generating for T := T(n) a realization
smIT) € 8 ~ ¢(.,T) given in equation 5.28 by repeating the following steps for
ke{0,...,|T| -1}

1. Select at random uniformly a number iy € {1,...,|T|}.

2. Calculate the conditional probability
P[6(,) = s 10 = 5™, £ ] =
1
1+ Exp (4 [S0o IV (s) = 5] = [1;609) = ] )

(nyk)

i

2(nk) _

(k) _ 1-— and 5,

3. Generate U ~ Unif[0,1] and if

where 5(™*) is the image with 3 8 sgn’k) for j 5 ip.

i

Up <P |:6(Tz) = 5™k

O(z;) = Sj(‘n’k),j 7 ik:|

(n,k)

set 51(:,k+1) =8 and 3§:’k+l) =1- sz(:’k) otherwise.
4. Set s = s for all § £ iy

iv). Set g(nt1,0) . — g(n,|1))

v). Repeat steps iii). and iv). for n =1,2,3,...,n0 — 1, where

d
no = min{n| Z |Vj(8(”’0)) - 'Uj| < €}
j=0

The output of the algorithm is the image s := s("0:0).

Remark 5.8.2.

1.) When sweeping the image in step iii.) to simulate from ¢(.,7") only the actual -
image s and its configuration vector h must be stored. There is no need to actually
regenerate the whole image for each k as only a single pixel is possibly swapped
when passing from s to s(k+1) Duyring the sweep of the image if a pixel is
swapped we only record the pixel swap in the actual image instead of copying the
whole image and further record only the changes in the configuration vector instead
of recalculating it for the new image. But this is easy and fast since per pixel swap
at most 291! entries of the configuration vector are affected (either incremented or
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6.)

decremented). This procedure was already discussed in detail for algorithm 5.6.2.
Hence the recalculation of the Minkowski-functionals of an image with a single pixel
changed is easy and quick. For the same reason there is no need to actually generate
the image 5 in step iii.) to calculate the conditional probability.

Instead of picking a pixel at random in step iii.), part 1, one could also sweep the
image according to a predefined ordering scheme, eg. update pixels row by row or
column by column.

It is easy to generalize the procedure to match predefined values v of general image
feature statistics ¢ : § — R. Assume that m general image feature statistics ¢;,j €
{1,...,m} are given and we want to produce a Gibbsian realization s such that each
of the m feature statistics takes for s a predetermined value v;. Then we can apply
algorithm 5.8.1 by simply replacing the distance d from equation 5.27 by:

m

d(s) =)

Jj=0

¢j(s) — v;

It is therefore very casy to enlarge a given set of feature statistics to be matched
since in the whole programming code only one element, namely the distance d,
must be slightly altered. However, if one uscs features ¢ that are not locally com-

putable and are not generated by a neighbourhood-potential for a reasonably small

neighbourhood, we lose the Markov property and the calculation of the conditional
probabilitics in step iii), part 2, might be involved. In some cases one might even
have to recalculate the statistic for the whole image after each pixel swap.

The more statistics that are to be matched the higher the risk that the Simulating-
Annealing-Algorithm gets trapped in some local optimum and thus the more crucial
is a careful choice of the cooling schedule. It is important that the initial temperature
T(0) is high enough to permit that the algorithm moves away from the starting
configuration. At least for low temperatures it is also extremely important that
the cooling is performed slowly enough. In some of our experiments we had to usc
cooling schedules with A(T) = T(n+ 1) — T'(n) as small as 1075 for high 7 in order
to get close to the optimum.

Algorithm 5.8.1 only does a single sweep of the image to simulate from the distri-
bution ¢(.,T) for fixed temperature. However as in algorithm 5.6.2 it can be wise to
do several image sweeps to ensure that the equilibrium has been reached, ic. repeat
step iil). not only |I'| times for k € {0,...,|T| — 1} but rather N - |T| times for
ke {0,...,N-|I'| — 1}, where N > 1 is a natural number.

For the Gibbs-Sampling part of algorithm 5.8.1 the statements of remark 5.6.3 apply
as well.

We would like to stress once more that among all the methods presented for the Gibb-
sian Model in this thesis, the Simulated-Annealing-Method 5.8.1 performed best once an
appropriate cooling schedule had been chosen. The main disadvantage of the method is
that it can be rather time-consuming if the number of sweeps NV is large and the cooling
is slow. It is therefore advisable to use some sort of adaptive cooling schedule: Start with
a rather rough schedule and successively save some intermediate images. If the algorithm
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gets trapped in a local minimum, step back to a higher temperature for which an inter-
mediate image has been saved, refine the cooling schedule and restart the cooling starting
from the saved image and the corresponding temperature. We conclude this chapter by
showing some 2D-results achieved within the Gibbsian Model.

5.9 2D-Results

We now describe some two-dimensional results achieved with the Gibbsian Model and the
Simulated-Annealing Method (algorithm 5.8.1). We have restricted ourselves to conside-
ring images of size 256 x 256 pixels for reasons of computer time but conceptually the
method applies also for 3D-images of arbitrary size. As a reference image we extracted from
the coarse sand specimen (left image in figure 1.1) a 256 x 256-pixel-sized extract from the
xy-cross-scction at position z = 400 shown as the top left image in figure 1.3. The reference
image is shown as the upper left image of figure 5.1. The image on the right hand side in
figure 5.1 shows a 256 x 256-pixel-sized artificial image with the same specific Minkowski
functionals as the reference image genecrated according to algorithm 5.8.1 when starting
from a white noise image. The algorithm was run with as many as 800’000 image sweeps
which implies more than 52 - 109 pixel updates! The two lower images show realizations
of algorithm 5.8.1 when starting on an all black or all white image respectively. Beside
the specific volume, surface and Euler-characteristic also the so-called specific excess Euler
characteristic Xexc has been matched (see the last paragraph preceding subsection 2.3.2).
We recall that the excess Euler characteristic is the difference between the OM-Euler-
characteristic estimator (equation 2.26) and the topological definition "number of convex
vertices minus number of concave ones”. The degree of precision with which a matching
of the Minkowski-functionals can be achieved with the Simulated-Annealing-algorithm is
stunning as can be seen in table 5.1.

v 5 X Xexc
reference image | 0.6978854287 | 0.0000461361 | 0.0468725915 | 0.0000000000
Gibbs realization | 0.6978854287 | 0.0000461361 | 0.0468726525 | 0.0000000000

Table 5.1: specific Minkowski functionals of the images in figure 5.1. The reference image
is the left hand side original extract and the Gibbsian realization is on the right.

It is quite obvious that the indeterminacy-phenomenon is also present within the Gibbsian
Model. Although the (estimated) specific Minkowski Functionals are equal to as many as
6 significant digits, the images are look quite different. The Gibbsian rcalization appears
to be too densely connected and the Euler characteristic is artificially increased with
small black artifacts and the surface by frazzling the boundary. To reduce the number of
artifacts one can add an additional additive term which contributes the number of such
artifacts to the potential. Then the equilibrium states don’t show any artifacts anymore.
We have achieved such images in our experiments but the frazzling boundary remains. At
first glance at least it seems difficult to enforce a smooth boundary since adding terms to
control the boundary-smoothness to the potential is of little help because the rcalizations
are generated on a finite lattice. Figure 5.2 shows how the 4 matched characteristics have
evolved while algorithm 5.8.1 has been run to produce the Gibbsian realization on the
right hand side of figure 5.1. The starting image was chosen to be a white noise image.

It is quite surprising how long the the algorithm ”oscillates” around the starting values
(for about 350’000 steps!). One is tempted to believe that the initial temperature of the
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Figure 5.1: (upper left) 256x256-pixzel-sized catract from a cross-scction through the coarse
cimen given in figure 1.1, (Others) 256 x 256-pizel-sized Gibbsian realizations ge-

sand spe
neraled with the Simulated-Annealing-Method which has the same specific Minkowski-func-
tionals as the reference image on the upper left side with very high precision. Algorithm
5.8.1 was wsed with an initiol temperalure Ty — 100 with an edaplive cooling schedule
whose smallest temperature difference near the equilibrium was chosen to be A1 — 1079,
The starting images were different for the three realizations: (upper right) white noise,
(lower left) all black, (lower right) all while image.

Simulated- Annealing-procedure was chosen to be much too high (about 7% — 100 in this
casc). However, our experiments have shown that this is not the case. When choosing
significantly swaller starting temperature, the algorithm gets trapped in a local optinmun
even i the temperature is reduced in steps as tiny as A7 — 107  After this long
oscillating phase, the algorithm adjusts the specific volume away from the white noise
value (1.5 to the predetermined one (= 0.7) in only a handful steps and from this timepoini,
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Figure 5.2: Ewolution of the Minkowski-functionals from o white noise image to the
image with predefined Minkowski functionals on the right hand side of figure 5.1 during
Simulated Annealing. Besides volume, surface and Euler-characteristic also the ezcess
Euler-characteristic was matched (not shown). The last image shows the evolution of the
Ly-norm of the total error.

on only produces images with exactly the correct predetermined value for the specific
volume! After some 400’000 steps it adjusts to the correct Euler characteristic and needs
additional 400’000 until the specific surface is matched. This procedure of successively
matching the characteristics without straying away from them anymore is quite charac-
teristic for the Simulated-Annealing-Method. By considering only the first 250’000 steps
say, one would be tempted to believe that the sequence of specific volume cstimates stays
stationary around 0.5. However, figure 5.2 impressively proves that this is wrong and em-
phasizes that much patience may needed before the Simulated Annealing unfolds its power.
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To illustrate the path that the Simulated-Annealing-Algorithm samples within the
Julész-ensemble figure 5.3 shows the generated image on the right hand side of 5.1
together with two intermediate images of the sample path. The final image was produced
after 850’000 steps of algorithm 5.8.1. The intermediate images were drawn after the
600’000 and 800’000 step of the same run of the algorithm respectively. We learn from
figure 5.2 shows that at these stages of the algorithm volume and Euler-characteristic -
have alrcady converged to their final values, whereas the surface is still incorrect for the
600'000-step image, but has already converged for the 800’000-step image. Figure 5.3 that
the surface is finally adjusted (decreased from its too high initial value) by smoothing
the boundary between the two phases of the image. The global structure of the image
however, doesn’t change at all between steps 600’000 and 850’000.

Figure 5.4 shows some Gibbsian realizations each of which besides the specific Minkowski
functionals matches one additional image featurc: The top right image matches the
specific Minkowski functionals together with the two-point-covariance function (definition
2.5.1), the bottom left image matches the specific Minkowski functionals together with
the chordlength-distribution (definition 2.5.3) and the bottom right image matches the
whole Minkowski-functions (definition 2.5.5).

It becomes evident from figure 5.4 that also the matching of additional image features
is by no means suffices to make the porous structure unique. An obvious defect of the
model is that opposed to the Boolean Model for example the Gibbsian model doesn’t
produce any artificial entities that play the role of the real sand grains but only generates
the global pattern. Thus it is very difficult to reproduce the granular shapes within the
Gibbsian Model. Figurc 5.5 shows how close the additional characteristics of the artificial
images in figure 5.4 come to those of the reference image.

Figure 5.5 shows that it is hardest to match the Minkowski-function for the Euler
characteristic since a single pixel flip may increase or decrease the unspecific Euler
characteristic by as much as 1 unit. The same applies for the somewhat less important
cxcess-Euler-characteristic. However, we are confident, that by investing even more time
in algorithm 5.8.1 and using and even more cautious cooling schedules one would be able
to remove these minor differences for large dilation radii as well. It is not necessary to .
consider large dilation radii (here: larger than 25) because evidently such images would
be completely black.

We conclude this chapter with a somewhat surprising image. The image in figure 5.6 also
shares the same Minkowski functionals as our reference image. This image was generated
by the pseudo-likelihood method (subsection 5.7.1). Its mass is concentrated almost com-
pletely in a centered black square with frayed boundary and some additional separated
frayed black spots near the image boundary. This image illustrates a simple recipc how
to generate images with predetermined Minkowski functionals and thus somehow heuristi-
cally explains the indeterminacy phenomenon: Place (almost) the whole black mass in a
circle (to gnarantee the lowest possible surface) centered in the middle of the image and
add some additional small black spots with low volume to account for the Euler charac-
teristic if it is positive. (Add white spots accordingly within the black circle if the Euler
characteristic is negative.) Finally add boundary fringes to increase the surface to the
desired value.



180 Chapter 5. The Gibbsian Model

Figure 5.3: (upper left) Intermediate image ofter 600000 sleps of the Simulated-An-
nealing- Algorithm run which was used Lo produce the right hand side image in figure 5.1.
(upper right) Intermediate image after 800'000 steps. (lower) The final image is given
as the rght hand side image in figure 5.1. The surface is decreased by smoothing oul the
boundary belween the phases.
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Figure 5.4: (top left) 256 x 25G-pivel-sized extract from a cross-section through
the coarse sand specimen  given in figure 1.1 as a re

ence amage.  (top right)

256X 256-pixel-sized Gibbsian realization with the same specific Minkowski-funcltionals and

Lhe same two-point-covariance function up to lag 100 as the reference image. (bottom left)

256 x256-pirel-sized Gibbsian realizalion wilh Lh fie Minkowski-functionals and

the same chord-lenglh-distribulion up to chord-length 200 as the reference image. (botlom

right) 256 X 256-pixcl-sized Gibbsian realization with the same Minkowski-functions up lo
=

dilalion radius 25 as the reference image. For the top right and the bottom left image
additionally the appearance of black arlifacls has been suppressed.

CSame Spect,
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Figure 5.5: Additional characteristics matched for the
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images in figure 5.4. Shown is the

characteristic for the reference image (top left in figure 5.4) together with the characteristic
for the corresponding artificial image of figure 5.4. Shown are the two-point-covariance—
function (top left), the chordlength-distribution (top right) and the Minkowsk:i functions
for selected dilation radii: volume (middle left), surface(middle right), Euler characteristic
(bottom left) and excess Euler characteristic (bottom right).
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Figure 5.6: A surprising image which shares the same specific Minkowski-funclionals

as the reference image used throughout this seclion. This image was produced using the
pseudo-likelihood-method (subscction 5.7.1)






Chapter 6

Conclusion

Generating random porous media with predefined values for the Minkowski-functionals is
possible with a high accuracy in both two and three dimensions as has been demonstrated
in this thesis at least for the threc simple models which have been investigated. Although
theory is often straightforward, implementation in practice is far from trivial. This
is mainly because of two reasons: First, estimating specific Minkowski functionals
of a continuous porous structure from a discrete pixel image may be afflicted with
considerable approximation error (see for example (Ohser et al. 2003) for the case of the
Boolean Model). And second, the massive data sizes of high-resolution three-dimensional
images easily overstrain many of present-day computers. This asks for sophisticated fast
algorithms and makes memory management a challenging task.

We have demonstrated in this thesis that the Minkowski functionals on their own are
by no means sufficient to summarize the geometrical information content of a porous
image. There is still a large variety of porous structures which share the same specific
Minkowski functionals but not the same optical appearance. This indeterminacy problem
is still present even in two-dimensions, if one considers the Minkowski-functions instead
of the Minkowski-functionals or if onec fits additional characteristics such as the m-point-
covariance-function and/or the chord-length-distribution (at least in the Gibbsian case
where we studicd it). '

However, the artificial structures we generated exhibit quite similar flow and transport
properties as their real world counterparts. Especially the three-dimensional Gaussian
structures with matched specific Minkowski-characteristics are able to mimic the liquid
flow through real sand soil although still being easily optically distinguishable from the
real structure. For a discussion of the gcophysical properties of our artificial Boolean
structures sec (Lchmann et al. n.d.). The even better flow properties of our Gaussian
structures will be analyzed in a further paper by the same authors.

From a theoretical point of view we werc able to clarify the asymptotical behaviour of
the Ohser-Miicklich estimators if the lattice spacing tends to zero in the Thresholded
Gaussian case and have also been able to quantify their bias. The main problem for
analytical calculations within the Gaussian Model is that most integrals involving the
multivariate Gaussian density cannot be analytically solved. This makes it extremely
difficult to find explicit solutions in the Thresholded Gaussian model for all but the very
simplest probability statements.
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Chapter 7

Appendix

7.1 The On-Off-Markov-System

7.1.1 Theory of the On-Off-Markov-System

An ordinary discrete Markov chain with finite state space S consists of a sequence of
random variables Zy, Zy, ..., which is characterized by the property that Vn € N, 4, j,z; €
S we have:

P(Zy = jlZ0 = %0, ... Zng = Tp_9, Ty = i] = P[Zp, = | Zny =1]. (7.1).

A discrete stationary Markov chain is determined by the initial distribution
g = P[Z) = 1i],i € S and the transition probabilities g;; :== P [Z,, = j|Z,—1 = i].

A continuous-time Markov chain is a stochastic process {Z(t),t > 0} indexed by the
non-negative real line. The defining property is the continuous analogon of equation 7.1.
YneNO0<t <... <tp,x; €S we have:

P [Z(tn) = ]lZ(fl) = T1y.-- Z(tn_g) = Tp—3, Z(tn_l) = ’l,] =P [Z(tn) = le(tn—l) = ’L] .
(7.2)
The probabilities P;;(t,, — tn-1) :== P [Z(t,) = j|Z(tn—1) = 4] involved in the above state-
ment are again called transition probabilities. Because of the stationarity of the process
Z(t) we have that for arbitrary timepoints ¢, s > 0:

P(2(t+5) = j1Z(t) = i] = Py(s) (7.3)

is independent of f. For such a continuous Markov chain {Z(¢),t > 0} defined by equa-
tions 7.2 and 7.3 a basic construction can be given. Start out with a discrete Markov
chain {Zy, Z,, ...} with finite state space &, initial distribution {q;} and transition matrix
(Qij)ij := qij. Furthermore Ey, E1,... is a sequence of independent standard exponen-
tially distributed random variables and we are given a finite set of non-negative values
{A(7),i € §}. Now the continuous Markov chain {Z(t),t > 0} is constructed as follows:

e Set Ty := 0.

e For n > 0: Define the sojourn-time in state Z, as (AT), ~ Exp(\(Z,)), set the
Jump time Ty := T, + (AT),, and let Z(t) := Z, for T, <t < Tp41.
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To make the chain identifiable we always assume ¢;; = 0 Vi € S. in the following. It can
be shown (see Resnick 1992, Chapter 5.2.1) that the so-constructed continuous process
indeed has the properties of equations 7.2 and 7.3.

The local transitional behaviour of the continuous Markov chain {Z(t),t > 0} is given by
the so-called generator matriz A which is defined as:

o —A(@) ifi=j,
Aij = { A(@) gy ifi# . (7.4)
It’s easy to see (Resnick 1992, Prop. 5.4.3) that
P aP
= p = 7.
5 (0)=A and 5 AP(t), (7.5)

where P(t) is the matrix (P;;(¢)). Hence:

Pij(h) = Ajj - h+o(h) Vi,j € S.

Of course the probabilities P [Z(t) =] depend on the initial distribution {g;} and the
continuous Markov chain is not stationary in general. However, if we manage to find
a distribution 17 on S which satisfies n” P() = 77Vt > 0 then obviously we have
P[Z(t) =1d] = n(i),Vt > 0 and thus stationarity of {Z(t),t > 0}. Such an 7 is called
a stationary distribution of the continuous Markov chain. The existence of a unique sta-
tionary distribution is granted if the underlying discrete Markov chain is both srreducible
(no matter from which state the chain starts with positive probability it reaches any other
state in finite time) and recurrent (no matter from which state the chain starts with pro-
bability one it comes back to the same state in finite time). In this case 7 is a solution

of:

nTA=0. (7.6)

This statement is proved for example in (Resnick 1992, Theorem 5.5.3).

If we want to model a onc-dimensional binary image with a stationary continuous Markov
chain, our state space S only consists of two clements: 1 (image or solid phase) and 0
(complement or pore phase). From the construction of the stationary continuous Markov
chain it is clear that once chain enters one of the two phases i € {0,1} it stays there for
a random time which is exponentially distributed with mean 1/\(7), then jumps to the
other state 1 — 4 and so forth. This very simple Markovian dynamics is widely used in
literature and known as the on-off-system. Obviously the discrete transition matrix Q and
the generator A for the on-off-system are as follows:

{01 _{ =2 o
o=(Vo) A-(W X))

It is then simple to calculate the continuous transition matrix P(t) for the on-off-system
using the rclationships from equation 7.5. The continuous transition probabilities must
fulfill (" = 9/dt):

Pyo(t) = Ao- (Pro(t) — Poo(t))
Pio(t) = A1+ (Poo(t) = Pro(t)),
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which can be recombincd to:

A1Pgo(t) + XoPio(t) = 0.

Integrating leads to:

A1FPoo(t) + AoPio(t) = A1,

and hence we obtain an ordinary linear initial value problem of the first order for Pyg:

Py (t) = A1(1 — Pyo(t)) — AoPoo with Pog(0) = 1,

which is trivial to solve and results in the following transition matrix:

1 ( AL+ Ag - e~ QoA 3y ). e~ (Roth)t ) (77

P(f) = )\()——I-Tl AL — Ap - e—(,\0+,\1)t Ao+ Ap - e—()\()-i—)\l)t

Since the on-off-system is of course both irreducible and recurrent we also have a stationary
distribution 7 which (according to equation 7.6) is determined by:

o+m
Al —Ap-mo = 0,

And thus the stationary distribution is: v
A1 Ao
Ty = ————, = .
o Ao + A m Ao+ Aq

Because the stationary distribution is also the limiting distribution n; = lim;—.« P;;(t) in
this case, this can also be seen directly from equation (7.7).

(7.8)

Since according to the discussion preceding equation 4.29 we only need to count phase
transitions, the Ohser-Miicklich estimator for the specific surface area 5 in the on-off-
system is easily described. Let us assume that the one-dimensional-grid consists of n
points 29 = 0,...,z, = n-h, in the interval [0, n- h,] where we can observe the stationary
continuous on-off-process Z and the distance between two consecutive points is h,,. Then:

. RS
5n(Z) = n-h Z (12(ihn)=1 * 12((6+1)hn)=0 + 17(ihn)=0 * LZ((i+1)hn)=1) - (7.9)

i=1

Instead of investigating the properties of ,(Z) and prove its asymptotic normality we will
do this for the one-dimensional more general class of surface estimators from definition
4.4.1. However for the sake of simplicity in the following we only consider those estimators
estimators of the type given in equation 4.32 for which the lags 7 and [ are assumed to be
positive instead of —m < j,! < m. This restriction can be made without losing anything
important but has the disadvantage that the estimator 5,(Z) from equation 7.9 above
is not a member of this restricted class of general surface estimators we consider in the
following (because j = 1 and [ = —1). However, it is obvious that all the statcments we
make in the next subsection can be proved analogously. The exact results for 5,(Z) are
provided for completeness in section 7.3.4.
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7.1.2 Asymptotic Normality for General Surface Estimators in the On-
Off-Markov-System

In this subsection we collect some important properties and prove asymptotic normality
for the general surface estimators of the type 4.32 for the one-dimensional on-off-Markov-
Model. For the variance we use the procedure outlined in subsection 4.5.1. The one-
dimensional version of the general surface estimator is according to equation 4.32;

T

Bn = nh Z 1 Z(ihn)=1,2((+5)hn)=0}+ ZJﬁg 2. (7.10)

We are now ready to collect the results about the estimator 7.10 in the following theorem
which is the main result of this subsection:

Theorem 7.1.1. (Asymptotic normality of the general surface estimator) Con-
sider the estimator defined in 7.10 in the on-off-Markov-Model introduced in subsection
7.1.1. Then the following statements hold true:

i). The specific surface area 5 for Z is:

ii). The bias of 8, is:

. Qo1 v ,
B[] —s=hn 52D 0817+ Oh0).

#1). The variance of § is:

j—1 232
8AGA
min(j — k, 1) - min(l, j) | - —22L 3
1?20: (Mo + A1)

. )\0)\1 m m
Var s,, ~
w5 2}2;

iv) For n — oo,h | 0 such that n - h, — oo the distribution of 5 is asymptotically
normal. Especially for the rate h, ~ n~'/3 expectation and variance are stabilized
and we have that:

Ao 2 AN e e 8A3N2
9 ]z:;ﬁjj 7)‘ +)\ Z;ﬁj‘ﬁl 22111111]~kl —IIllD(l j) m

J=1 k=0
Proof. (Theorem 7.1.1)

ad i):
The two-point covariance function C(h) for the on-off-system is:

Ch)=P[Z(z)=1,Z(x+h)=1]=P[Z(x+ h) =1|Z(z) = 1]-P[Z(z) = 1] = P11 (h)m.
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Taking the derivative with respect to h yields:

oC . 8Py

ﬁ(o) = W(O) ‘= =AM,

where we have used P’(0) = A from equation 7.5. Applying Theorem 2.5.2 gives the

desired result:

ad ii):
For the expectation of § we have because of stationarity:

=
—

Ww»
—

Il

1 m 1 m
~5 2B P1Z(0) =1, Z(jhn) = 0) = 3= _ B Pro(ihm)
. =1 T j=.|.

e

- 1 AoAp —(/\0+/\1)jhn) . 1 ApAL
- )\0+/\1 22[3] ( — € o ha, ()\0—1—/\1)2 X

> [+ At — 300 + 1522 + 00|
j=1
o 2 oM

/\0)\1 2 2
= S Hhn 2/3 + O(h2),

ji=1

Using i) above we see that s = %-\-_%‘1- and thus the claim follows.

ad iii):
From equation 4.33 we deduce for the variance:

Var (§) =
WZZM > (1) [Pz =1,26m) = 0,200 =1, 2+
=11=1 k=—n .

—P[Z(0)=1,Z(jh,) = 0] P[Z(0) = 1, Z(lizn) = ()]}

hn) = O]

(7.11)

Let us consider first the infinite parts of this sum. Making use of the expressions for the

transition probabilities in the on-off-system given in equation 7.7 we can see:
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n

> | P[2(0) =1,Z(jhn) = 0, Z(khy) = 1, Z((k + D)hy,) = 0]

—P[Z(0) =1,Z(jh,) =0|P[Z(0) = 1, Z(lh,) = 0

T

= Z [mPo(jhn)Por((k — §)hn)Pio(lhn) — TI%PlO(jhn)PW(lhn)]

k=j
= " mPio(jhn)Pro(thn) (Por ((k = §)hn) —m)

k=3

_h2 ﬂ_ l zn: e_(k_j)'(AU'i')‘l)'hn

" (Ao + /\1) ‘
AZN2
~ — _(/\0+A1) fdt oM .l'
hn l/ ()\04‘)\1) ]

And similarly by symmetry:

~{

2.

k=—n

P[Z(0) =1, Z(jhn) = 0, Z(khy) = 1, Z((k + Dhy) = O]

—P[Z(0) =1,Z(jh,) =0 P[Z(0) = 1, Z(lhy,) = 0]

I
= Z [11Pro(lhn) Por ((=k — D)) Pio(§n) — 13 Pro(jha) Pro(lhn)]

k=—n

/\2)\2 0 )\2)\2
_h, 07 'l/ AAo+A)t gy — S A —7
n()\0+)\1)2 J _OOP ()\U—l—)\l)J J

The finite parts of the sum can be treated as follows:

.
|
-

P[Z(0) =1,Z(jhy) = 1, Z(khy) = 0, Z((k + D) hy) = 0]

B
I

~P[Z(0) =1,Z(jh,) = 0] P[Z(0) = 1, Z(lhy,) = (]

G—1
=" [m Py (khn) Pro(min(j — k, D)) Poo(|k + 1 — jlhn) — 12 Pio(ihn) Pio(lhn)]
k=0
Aod )
~ hp, "o+ M me j—k, 1)+ O(h;).

And finally:
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0

> | PIZ(0) =1,Z(jhn) = 0, Z(khy) = 1, Z((k + 1)hy) = 0]
ke=—I+1

—P[2(0) =1, Z(jhy) = 0| P [Z(0) = 1, Z(lhn) = O]

0
= Z ['r)] Pyi(=khy ) Pro(min(l + k, j)hn) Poo(Jk + 1 — jlhn) ~ U%Plo(jh,L)Plo(lizn)]
k=—1+1
Aod o
0 . , 9
~ hy, "N+ A ZIH min(l + k, j) + O(hy,).

Hence we can conclude for the variance:

Var 5 ~
ZZﬁﬁl mej_k ) +Z min(l + k, j) — min(l, §) 2—/\,3)‘%_.]
nh =1 i=1 J k——l+1 (Ao + A1)3

-1 ala) ii3[3 2imln( — k, 1) — min(l, 5) M
" nhy, Ao+ A — ! Pt J J (Ao +)\1)3 ?

which is what we wanted to show, where we have used in the last step that

2 232
Doty 2oy Bl = (Z}n:ljﬁj) =gz£"~-

d—1

ad iv)

We now turn to the proof of asymptotic normality for 5 in the on-off system. To stabilize
expectation and variance of ay, - (§ — s) the following conditions must hold:

n—»oo
<= n-hy,
=+ OO
&= ap-h, — ci,

2
Var ( (% 9)) e Cy n e 2,
7 - by,

where ¢; and ¢; are some nonzero constants. But then:

2 3
Qn, an L
C2 ™ 37 - 7 — ™~ C1C = Ay ~ N3,
En n

1
and thus h, ~n~3

Of course one can also consider the cases where ¢; or ¢; or both are zero. For ¢; = 0 we
end up with a centered limiting normal distribution and for ¢y = 0 the linear combination
an(5 — s) converges to a deterministic constant.
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For the rest of the proof we note that instead of considering the estimator of equation 7.10
without loss of generality we may consider the following simplified estimator:

- 1 «—
Sn=— Y 1g, 7.12
Sn nhy, = Bin (7.12)

where E; , = {Z(ihy) # Z((#+1)hy,)} which basically means that we neglect the summation
over different lags j for simplicity. In the following we consider the quantity S, which
according to iii). is a centered version of the estimator in equation 7.12 with constant

variance o2:

1 T 1 n
S, = 1, - P[E; = — i1 7.13
m ; ( E; [ z,n]) \/m ; gz,n ( )
where we introduce the abbreviation ¢, ,, := 1g,, — P[E;,]. This last sum is now divided
into blocks X, ; to which we want to apply Theorem 4.5.4. To do that we define the
series of block limits j, := [hiL | and have up to negligible boundary effects the following
equation:

[nhn] jn
Snp = Z&’”_ Z Zg(z 1)jn+3 =
\/nh P JnTm \/nh
=X

We first show that the triangular array {X,;,1 < i < nh,} is ¢-mixing and thus also
strongly mixing. For this we consider events A; € 0(Xp;,i < t) and As € 0(Xp 4,1 > t+k)
of the form:

Ay = A{Z(tognhn) = i0,..., Z(tiinhn) =i ts <t+lfor s €1,...,1}
A = {Z(tis1dnhn) =41, .. Z(Qeminhn) = f14m,ts = t +k for s € I+1,... JI+m}.

Now we can follow (Ibragimov 1971, Chapter 19). For k large enough:

[Al M Ag] =

P [Al] 14 ((tl-i-l _tl)jnhn)Pil+1il+z((tl+2 "tl-{—l)jnhn) ree Pit+m_1it+m((tl+m - tl—l—m—l)jnhn)
p [Al} P [Az] =P [A1] 77z‘,+1 -PiH_liH.z ((tl+2_tl+1)jnh'n) e -F)il+m_1iz+m ((tH—Tn _tl—l-’m—l)jnhn)

Hence:

P[A; N As] —P[A:]P[A | .
I [ 1 21]3 [Al][ 1] [ 2“ < |P‘ilil+1((tt+1_tl)jnhn)_niHll Scpk l’

independent of n where C and 0 < p < 1 are constants and in the last inequality we have
used |t;41 — #| > k—1 and applied Markov’s Theorem (see for example (Resnick 1992,
Chapter 2.13)). However, the last inequality can also be seen directly from equation 7.7.
Hence we can conclude ¢, < Cp* and because the right hand side is independent of n

also:
ko k—oo

G =sup gpp < Cp” "= 0,
n

which establishes the ¢-mixing-condition.
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Next we must show limg_,. px < 1. Because of the fundamental relationship ap < pp <
2may, for strictly stationary random fields developed in (Bradley 1993) this follows from:

ap =sup ap i < supa((k — 1)jphn) < alk —1) 300, (7.14)

T

hence we even have lity_,o, pr = 0. For the second moments of the X, ;, we see using the
calculations in iii):

1 Jn
E [X’Izl,?,] - % Z COV (é(’i—l)jn-',-j,nsf(i-—])j“+l,ﬂ)

gil=1
L dn
= —— 2 (P[Ba-njussn N Ei-tyjutin] = P [Ea-1ygurjon] P [B-1)jurin])
™ jl=1

~

1 1
- Jnhn = — .
nhy, Inhn = O (nhn>

And thus also:

1
SUp — E [X2,] = sup const. - [nh,]— ~ O(1) < o0, (7.15)
T n TLhn

T,
=1

which establishes condition i) of Theorem 4.5.4.
For condition ii) of theorem 4.5.4 it turns out that we need to control the fourth moment

E [Xi’i]. We have:

Ljn)
1 .
4
E [Xn,z] = W Z E [‘E(i—l)jn+j,n€(i—l)jn+k,n£(z’—l)jn+l,n£(i—1)jn+'rn,n]
4 klm=1
= oz Z P [EG 1)jutin O Elim1)jutbm O Ei—1)juttn O EG1)j,4min)
o\ 4,k lm=1
Lin]
+4Un) -P[Bin] D P[Ea_1)juiin N EGmt)jntrhn N Ee1)jntin]
k=1
, Lin)
+605ul*PE1nl” Y P [EG-1)jutsin N Eim1)jn+hn)
. j.k=1
; Ljn]
+41jn P P[ELn)® > P [B-1)jutimn] + Lin) " P [Ernl®
=1
1 ) s 1232 - 1313 - 1414 1
~ 0 n_z’;? . (L7n_|hn + L?TIJ h’n + UnJ hn + LJ'ILJ h’n) =0 W -
%, n

Therefore we can now conclude for cach ¢ > 0:

L’n-hwn.J I.nth

1 , 1 1\ nosoo .
— E[Xll | ]<, E[X: ] ~0o(——) "=,
= ;:1: ni X d>eon} | < o7 ;:1: [Xn] wh) 0
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which establishes condition ii) of Theorem 4.5.4 and thus Theorem 4.5.4 can be applied
to prove the assertion. (]

7.2 Proofs of Chapter 2

7.2.1 Proof of Theorem 2.1.10

Lemma 7.2.1. If ¢ : £ — X is Hausdorff-continuous and additive, X a topological space,
then the following implication is true:

n

Zcmh{m_o = Zcmqu =0.

m=1 =]

Proof. (Lemma 7.2.1) Proof by contradiction. If the implication is false, there is a
smallest number n > 2 such that there cxist numbers cq,...,¢,, Ki,..., K, € K such
that > | emlk,, = 0 but Y1 tm®(Km) = k # 0. Let H C R™ a hyperplane with
K cC int 2 + We have

n

Z CmlK,nH- = Z cmlg,ne = 0.

m=1 m=1
and each of thesc two sums has at most n—1 non-zero summands. Therefore by minimality
of n:

n

> end(KmNH™) =Y emp(Km N H) = 0.
m=1

m=1

But then we must have:

Z emlk, na+ =0 and Z emd(Km N HT) = k.

m=1 =1

This is the situation from which we started with K m replaced by K,, N Ht. Convexity
thcory assures that a sequence of hyperplanes (H;);cy can be found such that K; =
N2, H;". Repeated use of the above argument reveals:

n

Zcm(b ﬁr]HZ =

m=1

Because (K, N(i—; H;') converges to K,, N K; in the Hausdorfl-sense, we can write:

E CTYL¢(Km M Kl) = ]‘C and Z leKmﬂK1 =q(.

m=1 m=1
Again we reached a similar statement as the one from which we started. Repeated use of
the whole argument (for Ka,..., K,) leads to:

T

n
Z cn@(K1N...NK,) =k and Z cmliin. nk, =0.

m=1

But because k # 0 also )" _, ¢m # 0 and therefore 1,0k, = 0 which finally yields
#(K1N...NKy,) =0 in contradiction to the first equation in the last pair above. a
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Proof. (Theorem 2.1.10) The finite linear combinations of indicator functions of sets
in K form a linear vector space V' with 1p € V according to Theorem 2.1.7. For f =
Yoy Cilk,, €V define:

Qg(f) = Z Cm¢(Km)'

Lemma 7.2.1 guarantees that this definition does not depend on the representation of f.
#(f) is linear with ¢(1x) = ¢(K) for K € K. It is therefore natural to define:

. ¢(R) := ¢(1r).
Additivity of ¢ on R can trivially be verified using linearity of ¢ and additivity of K — 15
which completes the proof. a

7.2.2 Proof of Theorem 2.1.20

Lemma 7.2.2. Let R=U",K; € R and B := —(A,w) a segment such that R = RoB =
R e B and E; the hyperplane with normal vector w at (oriented) distance s from the
origin. Then Vs € R:

x((R® B)NE,,) = Z (=1)=1y [((ﬂ Kz-) & B) NEs.

Ic{1,..,m} iel

Proof. (Lemma 7.2.2) Let s € R and z € E;, be fixed. Obviously VI C {1,...,m} we
have that z ¢ (R® B) = = ¢ (N;crK;) ® B. And hence:

l(R@B) (T) =0= Z (nl)lll_ll(ﬁielKi)Q9B(x) =0.
Ief1,...,m}

Furthermore note that because of R = R e B for B, := —B + x we have x(RN B,) < 1.
Whereas additivity yields:

X(RNBz)= > (-nf-1y (ﬂ K; ﬂBz) = > ()1 koen(@).

Ie{l,...,m} iel Ice{l,..,m}

If we note that x(RN B,) = 1 = = € (R @ B) we can conclude so far Va € E, .t
lgap(®) = Y (DI kpen(@).
Ie{l,...,m}
And thus trivially also:
YrepnE..(®) = Y, D10 k)ens,. (@)
Ie{1,..,m}
Again we use additivity to expand the left hand side of the last equation:

Z (_1)”'_11miEI(Ki@B)ﬂE,q,w(w)2 Z (_1)|I|_11((niEIKi)@B)mEa,w(:E)'
Ie{l,...,m} Ie{l,...,m}
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Now we can apply Lemma 7.2.1 further above to replace the indicators by the Euler-
characteristic x in the last equation and use additivity to transform the left hand side
back to x (R B) N Es ). |

We still need another small lemma;

Lemma 7.2.3. Let R € R such that R= Ro B = Re B where B = —(A,w). For s € R
let further E,,, be the hyperplane with normal vector w at (oriented) distance s from the
origin and Y, 1= (E,, N R)(_S’w) the intersection of R with E,,, shifted back to the
origin along —w. Then

X((R 53] B) N Es,w) = X(Ys,w U Y5+A,w)-

Proof. (Lemma 7.2.3) Because of R = RoB = Re B we simply have R®&B = RUR_A.
And thus the lemma follows directly from additivity. O

We are now ready to prove the theorem:

Proof. (Theorem 2.1,20) We apply in this order first Lemma 7.2.3, Lemma 7.2.2 and
additivity to arrive at:

/[X(Ys,w U Ys+A,w) - X(Ys,w)] ds = /[X((R ®B)N ES,w) - X(YS,w)] ds

= Z (ml)lll—l/ X (((ﬂ K,-) EBB) N Es,w) - X (ﬂ K;nN E,w) ds
Ic{1,...,m} icl icl
Ic{1,..,m} tel
where the penultimate equation holds because for each I € {1,...,m} we have either
(Nier Ki = 0 or ;7 K;) convex. O

7.2.3 Proof of Theorem 2.2.4
Proof. (Theorem 2.2.4)

ad i): Define
8D = [ Vi 0 gaKouldg) VK2 € K.
7d

The function ¢(.) is trivially integrable, additive and invariant under rigid motions.
It can be shown that ¢(.) is also continuous (for the technical argument see Schneider
and Weil 1992). But then according to Theorem 2.1.4 there exist functions cq_;(.) :
K — R such that:

d

$(K2) = ca—i(K1)Vi(Ka).

i=0

For m in {0,...,d} choose L,, € £ and set B? := B4(0) N Ly, and K, := rB%.

m
Then:
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$(Kr) = ca-s(K1)r'Vi(By,).
i=0

But also:

— l . r d = (K T d T X)) ar
o) = [ vitkingwBiutde) = [ [ it (erB + oo an)

_ / / / Vi(Ky 0 (Rr(BY + 21) + R22))r™ A (d1) Mgy (da )0 (dR)
Sod L1J7_7. m

Comparison of coefficients gives:

T—00

kmea_s(K1) = lim / / / Vi (KyN(Rr (B +-1)+ Ra)) A (d1 ) Ad—m (d2)(dR).
$04 1t Jim

Since VI(Kl N (Rr(Bg’L + .’171) + R.’l?g)) T 1{OerelintR(B§ln+LB1)}V7'(K1 N R(Lm + 132)),
applying the bounded convergence theorem leads to:

KmCd—m (K1) = / / Vi(K1 N R(Ly, + .’172)))\7,-,,(B,;dn))\d_m(dzbz)l/(dR)
S04JLL

mlkm(d —m + j)!

Kd—m+j
. Viemyi (K1
Jlk;dlkg mts (K1),

= n‘m/ Vi(Ky N E) iy (dE) = ki,
£d

T

where we have used the Crofton-formula (Theorem 2.2.1) and a well-know identity
for Gamma functions at the end.

ad ii): This follows directly from an induction in n. The case n = 2 is provided by i).
The induction step follows directly from first applying i) and then the induction
hypothesis. |

7.2.4 Proof of the Existence of a Poisson Process in R?

Theorem 7.2.4. Let v be an arbitrary locally-finite and atom-free measure on B(RY).
Then a Poisson-Process X with intensity v exists.

Proof. (Theorem 7.2.4) The proof is constructive. Let a countable decomposition of
R? into disjoint bounded sets A; be given. We construct the process X N A; Vi separately
according to the following recipe:

i) Draw the number of points X (4;) that X has within 4; according to:

X(A;) ~ Pois (1(4;)) -

ii) Given X(A;) = n, choose n i.i.d. points from A;, i.e:

v(A; N B)

——FX B d
oB) CcR

Pz, € B] =




200 Chapter 7. Appendix

We now show that the so-constructed process X is indeed a Poisson process. We must show
that the number of points X (B) of X falling into a set B has a Pois (v(B))-distribution.
We first assume B to be a subset of an A;, ie. B C 4;. Then:

PIX(B)=F = Y PIX(B)=kX(4)=n] P[X(4)=n]

=
: ,,i(’:) (:éi%)k(l— o) e L
o0 B)" i T (49 = (B
i (3))’“ _(: o5 _ i D)
For a general B C RY we can write:
=Y X(Bn4),

where for a specific B this is in fact a finite sum of Poisson variables which is thus Poisson
itsclf with intensity v(B).

For the independence of point-numbers X (B;) falling into the sets B; of a finite collection
B;,i € 1,...,n, we consider for simplicity only the case where n = 2 and By C A;,
By C A;, By N By = (. The general case is completely analogous. We further abbreviate
B3 := A; \ (B1 U Bs). Now we can calculate as follows:

P[X(B1) = k1, X(By) = ko] = > P[X(B1) =k1,X(By) = ko| X(4;) = ] P[X(A;) = ]

n=ki1+k2
_ Z V(Bl) ky I/(BQ))k2 V(Bg))n—kl—kz ‘ e_V(Ai) (V(Ai))" '
by +ks kl'k'z'(’n, - k1 ) V(Ai) I/(AL) V(Az') nl
ka o0
—U(A) ( ) ! V(Bl) 1 n—ky—ka
kil Kyl n:kzik' (= = o)1 BY

» B B k1 B ko
(1) V(Bz)u(kll') U(k;') — P[X(B1) = k1] P[X(By) = ky] .

7.2.5 Alternative Proof of Theorem 2.5.2

Proof. (Theorem 2.5.2) Let us denote by 80 the boundary of © and let 30(¢) be the
set 00(€) := {z € RYd(z,90) < €}. Now consider an arbitrary point 2o € 80(e). Then
a certain region A(e) of the ball By(zg,€) consists of points z € R? with 1,ce # lgoco-
If € is chosen small enough, A(e) is approximately a spherical segment. Because of
stationarity and isotropy the distance d from z¢ to the spherical segment A(e) has a
U(0, €)-distribution. The expected volume of A(e) can easily be calculated:
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We start out with the deterministic volume of a spherical segment A(e, t) of Bg(xo,€) with
distance ¢ from the origin:

d—1

1
dr = Kg_ - edﬂ (1—r%) 7 dr,

v(Ale,t) = ka1 - / (-2

and hence:

= 1 E’U € =K 31 “r —rznT_l T
E [v(A(e))|zg € 80(e)] = 6/ (A(e, 1)) dt = kg1 /0/2(1 ) % drdt

Kd_1 - €2
= Kg_1- e‘“// 1—1r?) T dtdr = (7.16)

Noting further that for two arbitrary points z, zg € R% we have:

P [Liaco) # Lmpeo}] = 2-(P[z€O]—Plz € ©Nag e O)) =2(Col0) — Colllz — zol))

80‘9 %% 0).

~ o =2z — @ ==

For an arbitrary point 2y € R? we thus get:
Plzg € 80(c)] - E [v(A(e))|zo € 0O(¢)] = E [E [v(A(e))|zo € 00(e)]] = E [v(A(e))]

= Lio@)2e( d'TdP:/ P[]-J:@ 7é1:r:€9 dz
//Bd(m,e) {6(2)£6/(x0)) pateany | 10} 7 Lz }]

ﬂQ%(O) |z — zo||dz = —2——80@ (0)-d- n(1/ rordLar
Bd(IL'(),C) 1]
(d1

LQBC@
d+1°

W(O)'d'ﬁd

(7.17)

Now we note that for sufficiently small € and observation window W:

1 " 1
P [z € 96(€)] = — /W Pz € 96(e) de = s /Q /W 1,eo0(0) dz dP

(W)
E[s(0 N W)]

2= 7 ~ 2¢3(0). (7.18)

It now remains to combine equations 7.16, 7.17 and 7.18 to achieve:

Rg_—1 - Gd — _2809 d+1
d+1 or

which is independent on the € we chose. Solving for 5(©) finally gives the desired result:

€

d+1’

235(0O) - 0)-d-rg—ro

drkg 0Co
0
Kd—1 or

5(0) = —
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7.3 Proofs of Chapter 4

7.3.1 Alternative Proof of Lemma 4.3.2
Proof. (Lemma 4.3.2)

P[Z(0) > b, Z(hy) < b] = /OOP [Z(hy) < B|Z(0) = 2] P [Z(0) € dz]
b

B i b— p(hn)z o) do
B /b ®( 1—p2(hn)) #z)d

o0 u2 1 ) pIV(O) ) '
= - o — _ b . — | =37 2 _ 2 21. I12 3
h _/0 ( \/—p”(O) b-u-h+ 12( 307 (0)b? — 9u? + p”(0)2u W2 4+ O(h?)
x@(b+ uh) du,

where we have used the the substitution 2 = b+ u - h and the following expansions of the
®(.) argument into a Taylor series around h = 0:

b—ph)z = b— (1+ 2,12(1)-:’124-(9(]7,4)) ~(b+wu-h)

= —u-h— %0_)" -h? + O(h3). (7.19)
1—p*h) = 1- (14 p"(0)h* + Ohd‘)

= —p"(0)-h? + O(h%). (7.20)

This can be expanded further using the following expansions for small h:

Q(x+h) = ®(x)+d(x)-h—x-d(x)- % + O(R3),

2 _

Gbtu-h) = GB)—b-6(b) - u-ht o(b)- w4+ O,
. _ R e 3
Vie+h = ‘/54'2\/5 h - h? + O(h%).

Thus we get;:

T b ") . (p"(0) -9"(0))u ., 3
“’”/o q’( T " o) h”‘w(h”))

R P v ). Vo),
=t | ‘I’( —p"<o>)+¢(\/—_"(o‘>) z

—¢ ( u ) _ (6" (0) — 3p"(0)%(3 + b)) u
"(0) 24(—p"(0))3
2

h? + O(hg)J

. <¢(b) — bo(b)u - hy, + (b)u’h2 + O(hi)) du
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vh2 | L — * L @_ . Oou. v u
b Lbas(b)\/ 70 [ ¢(\/T,(O))d bt - | @( m)d}
5 |0 —1 ® (U - (p"V(0) — 30" (0)2(3 + ¢?)) '
|t [ fw) “OT ot
X oou u—— 2 4 Uu U 4
/0 ¢( (O))d L)/~ ,y(o/ ¢(m)d}+0(h,L)
~ POV -+ - (30000)(=(0) - 70(0)(-00) )

2 3 A%
h [~"2—1¢<b>§\/? (~"(0)} + 3600 (¢ 0] (1 17) - P_(.OL)

b0

9(—p"(0))

L (—ﬂ'(o»]

\/ﬂ
V=0 b= YE 2 [0~ 007+ S| g+ 00), (ran

where we have used equation lemma 4.3.1, parts ii), iii) and ix). m]

7.3.2 Alternative Proof of Lemma 4.3.6

Proof. (Lemma 4.3.6) Following the strategy approved above, we start out expressing
P[Zy > b,Z, < b,Zy < b, Z3 > b] by conditioning on Z, and using the variables u (positive
first-order deviation from b), i.e. Zy = b+u-h, the approximate first-order differences Y; =
M Yo = @h—b and the approximate second-order mixed derivative Yy = 43_/;?!_211).
Thlb leads to:

PlZy > b, 7, <b,ZQ<b,Z32b]=/ P[Zy = 20,21 <b,ZQ<b,Zgzb] dzg
b

= P|Z1<bZy<b,Z3>b|Zy=2 -P[Z()E dZ()]

Zo = 2| - ¢(20) dzo

o0
= / P{Zl<b,22<b,Z3zb
Jb

= h/ gb(b—i-h-u)-P[Zl<b,Z2<b,Zg,2b
0

Zuxb+h,-u} du

Yi4Y,
k

00
h-/ pb+h-u)-P|Y;<0,Ya<0,Ys> —
0

Z():b—l-h-u} du,

where the last equality holds because of:

(Zs—(Z,—b) — (Zg*—b)—f-b) itV

h? h
The random vector Z = (2o, Z1,Z3, Z3) is jointly Gaussian distributed with E[Z] = 0
and Cov (Z) = ©(h), where
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1 p(h) p(h)  p(V2-h)
p(h) 1 p(vV2-h)  p(h)
p(h)  p(V2-h) 1 p(h)

p(V2-h)  p(h) p(h) 1

The conditional distribution (Z1, Zs, Z3)T|Zy is still multivariate Gaussian with parame-
ters:

X(h) =

p(h)
' E [(Z1,Z2, Z3)! |Z0 h) -(b+h-u)

Cov ((Zl,Zz,Zq =

pP(h ) p(V2-h)—p*(h)  p(h) —p(h)- p(V2-h)
(\f h) P (h) 1—p?(h) p(h) — p(h) - p(V2 - h)
p(h) — p(h) - (\f h) p(h) = p(h) - p(V2- 1) 1-p*(V2-h)

From this we can determine the moments ji(u,h) = E[(Y},Y2,Y3|Zg] and () =
Cov ((Y1,Y5, Y3 | Zg) of the conditional distribution (Y7, Ya, Y3)|Zo:

fir(u, h) = E[Y1]Z0] =

17 /!
2u+p_2(ol.b.h+pT(0)-u-h2+O(h3).

[Lz('u, h) =E [YQIZO] == ﬁl(u, }L).
Zs—Z1— Za+b
h2

fis(u, h) == E [Y3|Zo] =E

) -

h’%(p(-\/i‘h)'(b+u'h)—2'p(h)'(b+U'h)+b) :_EJFi,b,p(IV)(O)_h2+0(h3).

h 12
- Z1—b 1— p2(} " 1
Z11(h) = Var ( —~ Zo) = —,fz(i) =—p"(0) + (—Zp”(O) 12/)(1")(0)) -h? 4+ O(h*).
igz(h) = Var (Y3|Zp) = iu(h).
Sg3(h) := Var (Y3|Z) = Var ( b ZO) =+ A0 + O(r2).

Si2(h) = Cov (Y1,Y2|Z) = vk Cov (21, Z3|Zg) = (ﬁ

1 g
A0 = 720 ) 1+ O,
~ 1
zl_g(h) = Cov (V1, Y5/ Z0) = 75 - (Cov (X1, X3 Zo) ~ Var (X1 | Zo) = Cov (X1, X2 | Zo))

= “6 IV0) - b+ O(RP).
S3(h) := S13(h).

Thus we have:
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PlZ0>b,71 < b,Z5 < b, 23 > b| =

0 0 0 o0 -
h o) [ [ [ 6 ()T ), SR s s ds
0 —o0 J —oo ~—~J-',t—'-’t

s=ys— i3 (u,h) 00 0 0 oo
T="""h db+h-u)
Y1+
Jo ~o00 J 00 J - Y2 _jig(u )

o ((:m 2, 2) T, (w4 O(h), u + O(h),0)7, i(h)) dys dys dy1 du

[e's) 0 0
= h,/o (b(b + h- ’LL) l/;oo \/_D0 l:(b('yl,’ll,, "P”(O)) . ¢(y2aua _P”(O)) d
gy g

¥33(0)

To estimate the leading term in the above expression we usc the following coordinate
transform:

1-@ + O(h)] dys dyy du

U—Y— Y2

1 = h ) u—y1 = h-z1+y
s = U which implies: = h-(z1+z3),
L2 = T
o w—ys = h-h-zi+y;
2
Tgo= 3 = h-(z;+ z2),

Applying this transform and using ¢(b+ h - u) < (2-m)~! three times allows us to write:

T

1 o0
a=h e )
o fh(@mta)) [ (h(m )
Fo (o) o o (B o) e

2
1 o T o h-(z1 + z2)
= pt. —o | ——1]]- 2 ) day | de
N /0 e 33(0) (/0 ¢( —r"(0) ) 2) 1

P[Zy>b,71 < b,Zy <b,Z3 > b < ht.

1 o0 :
_<“h’4_ g./ :L-%. 1._@ _.fl— d.’L'j_,
(2 '7T)2 0 \1233(0)
<00

where on the last line we have used that because of 0 < —(y; +y2) < h-z1 —u < h 1,
the integration domain of zs, 23 is contained in the square [0, z;]?.
Od

7.3.3 Alternative Version of Lemma 4.3.7

Lemma 7.3.1. (Collapsing Gaussian pairs at fixed distance II) Let a one-
dimensional stationary Gaussian Field with standard Gaussian variables Z(t),t > 0 and
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covariance function p(.) be given. Consider the quadruple Zy := Z(0), Zy := Z(hy,), Z3 :=
Z(khy), Zy == Z((k + 1)hy,) for the limit process hy, | 0,n — 0o such that kh, — z € RT,

Then:

P[Z(0) > b, Z(h,) < b, Z(khy) > b, Z((k + 1)h,) < b]

2 QS(b) 1 / 0 w2
~hy |2 x)b wad | ——
n {2 — O Ve (x)p( ) [_ N ¢( mp”(O))

N RN NAe)
¢( = [ e ﬂmm 4)®( — (er- 5

! — p(x)) — p(z) ! —0'(x —p”(w)'qu
¢(¢——‘{(1 o) zpm)J)@( @@>(”(” 7 0)

where we have abbreviated:

@) = 41— p(e)?) + 428"

p"(0) (7:22)
17( o \2
o) = -'0)- )+ (7.23
Proof. (Lemma 7.3.1) We can write:
P[Z(0) > b, Z(hy) < b, Z(khy) > b, Z((k + 1)h,) < b] (7.24)
/ / khn >b Z((k-f-l) n) SbIZ(O) :Z1,Z(hn) 222]¢2(z1,22)d21d22,

where ¢y(.) is the density function of the two-dimensional (standard)-normal-distribution.
The covariance-matrix of the random vector (Z(0), Z(hn), Z(khy), Z((k 4 1)hy,)) is:

1 p(hn) p(khy) p((k + 1)hy)
Y= p(hn) 1 p((k - 1)}Ln) p(khn)
p(khn) p((k — 1)h,,) 1 p(hn)
p((k + 1)hn) p(khn) p(hn) 1
and thus we can calculate the moments of the conditional distribution
(Z(khw), Z((k + 1)hn)|z1,22) ~ N(i5,E) and expand the terms p((k + 1)h,) and
p((k — 1)h,) around kh,. Finally we introduce the new orthogonal variables

Wi = Z(0) + Z(hn) and Wa = (Z(hy) — Z(0))/hn:
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= (s ™) = (ot V) (2)

=t

1 ( [p(khn) = p((k — 1)hn)p(hn)] 21 + [p((k — 1)hn) — p(khn)p(hn)] 22
hn [o((k + 1)hn) - P(hn)/’(khn)] z1 + [P(khn) - p(hn)/’((k + 1)hn)] 22

7 (0)h o
! (hon) (z =21) | 0 (khn)(22=51) +0" (O)p(khn) (21 -+22)
= "(0)31 ' == 2p5(0) : A+ O(hn)

khn ! (khy,
Jwui 4 p ,,(0))’“ + O(hy) ) |

‘Ll(kh )iy + p(kh(n))w; + O( )

— ( 1 p(hn) ) _ ( p(khy) p((k — 1)hy) )
p(hn) 1 p((k+1hn)  p(khn)
_1— 1 —p(hn) p(khn) p((k + 1)hy)
T 2 (k) ( —p(hn) 1 ) ( (k=Dhn)  p(khn) )

Yor Yo /)’

l
1’ (khn)(22—21 ' (khy)(z1—2% ' 1 )(21+=
( Pltesn) | /(b)) O)lb o) +O(hn))

where:

B = 1 i [P + 67 = 1)ha) — 20006 = 1))
= 1= gha) + S 1 ) () — DY 4 0002)

Diz = o) — s (o) ((h + Do)+ plkhn)o((5 — Do)
— p(h)p((k = D)h)p((k + Dhn) — p(hn)p* (khn)]
— (/tl ) P (lzh’)ﬂ) O(h2)

S = 1—1_—/)12(-,;7-5[ (1)) + 9% (khn) = 20l ) (K + 1))
— 1= (k) + p,(,’zg)) o (k) (p(khn)—”;f,’zg;))thrO(hi)-

)

The change of variables (Z,, Z3) — (W7, Wy) changes the integration region in equation

7.24:

from {Z) > b, Zy < b} to {W; < 2b, Wy < (W — 2b)/h} U{W} > 2b, Wy < (2b— W1)/hy).

Hence equation 7.24 becomes:

(/% / /%/ )P[Z (khn) > b, Z((k + 1)hy) < bwr, ws] X

wl(n ) (6) (9% Lok oum )| dwndes, 29
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where we have used:

E[W)] = E[W=0,
Var (Wi) = 2+42-p(hy) =4+ p"(0)h2 + O(h2),
Var(Wa) = o (22 p(ha) = 4 ()R] + O(hY),
Cov (W, W2) = 0

To work out the term P [Z(kh,) > b, Z((k + 1)h,,) < blwi.wg] in equation 7.26 we intro-
duce the orthogonal variables Y3 := Z(khy)+Z((k+1)hy,), Ya = (Z(khyn)~Z((k+1)hy,))/h
and thus have:

_Y. Ys—2
2V vy > by > B

{Z(khy) > b, Z((k + 1)hy) < b} = {Y3 < 2b,Ys > }.

Next we need to calculate the moments of the conditional distribution (Y3, Ya|wy.wg) ~
N(@, X). We find:

o) + @%@ +O(hy)
—Fhmer _ fMhndwn  (,,)

11(0)
o _ [ A= R + "—((’“0’%1 +O(h2) 0
T 0 —p”(O) (khn) + Nk(])ln + O(h%) -

Performing the substitution Wy = 2b + h,, - u the integral in cquation 7.26 becomes:

(/ /—u / / )P[Zkhn)>b2((k+1) n) < b|2b + hyu, wa) x

@K%w )-(0 ) (5" o Louy )] amaes 20

Finally we substitute Y3 = 2b + h,, - v to arrive at:

P [Z(0) > b, Z(hy) < b, Z(khy) > b, Z((k + 1)hy) < b

o 2b + hnu 0 4+ O(R?) 0
w (Lo L L) ) () (0 o toun )]
% + hy, /J(khn)(Zb—thu) + 2pl(l’clhn)w2 + O(hn)
(L Do) (e e o

7(0)
41 = p2(khy,)) + 25Ema) 4 (2 0
( ( VP (khn)) AO (hi) ) Y 2 ) ) dysdvdwydu.
0 —0"(0) = p*(khn) + &5 + O(h7)

Hence in first order it holds:
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P(Z(0) > b, Z(hn) < b, Z(khy) > b, Z((k + L)hn) < 8

= h2¢(b) - _1 = T
2 ®(b) 9 p"(0) \/c1(z)ca(x)
U 1

V0
L) e () ¢ (S [0 - o258 )

(/000 /UOO " /_(;o /j) ¢ (ﬁ [314 +0/(x)b+ /;:Eg‘; wz]) dya dv dws, du.

The inner integrals with respect to y4 and v and can be worked out as follows:

UL L L) (o o ] v
YN

o [ -

=2 al) { o (oen -Gy 2 ( — (oer -5 2))

+6 ( \/;TL) (—p’(w)b - ’;ZE;; w)ﬂ :

The outer integrals with respect to w and wy are equal by symmetry. Because the integrand
does not depend on w it is favorable to perform the u-integration first. The integration
region transforms as follows:

{u>0,wy < —u}U{u <0,ws <u} ={wy <0,wy < u < —wyl.

Hence:

P[Z(0) = b, Z(hn) < b, Z(khyn) 2 b, Z((k + 1)hy) < B]
2 ¢(b) 1 / 0 Wy
~ h - . z)b Wa
" [2 v (\/Tm))
X L —p(z)) = p,(w)w ' ! —p' (z)b ~ p(z) w; W
o ( @) |:2b(1 p(x)) 2/)"(0) 2:|) ® ( (@) ( p'(x)b 0" (0) 2)) dwy

9 1 ') [° w2 w2
2 V—=r"(0) /er () p"(0) /—oo 2¢(

wol L o)) — 2P ) L (@b 20 ) dw
(35( ED) [2b(1 p(z)) 2,0”(0) 2:')®< C2($)( P (x)b 2"(0) ))d 2
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—92. ¢(b) () /0 wa (—wz )
VOV al) v —=p"(0)

I VNP AC)I L (e 2 w
X¢ (—Cl($) {Qb(l ,0( )) 2,0”(0) 2]) QS ( Cg(ﬂ?) ( p( )b p//(o) 2)) d 2] y

which is the desired form. u

7.3.4 Asymptotic Normality of the OM-Surface-Estimator

Theorem 7.3.2. (surface-estimator properties in on-off-system) Let Z be the sta-
tionary continuous on-off Markov chain with the generator A from equation 7.4 and initial
distribution 1 in equation 7.8. Let further the estimator 5,(Z) be defined as in equation
7.9. Then the following statements hold true:

= . i R i 2A0A1 o (AoF+A1)hn
E [5,(2)] = ™ (Pro(hn) - m + Por(hn) - m0) = fn o+ A1) (1 € )
and the bias of §,(Z) is:

E [5,(2)] =5= 20" A - by + O(R2).
Hence 5,,(Z) is asymptotically unbiased as hy, | 0.

i). If n — oo and h,, | 0 such that n - h, — oo the order of magnitude of the variance
18:

40 )\g + /\%

s (Z )
Val‘(f?n( )) ‘ nhn (/\0+)‘1)3

Proof. (Theorem 7.3.2)
ad i):  Using stationarity and linearity we conclude:

n

Efi(2)] = 77 2 (PI2(0) = 1,Z(ha) = 0]+ PZ(0) = 0, Z(n) = 1)
— i (Plo(hn) M+ Pol(hn) : 770) -

Hence by using equation 7.7 and expanding exponentials into Taylor series:

E[(3-3)] = (hi,b (mPro(hn) + o - Por(hn)) — /\ZOAI\/\II)
= (m =2 252+ 002) + mira — o 25 2h, + 02 - 2L
= —hn- o M 220,

ad ii): For the variance we define the shortcuts X; := 1 Z(ihn)=1 " 1Z((i+1)hy)=0 and

Yi := 143ih,)=0 " 12((i+1)hn)=1- Then:
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Var(qn( ) = s hz (ZX —|—Y)) 21h2 ZCOV (Xi+Y, X, +Y;)

T 4,5=1
= 5 h:, S (BI(X+ Y + Y] — B + Y] B(X; + 7))
V=1

= 21h2Z(15:[,><1XJ]+2E[Xz 31+ E[Y3Y;] — E[X] E X))

i,j=1
—2E[X,]E[Y;] - E[Y]| E[Y;])

Now we have a closer look at the ingredients of this last sum:

E[Xi] = P[Z(ihy) =1,Z((i + 1)hy,) = 0] =P [Z(0) = 1, Z((hs) = 0] = Pio(hn) - 1.

E[Y;] = P()l(hn)
E[XiXiv;] = P[Z(0 )—1ﬂZ( n) =0

_ {P[Z( ’Z(hn):
B P[Z(0)=1,Z(h,) =

N Z(jhy) = 1N Z((j + 1)hy) = 0]
0] = Pyo(hn) -m (7=0)
0,Z(hy) =1,Z(2h,) =0 =0. (j=1)

For E [X;X; ;] when j > 2 we can use conditional independence of Z(h,,) and Z((j+1)h,,)
given Z(jhy,):

E[X;X;;] =P[Z(0) =1N Z(hy) = 00N Z(jhn) = 10 Z((G + 1)hy) = 0]
=P[Z(ha) =0NZ((j + Lhn) = 012(0) = 1, Z(jhn) = 1] P [Z(0) = 1, Z(jhy) = 1]

=P[Z(h,) =0|Z ( )—1 Z(jhn) = 1 P[Z((j + 1)hn) = 0|Z(jhn) = 1] P [Z(0) = 1, Z(jhn) = 1]
=P [Z(h ) =0,7 =1, Z(jhn) - 1] P [Z((J + 1)hn) = OIZ(jhn) = 1]

=P[Z(G+1) n) = ()!Z(J'h ) =1 P[Z(jhn) = 1|Z(hn) = 0] P [Z(hn) = 0[Z(0) = 1] P [Z(0) =

h
= Pio(hn)Por((5 — 1)hn) Pro(hy)m .

And similarly:

E[X;Yiy;] = P[Z(0) =10 Z(hy) =00 Z(jhy) = 0N Z((G + 1hy) = 1]

It

0 (7 =0)
{ P [Z(O) =1, Z(hn) =0, Z(2hn) = ]_] — P()l(h'n)Plo(hn) ‘m (_] — 1)
Po1(hn) Poo((5 — 1)hn) Pro(hy) - m1. G>2)

E[Y;YH]—] = P[Z(0)=0N Z(hy) =1NZ(Gh,) =0NZ((j + 1)h,) = 1]
{ P [Z(()) =, Z(hn) =1l =Poi(hn)-m0 (G =0)
=<0 (G=1)
Po1(hn)Pro((j — )k )Por(hy) - 10 (=22

Substituting these terms back into the expression for the variance yields:

1]
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. 1 = : .
Var (gn(Z)) = W[n . Pm(h,n) /i - 2. Z(n -7 l)PfO(hn)Pm((] - 1)}2,“)7’]1
" E[X:X;;,i=0 J=2 .

E[X: Xi1;],17|22

+ 2. \(n - 2)P01(}lra)PIO(}Ln)n1J+£7L — 2)Pyo(hyn)Po1 (hn)nq

E[X.Yiy],=1 E[X;Yitj].j=—1
n—2
+ > (=5 = 1)Por(hn)Poo((j — 1)hn) Pro(hn)m
j=2
E[X; Vi ],j=>2
n—2
+ Y (n—j — 1)Pio(ha)Pi1((j — 1)hn) Por (ha)o
i=2 -
E[XiYiy)j=<—2
n—2
+ n-Po(he) -mo+2- D (n—j— DPF () Pro((F ~ 1)hn)mo
_'-\f_"—/ .
ElY;Yiylj=0 =2 ,

BIY:Y; 5], lj1>2
— 1’ Ply(hn)nf — 202 Pyo(hn) Por(ha)nom — n? P (hn )]

1
= [n - mPro(hn) + 1 - 7703)1(%2—"nz(fw(hn)nl + Py (hn)ng)2

n? - h2 v
=n-hn-E[5n(Z)] b E[5n,(2)]
+ 2(n — 2)P01(hn)P10(hn)
n—2
+ 2 (n—j — 1)(P(ha)Por((G = Dhn)mm + Por (hn)Poo((j — 1)hn)Pro(hn)m
j=2 '

+  Pio(hn)P11((G = Dhn)Po1 (hn)mo + P (ha) Pio((G — 1)hn)m0)].

These last sums can be seen to be of Riemannian nature and converge to simple integrals
as n — 00, h, — 0. Exemplarily:

n-2
Z(n —J- 1)P120(hn)P01((j — Lhy)m
=2
= Pou(h )2771” Ao nf 1-— E_l 1 —P_(’\“""\')(J'“l)hn)
" Ao + Ay -

=2

n
o n-1 3\ 1 2\ [
~ P h 2 __ - _ —_— — — 1 - = ‘_(A()+A1)tdt
o1 (hn) nln/\o_i_)\l ((n 3) ( ) n) i ( n)/o e

S
—_ td_ Q ldt
Tnz /0 ° )
~ h2

Mx \/n 5 3 AN 2 A3N2
a5 - M= = —1 VIR WY R
n'? ()\0+/\1) (z 2+n)+h "o aE\n T T Do
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where we have used:

% (ot 1 (oAt 1
e~(o At gy , / poe—Gotatg = L
/0 Ao+ M Jo (Ao + A1)?

The other Riemannian sums can be treated analogously:

n—2

D " (n — 5 — 1) Por(hn) Pro(hn) Poo((G — Dha)mn

j=2

. MM \2/n 5 3 A3\ 2 A3\

2 0] 01 0
~ Wik T ——— = —hgn—X (=21 ) - 0

h‘”"(/\oﬂl) (2 2+n) o+ A2 (n ) (o + M)t

n—2

D (n = j = 1)Pio(hn) Por(ha) Pi1 (G — 1ha)mo

=2

MM \i/n 5 3 A3 2 Ao A3

2 0A1 07 0N
L~ —— -t — | —hyp——— -1 -

hn”(,\0+,\1) (2 2+n) S A (n ) (Mo + AL)?

n—2

> (=3 — DB (ha)Pro(( — Dhn)mo

i=2

XM 2 /n 5 3 A2\2 2 A2)\2
h? N2 h 20t (2 g} A
nt (A0+/\1) (2 5 T n) iy A\ T et A

Collecting terms finally leads us to the following expression for the variance:

Var (n(2)) 200 ((,\0 - Ay)? 1 ) CAdod (o= A1)? 22000 (Mg = Ay)?

nh, \(Ao+AM)®  Ao+A/)  nZh, Qo+ M3 n2R2 (Ag+ A)?

n—2 8 A2\? 3 5
2X0\ — 07 ————
T Zhon w2t n (Ao + A1)? (n 2)

If hy, | O slower than n~! in the scnse that hy, -7 — oo then the order of magnitude of the
variance is given by the leading term in the above expression:

A+ 22
(/\0 + )\1)3.

which had to be shown. O

Var (5,(Z)) ~

2A0M ((/\0 —Ay)? 1

: = 4\o\
nhn \ (Ao + A1)® + /\0+)\1) 0

Theorem 7.3.3. (Asymptotic normality of the surface-estimator in the on-off-
system) Let Z be the stationary continuous on-off Markov chain with the generator given
in equation 7.4 A and initial distribution 1 in equation 7.8 observed on a refining sequence
of lattices ', containing n points and having lattice spacing h, = n~/3. Let further the
estimator $,(Z) be defined as in equation 7.9. Then:

Lo

n

ES d A(%'i_)‘%
(5,(2)—38) — —Ag - 4 —_— .
61 44 (oo o 5

Proof. (Theorem 7.3.3) Analogous to the proof of Theorem 7.1.1, part iv).
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7.4 Proofs of Chapter 5

7.4.1 Converse Direction of Hammersley and Clifford (Theorem 5.2.2)

Let © be a Markovian Random field on I' and let 7 be its distribution on S. We fix an
arbitrary configuration v € § as a reference configuration and for s € S and B ¢ T denote
by s® the configuration € S with sB(z) = s(z) for 2 € B and sB(z) = v(z) for z € B°.
Then we claim that U with Uy =0 and for A #0,A CT

Ua(s) === > _ (- Bllog n(s), (7.28)
BcA
is a potential for ©. This can be proved by Moebius-inversion. For B C T" we set ®(B) :=
—Ug(s) and ¥(B) = log (%(?:;))) Then we have for A # 0, A C T

D(A) = Z(——l)'A_BI log m(sB) — log w(v) Z(—I)M_B| = Z(—l)lA*B“I'(B), (7.29)

BCA BCA BCA

where we have used EBcA(—l)V‘_BI = Lﬂo (Z)(fl)k =(1- 1)"‘1l = 0.
For A = 0 equation 7.29 holds too because of:

m(s?)

D) = —Up(s) =0 =log ( @) ) = (D).

Hence Moebius-inversion results in:

log (53) = w(0) = - @(B) = - X Up(s) = ~Hu(s),

m(©) BCT BCT
where Hy(s) is the energy function associated with U. Thus 7(s) = n(v) - Exp (—Hy(s)),
and because 7 is a distribution we conclude 7 (v) = Z~!, which establishes the claim that
U is a potential.

Let further A # @, A C T. If we now choose a lattice point @ € A, we can rewrite equation
7.28 as:

Ua(@) =~ D (~)"* P (log(m(s”) — log(m(s7*)))

BCA—a

¥ (_1),A_B,log( P [6(a) = 5(a)|0(x) = sP(z), # d] ).(7_30)

o P[6(a) = sP+(a)[6(2) = 55+(z),2 % a]

It remains to show that U is in fact a neighbourhood-potential. To do this, let A C T be a
sct which is not a clique. Then there exist a,b € A such that b€ A\ §(a). Now, equation
7.30 can further be transformed into:

P [6(a) = sB(a)|O(z) z),x # al

z) = — _1)l4-Bl, |O(z) = s? y
Pt BcAZ\{a,b}( g log (P [©(a) = sB+b(a)|O(z) = sB+(z),z #

P [0(a) = sP+t0(q)|O(2) = sBT1¥(z), 2 # q]
P(6(a) = 57¥4(a)[6(z) = sPF(@), ¢ £
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Now note that we have the following equations:

| {8(a) =s%(@)} = {B(a) =5""(a)}
P [@(a) = 57(a)|0(z) = sP10(2), 2 # a] = P[O(a) = 5s(a)|O(z) = s5(z),2 # a]

the second of which being true, because © is Markovian and b ¢ 8(a). This shows that
the first quotient in the logarithm equals one. The same argument applics for the second
quotient, which finally gives us Ua(s) = 0 VA C ', A not a clique. This concludes the
proof, a

7.4.2 Proof of the Equivalence of Ensembles (Theorem 5.5.3)

Proof. (Theorem 5.5.3) In a first step we show that the Julész-ensemble in fact has the
Markov-property and thus it is a Gibbs-ensemble by a general version of the Hammersley-
Clifford-Theorem 5.2.2. To do this we need the following lemma:

Lemma 7.4.1.

1
lim — log |Q = s(v),
im = log |0, (0)] = (1)

where 5 : R™ — R is strictly concave (i.e. its Hessian is negative-definite everywhere).
Proof. (Lemma 7.4.1) sce (Lanford 1973).

We now consider the set Qr, (v) and its uniform distribution U,,, over a large T, and
choose arbitrary but fixed sub-lattices TV ¢ T'* € I',, such that the neighbourhood 6T
is completely contained in T''. We further denote I';! := I', \ T'! and T'®' := '\ I,
According to equations 5.8 the specific feature statistics ¢; are additive in the sense that
-1 701 1"0
¢j =vi-lul=¢;j ~d;,
where qS;-“ means the contribution to the feature statistic ¢; if only contributions on a
sub-lattice A C I, are counted. The number of configurations in §2r, (v) which exhibit a
given sub-configuration spo on T with joint local nonspecific feature statistic values Vyo
and spo on ' with joint local nonspecific feature statistic values Vo is thus equal to:

. v |Tp| — Vior — Vio
Qs i .
” |I-‘Tb I

Hence when sampling at random from ., (v) for the conditional distribution P [s;o|spo1]
we obtain:

P [spo|spo] oc |Qp—1 (U 1l ‘_/;«01 — Vo ) = Q- (’U' - VEOI ) , (7.31)
" ITw " IT7
where we have abbreviated v/ = ﬂﬁllf_l‘—l/‘ﬂ which can be regarded as constant for the

above conditional probability. Equation 7.31 shows that up to a constant, P [spo|spo] is
uniform and thus Lemma 7.4.1 can applied to get for large I'y,:

_ Vo
TR

);

log P [spo|spoi] = const + T, - s(v/
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which allows a Taylor-expansion of s around v’ to arrive at:

log P [spo|spoi] = const + [T, - s(v') — &'(v') - Vo + O( T !)
n

= const — §'(v') - Vpu—i—@(lr ’)

If we now note that v — v for I';, — Z% we conclude that for T',, — Z% we have:

. .
P [5]_‘0'8]_‘01] r‘d Exp (COIlSt — S,(’U) . V]_"l)) =P [SF”ISLSI‘O] ;

because only Vo plays a role which can be computed from I'® U 6T, This is seen to be
the Markovian property for the Gibbsian conditional distribution if we choose 8 = s'(v)
and use that the mass of the distribution must sum up to one.

For the converse direction we start with the Gibbsian distribution 7 ,, as given in defini-
tion 5.5.2 on I';, and arguc that it concentrates its mass uniformly on the Julész-ensemble.
The probability P [s € Qr,(v)] under the Gibbsian Model is:

P s € O, (v)] = >z Bxp (=|Tal 8- 0) -2 Up. (9, (v),

1
Zn(B)

where 3-v denotes a scalar product between vectors and Z,,(3) is the normalising constant
of the Gibbs distribution on I',. For the probability rate function one then gets:

1
lim logP[s e Qr,(v)] = —-f-v + hm
F'II_’Z( |Pn| g [ T ( )] /6 n‘" |FILI

1
| (r‘ilinzd Irnl IOg Zn(ﬁ) - IOg 2)
= 8(v) = 0-v—p(0),

where we have again used Lemma, 7.4.1 for the second summand and for the third we used:

log U[*n (Qpn (’U))

Lemma 7.4.2.
p(B) ;= lim

——log Zy(B) — log 2
[p—Z4 o8 ([) 8

1
Fnl

extsts independent of any boundary conditions and is a strictly convex function.

Proof. (Lemma 7.4.2) see (Griffiths and Ruelle 1971).

This means that the probability mass the Gibbsian distribution assigns to Qrp_(v) is of the
following order:

Pls € Qr, (v)] ~ Exp (Iln] - (s(v) = 8- v — p(B))).
But this implies that

sg(v) =s(v) —B-v—p(B) <0 (7.32)

must hold and therc must be a value vy for which s5(vg) = 0 otherwise the probability
mass would become completely annihilated in the thermodynamic limit. But then the
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function sg(.) obviously attains its (global) maximum at vy from which we immediately
rediscover the relationship we used further above:

,3 = S,('Uo).

If the value vg is unique it characterizes the Julész-ensemble to which the Gibbs cnsem-
ble is equivalent. The uniqueness of vy is given whenever the Gibbs models shows no
phase-transitions, i.e. there is only one Gibbs-measurc possible as a thermodynamic limit
for a given potential. Sufficient conditions for the absence of phase transitions are the
Dobrushin-condition and the Simon-condition which are discussed in detail in (Guyon
1995, section 2.1.3.1). O
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