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Abstract

One goal of statistical learning is to establish a relationship between

input variables and an output variable. The simplest and most widely
used method is linear regression. Over the years a lot of sophisticated
methods have been developed. One of them is boosting, which is an

ensemble method. This means that it combines several outputs of a

simple method to a strong "committee". This PhD thesis proposes

various extensions of boosting.

A first extension uses a conjugate direction method instead of the

gradient method to construct a new boosting algorithm (CDBoost). As

a result, one obtains a fast forward stepwise variable selection algorithm.
The conjugate direction of CDBoost is analogous to the constrained gra¬

dient in boosting. Using this analogy, CDBoost is generalized to: (i)
include small step sizes (shrinkage) which often improves prediction ac¬

curacy; (ii) the non-parametric setting with fitting methods such as trees

or splines, where least angle regression and the Lasso seem to be unfea¬

sible. The step size in CDBoost has a tendency to govern the degree
between Lq- and Li-penalisation. This makes CDBoost surprisingly
flexible. The different methods are compared on simulated and real

datasets. CDBoost achieves the best predictions mainly in complicated

settings with correlated covariates, where it is difficult to determine the

contribution of a given covariate to the response. The gain of CDBoost

over boosting is especially high in sparse cases with high signal-to-noise
ratio and few effective covariates.

A second extension proposes multivariate i^Boosting based on some

squared error loss for multivariate data. It can be applied to multi¬

variate linear regression with continuous responses and to vector au-
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Xll Abstract

toregressive time series. It is proven, for i.i.d. data as well as for

time series, that multivariate i^Boosting can consistently recover sparse

high-dimensional multivariate linear functions, even when the num¬

ber of predictor variables p = pn and the dimension of the response

q = qn grow almost exponentially with sample size n, i.e. pn = qn =

0(exp(Cn1_)) (0<£<1,0<C< oo), but the Li-norm of the true

underlying function is finite. This theory seems to be among the first

to address the issue of large dimension of the response variable; the

relevance of such settings is briefly outlined. Some cases where the mul¬

tivariate L2Boosting is better than multiple application of univariate

methods to single response components are also identified, thus demon¬

strating that the multivariate approach can be very useful.

Five robustifications of i^Boosting for linear regression with vari¬

ous robustness properties are considered in the third extension. The

first two use the Huber loss as implementing loss function for boosting
and the second two use robust simple linear regression for the fitting in

i^Boosting (i.e. robust base learners). Both concepts can be applied
with or without down-weighting of leverage points. The last method

uses robust correlation estimates and appears to be most robust. Cru¬

cial advantages of all methods are that they don't compute covariance

matrices of all covariates and that they don't have to identify multivari¬

ate leverage points. When there are no outliers, the robust methods are

only slightly worse than i^Boosting. In the contaminated case though,
the robust methods outperform i^Boosting by a large margin. Some of

the robustifications are also computationally highly efficient and there¬

fore well suited for high dimensional problems.

Finally, I applied LogitBoost with a tree-based learner to the five

performance prediction challenge datasets of the world congress on com¬

putational intelligence (WCCI) 2006. The number of iterations and the

tree size were estimated by 10-fold cross-validation. A simple shrinkage

strategy was added to make the algorithm more stable. The results are

promising: I won the challenge.



Zusammenfassung

Ein Ziel von statistischem Lernen ist es, Zusammenhänge zwischen In¬

put Variablen und einer Output Variablen zu finden. Die einfachste

und am meisten verwendete Methode ist lineare Regression. Im Laufe

der Zeit wurden viele raffinierte Methoden entwickelt. Eine davon ist

Boosting, welche eine "Ensemble" Methode ist. Das heisst, sie vereint

mehrere Outputs einer einfachen Methode zu einer starken Gesamtheit.

Diese Dissertation beschreibt verschiedene Erweiterungen von Boosting.

Eine erste Erweiterung verwendet die Methode der "konjugierten

Richtungen" anstatt der Gradientenmethode um einen neuen Boosting

Algorithmus zu konstruieren (CDBoost). Als Resultat erhält man einen

schnellen Algorithmus für Variablenwähl vorwärts. Die konjugierte Rich¬

tung von CDBoost ist analog zum eingeschränkten Gradienten beim

Boosting. Unter Verwendung dieser Analogie wird CDBoost so verall¬

gemeinert, dass man (i) kleine Schrittlängen ("Shrinkage") verwenden

kann, was sehr oft die Genauigkeit von Vorhersagen verbessert und dass

man (ii) auch nicht-parametrische Methoden wie Bäume oder Splines
verwenden kann, was bei "least angle regression" und dem Lasso nicht

möglich zu sein scheint. Die Schrittlänge in CDBoost hat eine Tendenz,
zwischen der Lq- und der Li-Bestrafung zu regeln. Das macht CDBoost

überraschend flexibel. Die verschiedenen Methoden werden anhand von

simulierten und echten Datensätzen verglichen. CDBoost erreicht die

besten Vorhersagen vorallem in komplizierten Situationen mit korre¬

lierten Kovariablen, in denen es schwierig zu bestimmen ist, wieviel

eine Kovariable zur Zielgrösse beiträgt. Der Gewinn von CDBoost über

Boosting ist besonders gross in Fällen mit hohem Signal-zu-Rauschen
Verhältnis und wenigen effektiven Kovariablen.

xin



XIV Zusammenfassung

Die zweite Erweiterung schlägt multivariates i^Boosting vor, welches

auf einer quadratischen Verlustfunktion für multivariate Daten basiert.

Es kann bei multivariater linearer regression mit kontinuierlichen Ziel-

grössen und für vektorielle autoregressive Zeitreihen verwendet werden.

Wir beweisen für i.i.d. Daten als auch für Zeitreihen, dass multivari¬

ates i^Boosting dünn besetzte, hoch-dimensionale, multivariate, line¬

are Funktionen konsistent schätzen kann und zwar sogar dann, wenn

die Anzahl der erklärenden Variablen p = pn und die Dimension der

Zielgrösse q = qn fast exponentiell wachsen mit der Anzahl Beobach¬

tungen n, d.h. pn = qn = 0(exp(Cn1-^)) (0<£<1,0<C< oo),
aber die Li-Norm der wahren zugrunde liegenden Funktion endlich ist.

Diese Theorie scheint unter den ersten zu sein, die die Situation der

hoch-dimensionalen Zielvariable behandeln. Die Relevanz solcher Situa¬

tionen wird kurz umrissen. Es werden auch Fälle aufgezeigt, in denen

das multivariate Boosting besser ist als mehrere Anwendungen von uni-

variatem Boosting auf die einzelnen Komponenten der Zielgrösse, was

darlegt, dass der multivariate Ansatz sehr nützlich sein kann.

In der dritten Erweiterung werden fünf Robustifizierungen von L^-

Boosting für lineare Regression mit verschiedenen Robustheitseigen-
schaften betrachtet. Die ersten beiden verwenden den Huber Verlust als

implementierende Verlustfunktion für Boosting und die nächsten beiden

verwenden robuste einfache lineare Regression für das anpassen beim

i^Boosting (d.h. robuste Basis Lerner). Beide Konzepte können mit

oder ohne Heruntergewichten von Hebelpunkten angewendet werden.

Die letzte Methode verwendet robuste Korrelationsschätzer und scheint

die am meisten robuste zu sein. Entscheidende Vorteile aller Methoden

sind, dass sie keine Kovarianzmatrizen aller Kovariablen berechnen und

dass sie nicht multivariate Hebelpunkte identifizieren müssen. Falls es

keine Ausreisser gibt, sind die robusten Methoden nur wenig schlechter

als i^Boosting. Bei kontaminierten Daten übertreffen die robusten

Methoden i^Boosting jedoch deutlich. Einige der Robustifizierungen
können sehr effizient berechnet werden und sind deshalb gut geeignet
für hoch-dimensionale Probleme.

Schliesslich habe ich LogitBoost mit einem auf Bäumen basieren¬

den Lerner auf die fünf Datensätze der "Performance Prediction Chal¬

lenge" des "World Congress on Computational Intelligence (WCCI)
2006" angewendet. Die Anzahl Boosting Iterationen und die Grösse

der Bäume werden mit 10-facher Kreuzvalidierung bestimmt. Eine ein-
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fache "Shrinkage"-Strategie wurde hinzugefügt, um den Algorithmus
stabiler zu machen. Die Resultate sind vielversprechend, habe ich doch

den Wettbewerb gewonnen.





Chapter 1

Introduction

In statistical learning we have an outcome measurement Y that we

want to predict by using a set of input variables X±,..., Xp. We refer

to regression if the output is quantitative (Y G R) and to classification

if the output is qualitative (Y G {1,...,K}). A statistical learning
method takes a training set of input-output pairs and builds a prediction

model, that can be used to predict the outcome for new unseen input

objects. The goal is to construct a model that predicts as accurately as

possible and that is at the same time as parsimonious as possible.

A popular learning idea is boosting, which was introduced by the

machine learning community at the beginning of the 1990's (Schapire
1990, Freund 1995). It was originally designed for classification, but can

also be used for regression. The idea was to combine many outputs of

a "weak" classifier to form a powerful "committee". With "weak" we

mean that the classifier is only slightly better than random guessing. In

the following I will review some key steps in the development of boost¬

ing. Detailed introductions to boosting from a statistical point of view

are given in Hastie, Tibshirani and Friedman (2001) or in Bühlmann and

Hothorn (2006). A completely different introduction from the point of

view of Machine Learning is given in Meir and Ratsch (2003).

1



2 Chapter 1. Introduction

1.1 AdaBoost

The first practical boosting algorithm is the AdaBoost algorithm for

classification (Freund and Schapire 1996, 1997). Consider a two class

problem with n observations (xi, yi),.. ., (xn,yn) with y% G { — 1,1}
and x% G Rp. Take a simple classification method that can be applied
to weighted data. The most popular choice is a classification tree. Ada-

Boost then works as follows: at the beginning, the classifier is applied
to the original (unweighted) data. All the observations that are mis-

classified get more weight and the classifier is applied to a weighted
version of the data. The weights of the misclassified observation of the

second classifier are again increased and the classifier is once more ap¬

plied. This process is repeated several times and the final classifier is

a weighted majority vote among all the simple classifiers. In detail,
AdaBoost works as follows:

AdaBoost algorithm

1. Initialize the observation weights wl = 1/n, i = 1,... ,n, where n

is the number of observations.

2. For m = 1 to M:

(a) Fit a classifier g^m"> : W —> {—1,1} to the data using weights

(b) Compute

(c) Compute a^ = log((l — err^m))/err^m)).

(d) Set w% <- w% exp (a^ I(yt ^ g^m\x,))) ,i=l,...,n.

3. Output G(x) = sign feiîi a(mVm)0)Y

After the invention of boosting, there has been some mystery about

it. It has been observed that boosting almost never over-fits no matter

how many iterations are performed. The usual strategy was therefore
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to run boosting for a large number of iterations and to stop when the

error curve (as a function of the number of iterations) levels off. Later

it has been found that "it is clearly a myth that boosting methods

do not over-fit" (Ratsch, Onoda and Müller 2001). It is mainly the

nature of the zero-one loss used in classification which provides some

resistance against over-fitting (Bühlmann and Yu 2000) and boosting
was often applied to low noise problems, where it is harder to see clear

over-fitting. It is therefore important to choose the number of iterations

M carefully, especially in regression problems where we can't use the

zero-one loss. The usual strategy to select M is cross-validation or to

use a separate validation sample.

1.2 Gradient boosting

Another question was why boosting works so well. Some answers were

provided by Breiman (1999), Friedman, Hastie and Tibshirani (2000)
and Friedman (2001) as they showed that boosting can be viewed as a

functional gradient descent algorithm. Friedman et al. (2000) pointed
out that AdaBoost fits an additive model in a stagewise manner mini¬

mizing an exponential loss, and that it is probably not the reweighting
that is responsible for the success of AdaBoost. They also developed
a new boosting algorithm called LogitBoost which is based on the log-
likelihood-loss and Newton optimization.

Friedman (2001) describes the very general gradient boosting al¬

gorithm. It is based on greedy function approximation by iterative

approximate gradient descent and works for classification and regres¬

sion. We need a differentiable loss function L : y x R —> Rq~, with

y = R for regression and y = {—1,1} for classification. Additionally,
we need (instead of a base learner) a class of basis functions T with

/ G J- : Rp —> R. The fitting is done iteratively by selecting in each

iteration the basis function that is most parallel (most correlated) to the

negative gradient of the loss function and adding them up successively.
In detail, the algorithm works as follows:

Generic functional gradient descent (FGD) algorithm

1. Initialize P(°> = arg min Yl=i L(y%,a)-
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2. For m = 1 to M:

(a) Compute the negative gradient (also called pseudo-response)

d

(b) Fit a function /(m) to the negative gradient by least squares

n

/() = argmin V(r, - f{xt)f.
ftr i

(c) Do a line search

k{m) =argmin^L(^,F(m-1) + & /(m) N

fee,.
i=1

(d) Update F^m) = i^"1) + i/ • &(m) • /M, where 0 < v < 1 is

an additional step length factor.

3. Output p(M> for regression and sign(F(-M-)) for classification.

The v in step 2d is called shrinkage factor. The natural value is

1, but smaller values are often a better choice because they lead to

less greedy and more stable procedures. The smaller we choose v the

more iterations we need. My experience is that v = 0.1 is usually small

enough and can be taken as a good default.

1.3 L2Boosting

The most widely used loss function for regression is the squared er¬

ror loss L(y,F) = (y — F)2/2. The corresponding boosting algorithm,

L2Boosting, is particularly simple: the negative gradient is just the

current residual vector and the line search of step 2c of the FGD algo¬
rithm is trivial (k^m' is always equal to 1). The algorithm amounts to

iteratively fitting of residuals.

As basis functions we take the set of all linear functions that depend

only on one component of the input: T = {/ : Rp —> R|/(x) = a+ß-xs}.
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This means that in each iteration the residuals are fitted against the

covariate that most reduces the residual sum of squares. The algorithm
can be written as:

i^Boosting with componentwise linear least squares

1. Initialize P^0' = y.

2. For m = 1 to M:

(a) Compute the current residuals

rt = yt-F(m-1\xt), i = l,...,n.

(b) Fit for each covariate x-, a simple linear least squares regres¬

sion:

^ ( x — x ) r ^

Pj 7 = vfv = Â" ' ^3 '3 X,7 ' J ' ' P'
(X^"XJT(X^-XJ

Select the covariate which most reduces the L2-I0SS:

s = argmm -||r — a3
—

PjXj \\ .

3 2

(c) Update P^m\x) = F{-m-1\x) + v (a§+ß§x§).

3. Output P(M\

The algorithm can be simplified when all covariates are centered

(mean subtracted). Then the intercept is estimated in step 1 and in

step 2b regressions through the origin are fitted.

L2Boosting with componentwise linear least squares is not just a

black box tool but generates sound linear models. It performs a simple
kind of variable selection, because in each iteration only one coefficient

is updated. This is usually not the way variable selection and fitting
is done. The classical forward variable selection algorithm updates in

every step all the coefficients of the variables included in the model. Ad¬

ditional strength of i^Boosting with componentwise linear least squares

is given by using a shrinkage factor v smaller than 1. When we use for
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example v = 0.1, we only perform a small model update in each iter¬

ation and in the next iteration we can check whether there is now a

better variable. If not, the same variable is chosen again and the model

is carefully built. In high dimensions (many covariates), i^Boosting is

clearly superior to the classical forward variable selection.

When we use a V —> 0", L^Boosting yields solutions similar to

the Lasso. In fact, i^Boosting and the Lasso are for specific models

special cases of least angle regression (see Efron, Hastie, Johnstone and

Tibshirani 2004).

Typically we use cross validation to stop the boosting iteration pre¬

diction optimal. In this case, the fitted model usually contains too many

variables. In fact, the smaller we take is, the more variables are selected.

From a practical point of view, this is not too bad, since it is easy to

drop some variables out of the model in a second analysis. Also for

prediction accuracy, some noise variables in the fitted model with small

coefficients usually do not hurt.

1.4 Thesis overview

In chapters 2-5, this PhD thesis includes four papers. The first three

are closely related to L^Boosting and the forth is an application of

LogitBoost.

Chapter 2 is the paper "Conjugate direction boosting" (Lutz and

Bühlmann 2006c). Instead of the gradient method, a conjugate direction

method is used to construct a new boosting algorithm (CDBoost).

Chapter 3 is the paper "Boosting for High-Multivariate Responses
in High-Dimensional Linear Regression" (Lutz and Bühlmann 2006b).
Parts of it are also contained in Bühlmann and Lutz (2006). A mul¬

tivariate L2Boosting algorithm based on some squared error loss for

multivariate data is proposed. It can be applied to multivariate linear

regression with continuous responses and to vector autoregressive time

series.

Chapter 4 is a research report (Lutz and Bühlmann 2006a) that has

been submitted. Five robustifications of L^Boosting for linear regression



1.4. Thesis overview 7

with various robustness properties are considered. The first two use the

Huber loss as implementing loss function for boosting and the second

two use robust simple linear regression for the fitting in L^Boosting

(i.e. robust weak learners). Both concepts can be applied with or

without down-weighting of leverage points. The last method uses robust

correlation estimates.

Chapter 5 is the conference paper "LogitBoost with Trees Applied
to the WCCI 2006 Performance Prediction Challenge Datasets" (Lutz
2006). I applied LogitBoost with a tree-based learner to the five WCCI

2006 performance prediction challenge datasets. The results are promis¬

ing: I won the challenge.





Chapter 2

Conjugate direction

boosting

Boosting in the context of linear regression has become more attractive

with the invention of least angle regression (LARS), where the con¬

nection between the Lasso and forward stagewise fitting (boosting) has

been established. Earlier it has been found that boosting is a functional

gradient optimization. Instead of the gradient, we propose a conjugate
direction method (CDBoost). As a result, we obtain a fast forward

stepwise variable selection algorithm. The conjugate direction of CD-

Boost is analogous to the constrained gradient in boosting. Using this

analogy, we generalize CDBoost to: (i) include small step sizes (shrink¬
age) which often improves prediction accuracy; (ii) the non-parametric

setting with fitting methods such as trees or splines, where least angle re¬

gression and the Lasso seem to be unfeasible. The step size in CDBoost

has a tendency to govern the degree between Lq- and Li-penalisation.
This makes CDBoost surprisingly flexible. We compare the different

methods on simulated and real datasets. CDBoost achieves the best

predictions mainly in complicated settings with correlated covariates,

where it is difficult to determine the contribution of a given covariate to

the response. The gain of CDBoost over boosting is especially high in

sparse cases with high signal to noise ratio and few effective covariates.

9



10 Chapter 2. Conjugate direction boosting

2.1 Introduction

The problem of subset selection in linear regression has been revived by
the invention of least angle regression (LARS; Efron et al. 2004), where

a connection between the Lasso (Tibshirani 1996) and forward stagewise
linear regression has been established. A closely related idea of forward

stagewise fitting originates from the machine learning community under

the name of boosting (Schapire 1990, Freund 1995, Freund and Schapire

1996). As an ensemble scheme, a fitting method (called the weak or

base learner) is repeatedly applied to reweighted data and its outputs

are averaged to form the boosting estimator. Freund and Schapire's

(1996) AdaBoost for binary classification is most popular, very often

in conjunction with trees as base learner. An extensive overview over

boosting is given for example in Meir and Ratsch (2003).

Further important work (Breiman 1998, 1999, Friedman 2001, Ratsch

et al. 2001) has revealed that boosting is a functional gradient descent

method. It can be applied in a variety of settings with different loss func¬

tions and many fitting methods. The use of the squared error loss for

linear and non-parametric regression was proposed by Friedman (2001)
under the name LS_Boosting and further extended and analyzed by
Bühlmann and Yu (2003) under the name i^Boosting. Other work on

boosting for regression include Duffy and Helmbold (2000), Zemel and

Pitassi (2001) and Ratsch, Demiriz and Bennett (2002).

In this paper we propose CDBoost, a method for linear regression
with many covariates (or linear basis expansions with overcomplete dic¬

tionaries) which uses a conjugate direction method instead of the gra¬

dient method. As a result, we obtain a fast method for some type of

forward stepwise variable selection in linear regression. It turns out that

it produces the same solutions as the orthogonal greedy algorithm in

function approximation (cf. Temlyakov 2000), although the algorithms
are different. It is well known that forward stepwise variable selection

algorithms can be unstable, resulting in poor predictive performance. In

analogy to boosting using the concept of a conjugate direction instead

of a constrained gradient, we can include small step sizes (shrinkage)
in CDBoost when moving along conjugate directions. The algorithm

decelerates, becomes more stable and the prediction accuracy can be

greatly enhanced. The step size in CDBoost has a tendency to govern

the degree between Lo-norm- and Li-norm-penalisation of the regres-
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sion coefficient vector. This is quite different from boosting where the

step size cannot be chosen to yield a forward stepwise variable selec¬

tion method (i.e. forward Lo-penalisation). Varying the step size thus

makes CDBoost surprisingly flexible. Another advantage of conjugate
directions is that we can use our method with any fitting method such

as trees and smoothing splines. While this is analogous to boosting,
it marks an essential difference to the Lasso or least angle regression

(LARS).

2.2 Linear Regression

In univariate linear regression we assume a continuous response y G Rn

and a set of d covariates X = (xi,X2,...,x^) G Rnxd. Here n denotes

the sample size. The response y is modeled as a linear combination of

the covariates plus a random error. In matrix notation:

y = X/3 + e, /3GRd, e G Rn,

ei,.. ., en i.i.d. withE [et] = 0, Var (et) = a2.

We assume w.l.o.g. that all covariates and the response are centered to

have mean zero, so we need not worry about an intercept. We always
assume that rank(X) = min(n — l,d); note the reduced rank n — 1 (if
d > n — 1) due to the centering of the covariates. Parameter estimation

is most often done by least squares, minimizing the loss function

L(ß) = \ ||y - Xßf = \ßTXTXß - yTXß + iyTy.

Assuming d < n — 1 and X of full rank d, we find the unique solution

ß=(XTX)^XTy.

2.2.1 Methods for variable selection

For d > n — 1, the matrix XTX becomes singular and the least squares

solution is not unique. For fairly large d < n — 1, the least squares solu¬

tion will often over-fit the data. In both cases we need a régularisation

strategy. We focus here on methods that do variable selection.
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Classic forward stepwise variable selection

We start with the empty model and sequentially add that covariate

to the model which most improves the fit (most reduces the loss func¬

tion L) when (re-) estimating regression coefficients by least squares

corresponding to previously and currently selected covariates. Forward

stepwise variable selection is a very greedy method. Covariates which

are highly correlated with variables already included in the model have

a small chance of being chosen.

i^Boosting

We present here only the key ideas of i^Boosting with componentwise

linear least squares. Technical details are given in section 2.3, where

we show that i^Boosting is a constrained gradient optimization. More

details can also be found in Friedman (2001) and Bühlmann and Yu

(2003).

i^Boosting is an iterative method which starts with the empty

model (all /3-coefficients equal to zero). In each iteration, the current

residuals are fitted against the one covariate which gives the best least

squares fit (using only one single covariate). The model is updated

by adjusting only the coefficient corresponding to the chosen covariate;

all other coefficients remain unchanged. This is a main difference to

forward stepwise variable selection: one boosting update is computa¬

tionally faster, but the coefficients in every iteration are no longer least

squares estimates (in sub-models). But it is possible to choose a covari¬

ate again to adjust a coefficient which was badly estimated in an earlier

step.

Conjugate direction boosting

Here, we give a brief sketch of our conjugate direction boosting algo¬
rithm (CDBoost). It turns out that our algorithm yields the same so¬

lutions as the orthogonal greedy algorithm which is known in nonlinear

function approximation (cf. Temlyakov 2000). But our formulation with

conjugate directions easily allows for extensions which include shrinkage

(small step sizes) or which are applicable to the non-parametric settings.
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CDBoost is a hybrid between forward stepwise variable selection

and L2Boosting. The selection of a new covariate is as in boosting:
take the one covariate which fits the current residuals best. The coef¬

ficient update is like forward stepwise variable selection: compute the

least squares solution in the model with the previously and currently
selected covariates, by using a conjugate direction method. In other

words: the conjugate direction boosting selects the covariate which

would most improve the fit without adjusting the coefficients of the

other variables. But after the selection, we adjust all the non-zero coef¬

ficients. Therefore, conjugate direction boosting (like forward stepwise

variable selection but unlike L2Boosting) finds the least squares solution

(or a perfect fit) in min(n — l,d) = rank(X) steps.

2.3 L2Boosting

We denote by F(-) : M.d —> R the (linear) regression function of interest.

The i^Boosting algorithm with componentwise linear least squares as

briefly outlined in section 2.2.1 can then be described as follows:

i^Boosting algorithm for linear regression (function version):

Step 1 : Center xt and y to mean zero. Initialize p(°'(x) = 0 and m = 1.

Step 2: Compute current residuals r% = y%
— P^m~1\xl) (i = 1,..., n).

Compute the coefficients of all simple linear regressions of r (g Rn)

against each covariate alone: ß3 = xjr/xjx-, (j = 1,..., d).
Select the covariate which most reduces the L2-I0SS:
k\m) = argmin-, ^||r — ß3x3 \\2.

Update P(m\x) = P(m-l\x)+ß%{m)x%{m).

Step 3: Increase iteration index m by one and go back to Step 2.

The number of iterations is usually estimated using a validation set

or with cross validation.

In signal processing, this algorithm is known as matching pursuit

(Mallat and Zhang 1993) and is used to decompose a signal into a linear

expansion of waveforms.
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The L2Boosting algorithm can also be written as a constrained gra¬

dient method. This is not exactly the same as the functional gradient

approach of Breiman (1998, 1999), Friedman (2001) and Ratsch et al.

(2001), because we work entirely in the parameter space of ß.

For a given ß, the negative gradient of the loss function is

-VL(ß) = -(XTX)/3 + XTy = XT(y - X/3).

The idea is to optimize in the coordinate direction (thereby changing

only one entry of ß) which is most parallel to the negative gradient.

This means we look for the k for which I < —V-L.e? > I becomes

maximal, where e^ G M.d is the unit vector with entry 1 at position k.

k is therefore merely the component of the negative gradient with the

highest absolute value. We shall call e^ constrained gradient.

Note that this alternative formulation is only equivalent to the above

cited function version when all covariates are scaled to the same vari¬

ance. We can then rewrite the i^Boosting algorithm:

i^Boosting algorithm for linear regression

(gradient/coefficient version):

Step 1: Standardize xt to zero mean and unit length (x^x^ = 1). Stan¬

dardize y to zero mean. Initialize ß^Q' = 0 and m = 1.

Step 2: Compute the negative gradient

-VL(m) = XT(y - X/3(m-1})

and determine the component with highest absolute value: kSm> =

I V7 T (m) I

arg max-, |
—

vLy J\.

Update ß: component kSm^ changes to

A(m)
_

A(m-l) T /
_ y^ß{m-l) )

and all other components remain unchanged.

Step 3: Increase iteration index m by one and go back to Step 2.
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2.4 Conjugate direction boosting

2.4.1 Conjugate direction and gradient optimization

Instead of the gradient method, we can use a conjugate direction method

to minimize the quadratic function

L(ß) = l-ßTXTXß - yTXß + iyTy =: \ßTAß - bTß + c,

A = XTX G Rdxd symmetric, positive definite, b = XTy G Rd.

If d > n — 1, the matrix A is not positive definite. This does not

matter because we actually only use sub-matrices of X so that the

corresponding A remains positive definite.

Conjugacy is a property similar to orthogonality. A set of nonzero

vectors {pi,..., Pd},Pt G Rd is said to be conjugate with respect to the

symmetric positive definite matrix A if

.t
Ap-, = 0 for all i ^ j.

The importance in conjugacy lies in the fact that we can minimize L

in d (< n — 1) steps by minimizing along the individual directions in a

conjugate set. A conjugate direction method takes an arbitrary set of d

conjugate directions and does individual minimization of L along these

directions. In contrast to the gradient method, we reach the minimum

after d (< n — 1) steps.

The question is how to find a set of conjugate directions. The canon¬

ical conjugate gradient method does the job very efficiently during the

optimization process and not in advance. It takes the negative gradient
as the first direction pi. For k > 1, p^ is a linear combination of the

actual negative gradient and the previous Pfe_i only:

VL(fc)^APfc_1

pLiAPfe-i

{k) VL^Ap^i
pfe = -VL1 ' -\ T— pfe_i.

We do not need to store all the previous elements pi,P2, • • •,Pfc-2:

Pfe is automatically conjugate to these vectors. A proof of this remark¬

able property can be found for example in Nocedal and Wright (1999).
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The conjugate gradient method is the same as Partial Least Squares

(see for example Phatak and de Hoog 2002) and does not employ vari¬

able selection.

2.4.2 CDBoost: conjugate direction boosting for lin¬

ear regression

We now describe our conjugate direction method which employs variable

selection. In each step, only one component of ß should change from

zero to non-zero. We achieve this by choosing a special set of conju¬

gate directions. Unfortunately, we loose the simplicity of the conjugate

gradient method, because we have to store all the directions p^.

The first step is identical to i^Boosting: we look for the component

of the negative gradient with the highest absolute value, say component

kM\ The vector e^(1) is again called the constrained gradient. We then

optimize along that first direction pi = e^i).

In the following steps we have to determine a direction that is conju¬

gate to all previous directions. Again, we compute the negative gradient
and its constrained version (unit-coordinate vector e^(m)). The new di¬

rection pm is a linear combination of the constrained gradient and all the

previous directions. It is easy to compute the coefficients of the linear

combination so that the new pm is conjugate to all previous directions.

In the m-th iteration we have

m— 1

Pm =

2_^ ^3^3 +efe()-
J = l

The X's are determined by the m — 1 equations:

/ m— 1 \

P^A S A^ + efc(m> = °' i=l,...,m-l.

Using the property of conjugacy, we have

A,pfAp, +pfAe^(m) = 0, i = l,...,m-l,
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> P« ^-efe(m)
.

1 1
A,, = fft—^— 1 = 1 m—1.

and

pfAp

Now we can formulate the

CDBoost algorithm with L2-I0SS for linear regression:

Step 1 : Standardize x^ to zero mean and unit length. Standardize y to

zero mean. Initialize ß(0' = 0 and m = 1.

Step 2: Compute the negative gradient

-VL(m) = XT(y - X/3(m-1}) (2.4.1)

and take the component with highest absolute value: kSm> = arg max

(m)
3

VLi |. Define the constrained gradient by e^(m) (unit-coordinate vec¬

tor).

For i = 1,..., m — 1 compute the coefficients for the linear combi¬

nation (for m = 1 there are no X's):

A* "

pfx^xp,
•

Compute the new direction (for m = 1 the sum vanishes)

m— 1

pm= I]A,(m)p,+ee(m). (2.4.2)
z=i

Minimize along the direction of pm: i.e., update

0<m> = ^(m-i) + (y-Xr^7'')rXP'»p.m. (2.4.3)

5tep 5: Increase iteration index m by one and go back to Step 2.

The number of iterations is again estimated using a validation set

or cross validation.
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We can take advantage of sparse vectors when implementing the

CDBoost algorithm, in particular when d ^> n. The vectors pm and

ß(m) have m non-zero entries, and the unit-coordinate vectors e^ have

only one non-zero entry. Thus, the terms Xe^(m), Xpt (i = 1,.. . ,m)
and Xß^m~l> can be computed efficiently in 0(nm) operations, and

there is no need to compute XTX which is of particular interest if d is

(very) large.

CDBoost is not as simple as the conjugate gradient method, because

we have to store all the previous directions. On the other hand we

have an algorithm which performs variable selection because only one

coefficient of ß^m> in each step changes from zero to non-zero.

A fast forward stepwise variable selection algorithm

Here, we establish an equivalence of CDBoost to the orthogonal greedy

algorithm (cf. Temlyakov 2000). The latter is similar to forward step¬

wise variable selection as described in section 2.2.1. It also employs
least squares based on the selected covariates but a new covariate in the

m-th selection step is chosen as the minimizer, with respect to j, of

|xjr|/xjx,, (2.4.4)

where r = y
— X/3(-m_1-) are the current residuals. Note that forward

stepwise variable selection chooses the covariate such that the loss L(ß)
is minimized when fitting least squares on the previously and currently
selected covariates.

Proposition 1 The solutions of CDBoost and the orthogonal greedy

algorithm coincide in every iteration m < min(n — 1, d) = rank(X). In

particular, in every iteration CDBoost employs least squares fitting in

the corresponding sub-model of selected covariates.

Proof: (i) We first show that for every iteration m, ß^m> is the

least squares solution using the selected m covariates. If we started our

algorithm again with only these m covariates, we would reach the same

model after m iterations and this is the least squares solution because we

use a conjugate direction method. Thus, we have proved that CDBoost

yields least squares solutions when fitting y to the selected covariates.
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In particular, in every iteration CDBoost selects a covariate which

has not been selected before and the saturated model is reached after

min(n — 1, d) iterations.

(ii) For the equivalence to the orthogonal greedy algorithm (OGA),
we only need to show that CDBoost selects the same covariates as the

OGA (since both algorithms employ least squares fitting on the selected

covariates). But this holds by the equivalence of formula (2.4.1) for

CDBoost and (2.4.4) for OGA (note that (2.4.1) is for standardized

variables with x.Jx.3 =1).

It should be pointed out that CDBoost and the orthogonal greedy
method are different algorithms. As a conjugate direction method, CD-

Boost has natural generalizations to be used with small step sizes (see
section 2.5) and to the non-parametric setting (see section 2.8).

Computations

We are interested in the computational complexity for computing the

full path of solutions of a method: that is, all possible solutions from

the empty model with no covariates to the fully saturated model from

least squares (if d < n — 1) or with zero residual sum of squares (if
d > n).

Proposition 2 The computational complexity of CDBoost for comput¬

ing the full path of solutions is 0(ndmm(n, d)).

Proof: Consider the m-th iteration of CDBoost: the negative gradi¬
ent can be computed at a cost of 0(nd), all the A's at a cost of 0(nm)
(reusing terms computed in earlier iterations), the new direction at a

cost of 0(dm) and the update at a cost of 0(nd). Thus, the computa¬

tional cost for the m-th iteration is

0{nd) + 0{nm) + 0{dm). (2.4.5)

Because the fully saturated model is fitted after min(n —l,d) iterations

(which follows from Proposition 1), we get m < min(n — l,d). Hence

by formula (2.4.5), the cost for computing the whole path of CDBoost

solutions is 0(ndmm(n,d)). D
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The result from Proposition 2 can be compared with other methods.

The computation of the whole path of the LARS solutions is of the same

computational complexity 0(ndmm(n, d)) (cf. Efron et al. 2004; in case

of d > n— 1, their statement of 0(n3) is wrong and should be 0(n2d) =

0(ndmm(n, d))). Thus, CDBoost and LARS are comparable in terms of

computational cost: while the former does least squares on the selected

variables, the latter employs shrinkage from L\-penalisation.

The full path of classical forward stepwise variable selection costs

0(nd2) (cf. Miller 2002), regardless whether d is smaller or greater

than n. Thus, for d < n, forward stepwise variable selection is as fast as

CDBoost or LARS; for d ^> n, the situation is markedly different and

forward stepwise variable selection is no longer linear in the dimension

d. The main point is that forward stepwise variable selection depends

on the square of the number of covariates out of the model and CDBoost

depends on the square of the number of covariates in the model.

The computational cost for the path of i^Boosting until boosting it¬

eration m is O(ndm). In cases where the number of boosting iterations

m is of the order of min(n, d), we have comparable computational speed
to CDBoost or LARS. However, to compute the fully saturated model

we would typically need infinitely many (m = oo) iterations: the con¬

vergence speed depends in a complicated manner on the design matrix

X.

CDBoost and forward stepwise variable selection employ least squares

fits based on the selected variables while LARS (Lasso) and L^Boosting

yield shrunken estimates. For cases where d ^> n, CDBoost can have

a substantial computational advantage over forward stepwise variable

selection.

2.5 Shrinkage or small step size

Noticed by Friedman (2001), the predictive accuracy of boosting (and
forward stagewise fitting) can be improved by a simple shrinkage strat¬

egy: in each boosting step, only a small fraction is (for example is = 0.1)
of the optimal update is added. This can be interpreted as a small step

size along a constrained gradient. Of course, there is a computational
cost when using small step sizes, but it usually pays off as a clear im-
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provement in accuracy of predictions.

We modify the update in Step 2 of the i^Boosting algorithm from

section 2.3 to

F(m)(x) = F(m_1)(x) + v ß%{m)X^{m) (function version)

or

4Z}) = ßu^ + V XI(^)(y - X/5(m-1}) (gradient version).

The implementation of a similar strategy with small step sizes for for¬

ward stepwise variable selection or the orthogonal greedy algorithm (see
section 2.4.2) is not straightforward. However, with CDBoost (which
yields the same solutions as the orthogonal greedy algorithm, see Propo¬
sition 1) we have a natural concept of using small step sizes: in each

iteration we only take a fraction of the optimal step along the conjugate
direction.

2.5.1 Conjugate direction boosting with restart

A new problem arises when we use shrinkage for CDBoost. Without

shrinkage, each covariate can only be chosen once. This is no longer
true with shrinkage because the coefficients ß(m> are no longer least

squares solutions (in sub-models). Thus, it may happen that a covariate

already included in the model fits the current residuals best. In this case,

we cannot find a new direction as in (2.4.2) which is conjugate to all

previous directions, because there are only m conjugate directions in an

m-dimensional space. A possible remedy is discussed next.

An easy and effective solution to the problem is to restart the algo¬
rithm when a variable is chosen the second time. We take the actual

ß(m-i) ag ^q new starting ß, delete all the conjugate directions pt and

start again. A justification for restarting is described below in Proposi¬
tion 3. To keep track of the total number of iterations, denoted by m,

we formulate our algorithm by marking the starting points which are

denoted by an index s.

CDBoost algorithm with shrinkage and L2-I0SS for linear

regression:
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Step 1 : Standardize xt to zero mean and unit length. Standardize y to

zero mean. Initialize ß^Q' = 0, m = 1 and s = 1.

Step 2: Compute the negative gradient

-VL(m) = XT(y - X/3(m-1})

and take the component with highest absolute value: k^m' = arg max-, | —

VLm |. Define the constrained gradient by e^(m) (unit-coordinate vec¬

tor).

If Um^ G {Us\ .

.., Um~V} restart: Set s = m.

• If m = s:

Pm — ^fe(fn-) •

• If m > s: For i = s,... ,m
— 1 compute the coefficients for the

linear combination

A
(m)

_

p, X Xe^(m)
% T-

P^X^Xp

and compute the new direction

m—l

(m)
E\(m)

i

\ Pt ~r ek(m)-

Minimize along the direction of pm , i.e., update ß:

ß = ß{m~l) + -
(y"X/^))TXPmP^-

P4X XPm

Step 3: Increase iteration index m by one and go back to Step 2.

As already indicated, by the inclusion of shrinkage we no longer
have a proper conjugate direction method and thus, we do not reach

the least squares solution after min(n—1, d) = rank(X) iterations. With

shrinkage, the goal is to generate a "good" path from the empty model

to the least squares solution (which is obtained with possibly infinitely
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many iterations). The conjugate direction method is only used here to

propose "good" directions rather than achieving fast convergence to a

good submodel. In section 2.7 we show that shrinkage can dramatically

improve the predictive performance.

We now give an illustrating example with 3 correlated covariates,

ß = (3,2,1)T, low noise and v = 0.005. Covariate 1 has highest ab¬

solute gradient value and is therefore chosen first in CDBoost with

shrinkage. After a tiny update in direction pi = (1,0, 0)T, covariate 1

is still the best choice. This leads to a restart and we again take vari¬

able 1 followed by a step in direction pi. This scenario is repeated until

^(43) _ (i,03,0,0)T, where covariate 2 gets higher absolute gradient
value. Then, we perform an update in the direction p2 = (—0.81,1,0)T
which is conjugate to pi. In the last two steps (along the directions pi

and P2) we moved the fraction v from ß^A2"> to the least squares solution

of covariate 1 and 2.

Prior to these two steps, covariate 1 had a higher absolute negative

gradient value than covariate 2 and the same is true after these two

steps (see the Proof of Proposition 3 below). Thus, we choose vari¬

able 1 which causes a restart and a step in direction pi followed by
the choice of variable 2 and a step in direction P2 followed by another

restart with variable 1. This is repeated until ß(139^ = (1.96,0.93, 0)T,
where variable 3 gets highest absolute negative gradient value. Then

we perform an update in the direction P3 = (—0.43, —0.48,1)T conju¬

gate to pi and p2- The next choice is covariate 1 which causes again a

restart and we repeatedly find the sequence of variables 1, 2, 3, restart

until we reach (theoretically after 00 steps) the least squares solution

ß = (3.03,1.94,1.02)T.

In summary: the selected covariate indices are

1,1,1,1,..., 1,1, 2,1,2,1,2,1,2,..., 1,2,1,2,3,1,2,3,1,2,3,1,2,3,....
N

v

' N

v

' N

v

'

42 times 95 times the pair (1,2) 00 times the triple (1,2,3)

It is no coincidence that the restart was always caused by covariate 1,

as described by the following result (the repeating pattern of selected

pairs and triples is also a more general fact).

Proposition 3 The CDBoost algorithm has the following property: It

is always the first chosen covariate x^i) which causes a restart.
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Proof: Suppose we have an arbitrary ß^m"> and j conjugate directions

involving j covariates. Now we restrict everything (L, VL, ß) to these

j covariates (denoted with -I-,). We can minimize L\3 (find the least

squares solution for these j covariates) by j individual minimizations

along the j conjugate directions. For each of the j minimizations we

take only v of the optimal step length and therefore we only move the

fraction v from ß(m> to the least squares solution of the j covariates.

The new negative gradient after these j steps is

-VL<m+'>|, = X\j(y-X\3(ß(m)\3+is0(°LS)\3 -ß{m)\3)))
= X|j(i/y - is^\3ß^OLS)\3 + (1 - „)y - (1 - is)X\3ß^\3)
= (l-„)(-VL<m>|,) (2.5.6)

because the negative gradient at the least squares solution is 0. We see

that the involved components of the negative gradient are scaled by the

factor 1 — is and therefore it is the same component which has highest
absolute value before and after the j updates.

Suppose covariate kS1^ has highest absolute gradient value and CD-

Boost yields the following sequence of covariate indices at the beginning:

k^1',..., ky\ where all kM\ i = 1,..., j are different. It follows from

(2.5.6) that the variable with index k^ has higher absolute gradient

value than kS2\
...,

ky\ In the next iteration we therefore choose ei¬

ther A^1) (restart) or a completely new covariate (no restart necessary).
D

2.5.2 Sparseness

CDBoost shows an interesting behavior of sparseness as a function of

the shrinkage factor is: when using an estimated prediction-optimal

stopping iteration (from a validation set), CDBoost with is = 1 has a

tendency to yield a coefficient vector ß with small Lo-norm (number
of non-zero coefficients) while an infinitesimally small is tends to yield
small Li-norm. Table 2.1 illustrates this for the model from section 2.7.1

with various signal-to-noise ratios.

We point out that the results from Table 2.1 are only on average

(over 100 datasets), and the behavior of CDBoost on an individual
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stnr = 9 stnr = 4 stnr = 1

V Lo-norm Li-norm Lo-norm Li-norm Lo-norm Li-norm

1 6.91 28.1 6.73 29.4 4.99 32.0

0.7 7.84 27.0 7.33 27.3 5.88 26.7

0.5 7.99 26.6 7.62 26.7 6.59 27.6

0.3 8.35 26.6 7.95 26.4 6.76 26.5

0.1 8.31 26.4 8.15 26.8 6.93 26.5

0.03 8.36 26.5 8.16 26.9 6.95 26.8

0.01 8.39 26.6 8.17 26.9 7.03 26.9

Table 2.1: Average Lq- and L\-norm of the coefficient vector ß from
CDBoost with various signal-to-noise ratios (stnr) and shrinkage fac¬
tors is for simulation model 1 (see section 2.7.1). The iteration is

stopped with a validation set.

dataset sometimes differs from the average tendency. Nevertheless, we

may interpret the step size v in CDBoost as a parameter governing the

tendency for sparseness of solutions. For L2Boosting, the sparseness

of solutions is less sensitive to the choice of the shrinkage factor v.

For example, CDBoost with is = 1 yields least squares estimation on

selected variables (Proposition 1) while in general, L2Boosting with

is = 1 produces shrunken least squares estimates on selected variables.

For the special case with an orthonormal design XTX = I and d <

n — 1, a rigorous result holds. CDBoost with is = 1 yields Lo-penalized

regression estimators while an infinitesimally small is yields Li-penalized
solutions. For both cases, the iteration m in CDBoost corresponds to

the penalty parameter for Lo- and Li-penalisation, respectively. The

first statement with is = 1 is a direct consequence of Proposition 1 and

the orthonormality of the design; the case with infinitesimally small

is can be derived from the fact that CDBoost and L2Boosting coincide

due to the orthonormal design and therefore, the statement follows from

Bühlmann and Yu (2005).

2.6 Connections to LARS

Efron et al. (2004) recently proposed least angle regression (LARS). A
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modification of LARS yields all Lasso solutions and another modifica¬

tion yields forward stagewise fitting (boosting with infinitesimal shrink¬

age). When we use boosting with a small shrinkage parameter is, we

almost reproduce the forward stagewise fitting path. The bigger we take

is, the more we depart from this path.

For the rest of this section we assume infinitesimal shrinkage for

boosting and CDBoost. LARS and boosting yield the same path, when

all the /3-coefficients move monotonically away from zero as the LARS

or boosting iterations increase. In this case CDBoost also leads to that

path. For more general cases, turnarounds of coefficients (for example

decreasing after increasing) are possible with LARS. Forward stagewise

fitting behaves differently in such a case: it drops that variable from

the active set of selected covariates and leaves its coefficient unchanged
in the next step. The CDBoost algorithm works in between LARS and

boosting/forward stagewise. Two examples with 3 covariates demon¬

strate this behavior. The following tables show the traces (endpoints of

linear pieces) of the /3-coefficients from zero to the least squares solu¬

tions.

Example 1: LARS/CDBoost Boosting/Stagewise

ßi h h ßi fo ßz
2 0 0 2 0 0

5 3 0 5 3 0

2 10 6 5 6 3

2 10 6

Example 2: LARS Boosting/Stagewise/CDI
h h h ßi fo ßz
7 0 0 7 0 0

13 5 0 13 5 0

19 3 5 15 5 2

19 3 5

LARS always finds the least squares solution after 3 fairly large

steps (in principle we can also evaluate intermediate models between

two steps). Forward stagewise fitting drops covariate 1 in example 1

and covariate 2 in example 2 after step 2, the corresponding coefficient

remains and it needs one more step to reach the least squares solution

(note the turnaround of coefficient ß\ in example 1 and ßi in example 2).
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CDBoost behaves like LARS in the first example and like forward

stagewise fitting in the second. Remember that CDBoost takes a lot

of tiny steps to produce one LARS-step. At the beginning it always
takes covariate 1 until the first LARS-step is reproduced, then covari¬

ate 1 and 2 in an alternating fashion. In example 1 it is the first chosen

variable which turns around and CDBoost behaves like LARS. This is

because covariate 1 is always chosen after a restart and its coefficient

is adjusted in each step. In example 2 it is not the first chosen vari¬

able which turns around and CDBoost behaves like forward stagewise

fitting. The selected variable indices with CDBoost in example 2 are:

1,1 1, 1,2,1,2,...,1,2, 1,3,1,3,...,1,3, 1,3,2,1,3,2,....

2.7 Simulations with linear regression

Now, we compare CDBoost with boosting, forward stepwise variable se¬

lection and the three LARS methods (LARS, Lasso and forward stage-

wise fitting) for simulated linear regression models.

In our simulation study, the data is split into three parts: a training

set, a validation set, both of equal size n and a test set of size 1000.

The training set is used to fit the models and the validation set for

stopping the iterations (the number of iterations is chosen to minimize

the validation error). For CDBoost and boosting, the validation set is

also used to chose the shrinkage factor is. Finally we use the test set to

measure the prediction error on the test set:

1

J2 (FM-F{xt))'<
testset

x.etestset

where F{x) = x ß is the true underlying regression function.

CDBoost (and boosting) has a second tuning parameter, the shrink¬

age factor v which governs the tendency between Lo- and Li-penalisation.
To compare CDBoost to boosting we can fix v and compare the meth¬

ods (although the interpretation of a larger v is not the same for the

two methods). To compare CDBoost and boosting to forward stepwise

variable selection and the three LARS methods, we use the validation

set to choose among the shrinkage factors 0.7, 0.5, 0.3, 0.1, 0.03, 0.01

(as well as to chose the number of iterations).
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In the next two subsections we give some results of simulations where

the model is always chosen to be linear with normally distributed errors.

2.7.1 Model 1: n = 100, d = 10, d
eff

Setup for model 1

The size of the training set is n = 100 and the number of covariates

is d = 10. The number of covariates with effective influence on the

response is only dQQ = 5.

We draw the covariates from a multivariate normal distribution.

This is done in two steps by first producing x% i.i.d. ~ jV^(0,I) and

then multiplying X with the d x d matrix B to get the desired correla¬

tion structure (X = XB). B is chosen to be (blank entries correspond
to zero):

B

/ 1 1 1 1 1 \
11111

11111

11111

11111

11111

1111

1 1 1

1 1

V i I

This leads to a correlation matrix with approximately each third

entry equal to zero. The other two thirds of the correlations range from

0.2 to 0.9. Finally we arbitrarily permute the columns of X.

The next step is to choose the true /3-vector: the first five compo¬

nents of ß are ß\,... ,ßs i.i.d. ~ J\f (5,1), and the other five compo¬

nents are zero.

The last issue is to specify the variance for the normal distributed

errors e. We choose it via the more meaningful signal-to-noise ratio
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which we define as

Var (Fix

We select the desired signal-to-noise ratio and determine then the cor¬

responding Var(e). A signal-to-noise ratio of 1 corresponds to a "pop¬
ulation" R2 equal to Var (F(x)) /Var (y) = 0.5.

We simulate 100 datasets from each setting. Because the true ß-
coefficients are different for each simulation we cover a greater range

of models. The overall performance is the mean over the 100 test er¬

rors. We also give the standard error of the mean divided by the mean

(relative standard error/some kind of coefficient of variation). Paired

sample Wilcoxon tests are used to quantify significance when comparing
CDBoost to the other methods.

We report on the test error in a standardized form. We divide it by
the test error of the best constant (location) model and multiply it by
100. Each method should be better than the best constant model and

therefore achieve a value below 100. This standardized test error makes

it possible to compare different settings. For convenience we still refer

to it as test error.

Results for model 1

Table 2.2 shows the comparison of CDBoost and boosting. CDBoost

performs better and the difference is significant for the higher stnr's.

Both methods do substantially better with shrinkage. While boosting
needs small z/'s for best performance, CDBoost gives good results for

the whole range of shrinkage factors. Since there are five pure noise

variables, the usage of some sort of Lo-penalisation seems to be ade¬

quate. This may explain why CDBoost performs best with larger z/'s,

see also section 2.5.2.

In table 2.3 and figure 2.1 we compare CDBoost to boosting, forward

stepwise variable selection and the three LARS methods. For CDBoost

and boosting, the validation set is used to choose the shrinkage factor is

for each simulation from the candidatévalues 0.7, 0.5, 0.3, 0.1, 0.03, 0.01

This gives better results compared to a fixed is and shows that in some

of the 100 simulations a solution close to forward stepwise variable se¬

lection is appropriate and in other cases a solution closer to LARS is
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stnr = 9

test e loss p-value

stnr = 4

test e loss p-value

stnr = 1

test e loss p-value

CDB v= 1

zv = 0.7

z/ = 0.5

z/ = 0.3

z/ = 0.1

z/ = 0.03

1/= 0.01

1.20

1.10

1.08

1.08

1.09

1.09

1.09

2.81

2.34

2.22

2.24

2.27

2.28

2.28

9.85

7.47

7.32

7.39

7.42

7.53

7.47

Boo v = 1

zv = 0.7

zv = 0.5

zv = 0.3

z/ = 0.1

zv = 0.03

1/= 0.01

1.33 11.2 9e-05

1.28 15.8 3e-05

1.20 11.8 4e-05

1.20 10.9 6e-03

1.20 10.5 2e-03

1.20 9.7 3e-02

1.20 10.2 5e-03

2.91 3.7 le-01

2.71 15.7 2e-06

2.60 17.0 2e-05

2.44 8.6 2e-03

2.44 7.5 5e-04

2.44 7.4 9e-03

2.44 7.1 5e-03

9.56 -3.0 5e-01

8.24 10.4 4e-04

7.71 5.3 2e-02

7.63 3.3 le-01

7.50 1.0 8e-01

7.46 -0.9 6e-01

7.49 0.2 7e-01

Table 2.2: Comparison of conjugate direction boosting (CDB) and

boosting (Boo) for various signal-to-noise ratios (stnr) and shrinkage

factor is for simulation model 1. Given is the (standardized) mean of
the test error (test e) over 100 simulations. The best value for each

method and each stnr is in bold face. The loss of boosting compared to

CDBoost with the same v is given in % and the p-values are from paired

sample Wilcoxon tests. The standard errors of the means divided by the

means range from J^.9% to 6.2%.

adequate. CDBoost (and also boosting) does a good job in choosing a

right v and is therefore very flexible.

CDBoost performs clearly and significantly best and forward step¬

wise variable selection leads to the worst models. The gain of CDBoost

compared to boosting and forward stagewise increases with higher stnr's

and its gain compared to LARS and the Lasso is fairly constant. For¬

ward stagewise fitting is always worse than boosting so infinitesimal

shrinkage is not worthwhile in this example.



2.7. Simulations with linear regression 31

stnr = 9 stnr = 4 stnr = 1

test e loss p-value test e loss p-value test e loss p-value

CDB 1.00 2.19 7.16

Boo 1.16 16.3 3e-04 2.40 9.5 le-02 7.35 2.7 5e-02

FVS 1.18 17.6 4e-04 2.93 33.6 3e-07 9.83 37.3 3e-ll

FAR 1.13 12.4 le-04 2.45 11.7 5e-05 8.20 14.6 le-08

Fas 1.10 9.6 4e-04 2.38 8.5 9e-04 7.97 11.4 le-07

For 1.21 20.6 7e-08 2.52 15.3 4e-07 7.93 10.7 9e-07

Table 2.3: Comparison of conjugate direction boosting (CDB), boost¬

ing (Boo), forward stepwise variable selection (FVS) and the three

LARS methods (LARS, Lasso, forward stagewise fitting) for simula¬

tion model 1. Given is the (standardized) mean of the test error (test
e) over 100 simulations. The shrinkage factors is for CDBoost and

boosting are chosen using the validation set from the candidate values

0.7, 0.5, 0.3, 0.1, 0.03, 0.01. The loss compared to CDBoost is given in

% and the p-values are from paired sample Wilcoxon tests. The standard

errors of the means divided by the means range from 5.0% to 6.0%.
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Figure 2.1: Percentage loss of the different methods (without for¬
ward stepwise variable selection) compared to CDBoost for simulation

model 1.
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2.7.2 Model 2: n = 50, d = 2000, deff = 10

Setup for model 2

We now reduce the size of the training set to n = 50 and increase

the number of covariates to d = 2000, whereas deQ = 10 variables

have an effective influence on y. The covariates are constructed as in

section 2.7.1 but with

B

(l l ^
1 1 1

1 1 1

1 1 1

1 1

1

1

1 1

V 1 1 )

and without permuting the columns of X. This leads to a correlation

matrix with 2/3 in the secondary diagonals and 1/3 in the tertiary

diagonals.

The ten non-zero coefficients are ß^i, , ßzb, ß&&, , /37o i.i.d. ~

J\f (5,1). So there are two blocks of 5 correlated covariates with real

influence on y. Because this setup is much harder than model 1 we use

higher stnr's.

Results for model 2

Table 2.4 shows the comparison of CDBoost and boosting. The results

are similar to that of model 1. CDBoost performs better than boosting,

especially for high stnr. In this model, v should not be too small for

CDBoost.

In table 2.5 and figure 2.2 we compare CDBoost to boosting, forward

stepwise variable selection and the three LARS methods. For CDBoost

and boosting, the validation set is used to choose the shrinkage factor v

for each simulation from the candidatévalues 0.7, 0.5, 0.3, 0.1, 0.03, 0.01.
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stnr = 16

test e loss p-value

stnr = 9

test e loss p-value

stnr = 4

test e loss p-value

CDB v= 1

v = 0.1

v = 05

i/ = 0.3

v = 0.\

v = 0.03

i/ = 0.01

23.7

15.9

15.3

15.3

15.8

16.0

16.1

26.4

21.7

21.5

21.7

22.4

22.8

23.0

36.5

33.0

34.2

34.5

36.2

36.9

37.2

Boo v = 1

v = 0.1

v = 05

i/ = 0.3

v = 0.\

v = 0.03

i/ = 0.01

28.0 17.8 2e-07

20.4 28.2 3e-08

19.0 24.6 4e-ll

18.0 18.2 2e-15

16.6 5.0 le-10

16.4 2.5 8e-07

16.4 1.8 9e-05

30.4 15.1 5e-07

25.8 18.9 2e-05

24.1 11.9 3e-05

24.5 13.1 le-12

22.9 2.3 3e-06

23.0 0.7 2e-02

22.9 -0.0 le-00

38.5 5.7 5e-03

34.7 5.2 2e-01

36.3 6.0 6e-03

37.2 7.8 le-08

36.6 1.1 3e-02

37.0 0.2 2e-01

37.1 -0.1 4e-01

Table 2.4: Comparison of conjugate direction boosting (CDB) and

boosting (Boo) for various signal-to-noise ratios (stnr) and shrinkage

factor is for simulation model 2. Given is the (standardized) mean of
the test error (test e) over 100 simulations. The best value for each

method and each stnr is in bold face. The loss of boosting compared to

CDBoost with the same is is given in % and the p-values are from paired

sample Wilcoxon tests. The standard errors of the means divided by the

means range from 3.2% to 5.9%.

Again, results are similar to model 1 with CDBoost performing signifi¬

cantly best.

2.8 Generalization to arbitrary learners

We now generalize our approach to any base learner, for example trees

or componentwise smoothing splines (Bühlmann and Yu 2003, see also

section 2.9) for non-parametric regression. In principle, we could use

linear expansions in tree-type or B-spline basis functions, resulting in a

huge design matrix. Instead, we develop an iterative, computationally
more efficient approach. The idea is to construct a matrix X during the

iteration process, rather than using a fixed design matrix X given in
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stnr = 16 stnr = 9 stnr = 4

test e loss p-value test e loss p-value test e loss p-value

CDB 13.7 19.6 30.7

Boo 15.1 10.1 le-06 20.7 5.5 2e-02 32.1 4.6 7e-03

FVS 20.1 46.3 2e-07 24.1 22.7 7e-05 34.9 13.7 2e-02

LAR 15.8 14.6 3e-08 22.9 16.3 le-11 37.6 22.4 le-13

Las 15.7 14.0 le-07 22.7 15.4 7e-ll 37.2 21.2 le-13

For 16.4 19.6 4e-13 23.0 17.1 3e-13 37.3 21.5 4e-14

Table 2.5: Comparison of conjugate direction boosting (CDB), boost¬

ing (Boo), forward stepwise variable selection (FVS) and the three

LARS methods (LARS, Lasso, forward stagewise fitting) for simula¬

tion model 2. Given is the mean of the (standardized) test error (test
e) over 100 simulations. The shrinkage factors is for CDBoost and

boosting are chosen using the validation set from the candidate values

0.7, 0.5, 0.3, 0.1, 0.03, 0.01. The loss compared to CDBoost is given in

% and the p-values are from paired sample Wilcoxon tests. The standard

errors of the means divided by the means range from 3.2% to 5.6%.
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Figure 2.2: Percentage loss of the different methods (without for¬
ward stepwise variable selection) compared to CDBoost for simulation

model 2.
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advance. In each iteration the learner produces a vector of fitted values

for the training observations (which can be viewed as an estimated basis

function) and that vector is taken as a new column of X. Thus, X

grows in each step by one column, and this matrix X is then used in

our CDBoost method. The following algorithm makes the idea precise:

General CDBoost algorithm with L2-I0SS:

Step 1 : Standardize y to zero mean. The standardization of the xt is

not necessary. Initialize X = null, ß^Q' = null and m = 1.

Step 2: Compute the current residuals r = y
— X/3^m_1) and fit the

base learner to them using the predictor matrix X. The fit is denoted

by pm\x) and the vector of fitted values by xm G Rn.

Increase X by one column by adding xm. Now X is of dimension

n x m. Extend /3^m_1) and all direction vectors pt, i < m, by a zero so

that they all have length m.

For i = 1,..., m — 1 compute the coefficients for the linear combi¬

nation of pm G Rm (for m = 1 there are no X's):

>(m)
_

P? X Xem

pfX^Xp,

Compute the new direction (for m = 1 the sum vanishes)

m—l

E\(m)
1

^t P* ~r ^m-

%=1

Minimize in the direction of pm ,
that means update ß:

/3(m) _ o(m-l) ,
(Y ~ X/3(m~1))TXpm

P4X XPm

Step 3: Increase iteration index m by one and go back to Step 2.
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The resulting function estimator in iteration m is then

m

i*m)to = s+£À(m)/(,)M
%=i

and can be evaluated at any x.

The main difference to the linear CDBoost is that we do not com¬

pute the negative gradient, but fit the learner to the current residuals.

The predicted values give xm. Loosely speaking, the "constrained gra¬

dient" corresponding to (2.4.1) is em G Rm, because xm is already
a constrained functional gradient (fitting the residuals best); note the

correspondence with the function and gradient version of i^Boosting in

section 2.3. Having a constrained gradient, we continue as in the case of

linear regression: we compute pm G Rm and optimize in that direction.

This means that we adjust the coefficients of the fitted learners already
included in the model.

The addition of shrinkage is implemented as follows: we recall that

in the linear regression case we restart when a variable is chosen a sec¬

ond time. For arbitrary learners this would happen when obtaining the

identical fitted values as in an earlier step. It can be difficult to deter¬

mine numerically whether we have the same fitted values as before. We

therefore propose restarting when the absolute correlation between xm

and a x,, i < m exceeds a certain threshold. This threshold should not

be too low, because we only want to restart when it is really necessary.

We found that 0.999 works fine for sample sizes between 50 and 500.

2.9 Simulations with trees and splines

Using a simulated model we compare the (general) CDBoost with boost¬

ing. We choose n = 100, d = 10, deQ = 5 and the covariates as in

section 2.7.1. The true function F is

F(x) = c\X\ +c2x2+9c3 v?(x3) + 1.4c4 sin(2x4)+2.7c5/(l+exp(-3a;5))

where cp is the density of the standard normal distribution and c\,..., C5 ~

log-Uniform[—0.35, 0.35]. The model for the response is y = Fix) + e

with e~Af(0,a2).
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stw = 9

test e loss p-value

stnr = 4

test e loss p-value

stnr = 1

test e loss p-value

CDB v = 1

v = 0.1

v = 05

i/ = 0.3

v = 0.\

v = 0.03

v selec.

7.38

5.74

5.57

5.28

5.36

5.59

5.01

11.15

9.05

8.73

8.27

8.22

8.60

7.93

26.5

21.5

20.5

20.1

19.1

19.9

19.0

Boo v = 1

v = 0.1

v = 05

i/ = 0.3

v = 0.\

v = 0.03

v selec.

6.21 -15.9 7e-09

5.90 2.7 4e-01

5.61 0.6 7e-01

5.62 6.4 2e-02

5.64 5.3 le-04

5.65 1.2 le-02

5.49 9.5 2e-04

9.90 -11.3 5e-04

9.23 2.0 7e-01

8.74 0.1 6e-01

8.59 3.9 2e-02

8.68 5.6 4e-06

8.71 1.2 2e-04

8.48 7.0 2e-04

23.5 -11.5 3e-05

21.7 1.0 le-00

20.5 -0.1 9e-01

20.1 0.2 9e-01

20.0 4.4 le-02

20.0 0.2 7e-02

20.2 6.3 2e-02

Table 2.6: Comparison of CDBoost (CDB) and boosting (Boo) with

componentwise cubic smoothing splines for various signal-to-noise ratios

(stnr) and shrinkage factor is (and is also selected by the validation set

from the candidate values is = 0.7, 0.5, 0.3, 0.1, 0.03J. Given is the

(standardized) mean of the test error (test e) over 100 simulations. The

best value for each method and stnr is in bold face. The loss of boosting

compared to CDBoost with the same is is given in % and the p-values are

from paired sample Wilcoxon tests. The standard errors of the means

divided by the means range from 3.0% to 4-6%.

Table 2.6 shows the results using componentwise cubic smoothing

splines with 3 degrees of freedom as base learner. This means that in

each iteration we fit a smoothing spline with 3 degrees of freedom for

each predictor individually, and then select the one which reduces the

residual sum of squares most. CDBoost and Boosting both perform
better with shrinkage. It is especially CDBoost which benefits from the

selection of is by the validation set, and it is then clearly better than

boosting.

Table 2.7 shows the results using stumps (trees with two terminal

nodes) as base learner. Boosting, once more, needs small is for best

performance and also CDBoost gives better results for smaller is. Both

methods perform almost equally well and the selection of is by the val-
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stnr = 9

test e loss p-value

stnr = 4

test e loss p-value

stnr = 1

test e loss p-value

CDB v= 1

v = 0.1

v = 05

i/ = 0.3

v = 0.\

v = 0.03

i/ = 0.01

v selec.

17.7

11.6

10.7

10.2

10.2

10.3

10.3

10.3

25.5

15.8

14.5

14.2

14.1

14.1

14.1

14.2

49.0

30.9

28.0

26.5

26.3

26.3

26.4

26.9

Boo v = 1

i/ = 0.7

v = 0S

i/ = 0.3

i/ = 0.1

i/ = 0.03

i/ = 0.01

^ selec.

20.0 13.3 5e-09

15.8 36.1 0e+00

13.4 25.8 2e-16

11.3 10.1 2e-ll

10.5 2.2 2e-02

10.4 0.7 7e-01

10.4 0.4 le-00

10.6 2.9 3e-02

27.6 8.3 le-04

21.7 36.8 0e+00

17.6 21.5 2e-16

14.8 4.3 7e-05

14.0 -0.6 7e-01

14.0 -1.1 5e-01

14.0 -0.9 9e-01

14.4 1.4 3e-01

53.2 8.6 le-04

39.4 27.5 8e-13

31.5 12.7 6e-08

27.1 2.2 5e-02

26.4 0.5 6e-01

26.4 0.4 6e-02

26.4 0.0 3e-01

27.7 2.8 2e-01

Table 2.7: Comparison of conjugate direction boosting (CDB) and

boosting (Boo) with stumps for various signal-to-noise ratios (stnr) and

shrinkage factor is (and is also selected by the validation set from the

candidate values is = 0.7, 0.5, 0.3, 0.1, 0.03, 0.01J. Given is the (stan¬
dardized) mean of the test error (test e) over 100 simulations. The best

value for each method and stnr is in bold face. The loss of boosting com¬

pared to CDBoost with the same is is given in % and the p-values are

from paired sample Wilcoxon tests. The standard errors of the means

divided by the means range from 2.0% to 2.9%.

idation set does not pay off, because the shrinkage factors 0.7 and 0.5

lead to bad models.

Because the true underlying model is continuous, it is no surprise
that both methods are clearly worse with stumps than with splines as

base learner.
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2.10 Real data examples

Finally, we compare CDBoost and boosting using two real datasets.

2.10.1 Los Angeles ozone data

The Los Angeles ozone dataset (Breiman and Friedman 1985) consists

of n = 330 complete observations of d = 8 explanatory variables. We

randomly split it into a training set of size 220 and a test set of 110. We

use five-fold cross-validation to choose the number of iterations/steps.
The splitting is repeated 100 times and the test errors are averaged.

We only fit main effects models: linear models with all covariates

(d = 8) and linear models with all covariates and the squared covariates

(d = 16). In addition, we apply componentwise smoothing splines with

3 degrees of freedom and stumps as learners. The results are contained

in table 2.8 (abbreviations of methods as in table 2.3).

There are differences between the learners but almost none between

the methods. In contrast to the simulated models, CDBoost does not

deteriorate when is becomes very small and the selection of is by the

validation set does not pay off. This is because we work with only one

dataset and therefore there should be a single is which is adequate for

all random splits. In addition, the selection of is by the validation set

would give better results when we exclude the shrinkage factor 0.7 from

the candidate values.

2.10.2 Leukemia data

The Leukemia dataset (Golub, Slonim, Tamayo, Huard, Gassenbeek,

Mesirov, Coller, Loh, Downing, Caligiuri, Bloomfield, and Lander 1999)
is from a microarray experiment with 72 samples and 3571 genes. Al¬

though it is a binary classification problem, we treat it as a regression

problem with outcome 0 and 1 and L2-I0SS (see also Zou and Hastie 2005

in their analysis of microarray data). We use the fitted values to classify
the samples with cut-point 1/2 and compute the misclassification rate.

Again, we average again over 100 random splits with 50 training cases
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Shrinkage factor v

1 0.7 0.5 0.3 0.1 0.03 0.01 selected

CDB linear

Boo linear

FVS linear

LAR linear

Las linear

For linear

21.1 21.0 21.0 21.0 21.0 21.0 21.0

21.1 21.0 20.9 20.9 21.0 21.0 21.0

21.1

21.0

21.0

21.1

21.0

21.0

CDB quadratic
Boo quadratic
FVS quadratic
LAR quadratic
Las quadratic
For quadratic

18.9 18.6 18.5 18.5 18.5 18.5 18.5

18.9 18.5 18.4 18.4 18.5 18.5 18.5

19.0

18.6

18.6

18.5

18.5

18.5

CDB splines
Boo splines

18.7 18.6 18.1 18.0 17.9 17.9 17.9

18.3 18.1 17.9 17.9 17.9 17.9 17.9

18.2

17.9

CDB stumps

Boo stumps

22.6 19.9 19.2 18.9 18.9 18.8 18.8

22.5 21.6 20.5 19.3 18.9 18.9 18.9

19.2

19.1

Table 2.8: Comparison of different methods for the ozone dataset.

Given is the mean of the test error over 100 random splits. CD-

Boost and boosting are applied with different shrinkage factors is (the
best values are in bold face). Additionally, the validation set is

also used to select the shrinkage factor is from the candidate values

0.7, 0.5, 0.3, 0.1, 0.03, 0.01.

and 22 test cases. The number of iterations is estimated with five-fold

cross-validation. Table 2.9 shows the results.

In this example, CDBoost performs better than the other methods.

The selection of is by the validation set does again not pay off (the
results would again be better when we exclude the shrinkage factors 0.7

and 0.5 from the candidate values).

2.11 Discussion

We propose a conjugate direction boosting method (CDBoost) for lin¬

ear and more general regression with potentially very many covariates.
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Shrinkage factor v

1 0.7 0.5 0.3 0.1 0.03 0.01 0.003 selected

CDB

Boo

FVS

LAR

Las

For

8.91 5.05 4.41 4.64 4.32 4.27 4.14 4.32

9.23 7.82 6.59 5.23 5.45 5.27 5.18 5.23

8.50

5.32

5.23

5.23

4.55

5.73

Table 2.9: Comparison of different methods for the leukemia dataset.

Given is the mean of the test error (misclassification rate in %) over

100 random splits. CDBoost and boosting are applied with different

shrinkage factors is (the best values are in bold face). Additionally,
the validation set is also used to select the shrinkage factor is from the

candidate values 0.7, 0.5, 0.3, 0.1, 0.03, 0.01, 0.003.

For linear regression, our CDBoost is a special version of forward step¬

wise variable selection (see Proposition 1): in high-dimensional settings
with very many covariates, it is computationally faster than traditional

forward stepwise variable selection (see Proposition 2).

The concept of conjugate directions allows the inclusion of shrinkage

(small step sizes), analogously to boosting. Shrinkage can yield substan¬

tial or even dramatic improvements of predictive performance; the same

is true for boosting. But the role of weak or no shrinkage has a more pro¬

nounced interpretation than in boosting, as discussed in section 2.5.2.

We also discuss in section 2.6 that CDBoost with infinitesimally small

shrinkage yields solutions which are very similar to boosting, Lasso and

other versions of least angle regression (LARS). Thus, varying the step

size makes CDBoost surprisingly flexible ranging from the Lasso, LARS

(Li-penalty methods) and boosting to forward stepwise variable selec¬

tion (some sort of Lo-penalisation). In some cases, e.g. in our simulation

model 2 in section 2.7.2, the shrinkage factor is should not be too small

for CDBoost, indicating that we should move a little more towards least

squares fitting in sub-models.

Our CDBoost method has the potential to outperform boosting,
LARS and the Lasso. It works especially well in complicated settings
with correlated covariates where it is not obvious how much a covariate

contributes to the response. The gain of using CDBoost is also more
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often pronounced in sparse cases with high signal to noise ratio and

few effective covariates (because CDBoost is flexible enough to cover

the whole range from LARS and boosting to forward stepwise variable

selection; and for cases with large signal to noise ratios and few effective

covariates, a solution closer to forward stepwise variable selection is

expected to be good).

CDBoost, boosting and the three LARS methods perform almost

equally well for real datasets with only a few covariates. It can, however,
be difficult to see clear differences in real data examples because the

irreducible error e is also contained in the test error. For the high-
dimensional leukemia data though, CDBoost performs better than the

other methods.

Finally, the concept of conjugate directions in CDBoost allows for

a direct generalization to non-parametric fitting methods. Such an ex¬

tension to the non-parametric setting is also possible with boosting but

not with LARS. One drawback is that CDBoost is often computation¬

ally more expensive and less generic than boosting. For example, it is

unclear how to modify CDBoost for classification using reweighted least

squares since we would need to combine reweighting with conjugacy.



Chapter 3

Boosting for

High-Multivariate

Responses in

High-Dimensional Linear

Regression

We propose a boosting method, multivariate i^Boosting, for multivari¬

ate linear regression based on some squared error loss for multivariate

data. It can be applied to multivariate linear regression with continuous

responses and for vector autoregressive time series. We prove, for i.i.d.

data as well as for time series, that multivariate L^Boosting can con¬

sistently recover sparse high-dimensional multivariate linear functions,
even when the number of predictor variables p = pn and the dimension

of the response q = qn grow almost exponentially with sample size n, i.e.

Pn = qn = 0(exp(Cn1_)) (0<£<1,0<C< oo), but the £i-norm

of the true underlying function is finite. Our theory seems to be among

the first to address the issue of large dimension of the response variable;
the relevance of such settings is briefly outlined. We also identify em¬

pirically some cases where our multivariate ./^Boosting is better than

43
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multiple application of univariate methods to single response compo¬

nents, thus demonstrating that the multivariate approach can be very

useful.

3.1 Introduction

Boosting, originally proposed as an ensemble scheme for classification,
i.e. AdaBoost (Freund and Schapire 1996), has attracted a lot of at¬

tention both in the machine learning and statistics literature, mainly
because of its success as an excellent prediction method in numerous

examples. The pioneering work by Breiman (1998, 1999) demonstrated

that the AdaBoost ensemble method can be represented as a gradi¬
ent descent approximation in function space, see also Friedman et al.

(2000). This has opened new possibilities for better understanding and

new versions of boosting. In particular, such gradient descent methods

can be applied to different loss functions, each yielding another boosting

algorithm. i^Boosting which uses the squared error loss (Z/2-loss) has

been demonstrated to be a powerful method for univariate regression

(Friedman 2001, Bühlmann and Yu 2003, Bühlmann 2006).

We propose here a boosting method with some squared error loss

(Gaussian negative log-likelihood) for multivariate data, called multi¬

variate i^Boosting. We restrict ourselves to linear models (linear basis

expansions). They can be very high-dimensional in terms of the re¬

sponse or predictor dimension, and we allow for seemingly unrelated

regressions (SUR; Zehner 1962, 1963) where each response may have

another design matrix (other predictor variables). The SUR model is

more general than the multivariate setting where each covariate has

an influence on all response variables. Our multivariate i^Boosting
takes potential correlations among the components of the multivari¬

ate error-noise into consideration: that is, we account for the fact that

the responses are still exhibiting conditional dependence given all the

predictor variables. We prove that our boosting method is able to con¬

sistently recover sparse high-dimensional multivariate functions, even

when the number of predictor variables p = pn and the dimension of

the response q = qn grow almost exponentially with sample size n, i.e.

Pn = Qn = 0(exp(Cn1-^)) (0 < £ < 1, 0 < C < oo). The mathematical

arguments are extending the analysis for boosting for high-dimensional
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univariate regression (Bühlmann 2006). Our theory seems to be among

the first for the setting of large dimension of the response (for its prac¬

tical relevance, see the paragraph after next).

We also demonstrate the use of our multivariate L^Boosting for mul¬

tivariate, gn-dimensional time series {x-(t)}t£{i,...,n}> where qn can grow

as fast as any polynomial in the sample size n. We prove a consistency
result for stationary, linear processes which are representable as a sparse

vector autoregressive model of order oo.

From a theoretical perspective it is interesting how far we can go with

dimensionality when the true underlying structure is sparse. From a

practical point of view, there are many applications nowadays with large

predictor dimension p, notably a broad variety of data mining problems

belong to this setting. There are also some applications where q is very

large. We mention multi-category classification with a huge number

of categories: in Kriegel, Kroger, Pryakhin and Schubert (2004), the

categories are subsets of functions from gene ontology (see also Remark 1

in section 3.4). Another application is briefly outlined in section 3.4.1.

In the context of time series, some of the graphical modelling for many

stochastic processes fall into our setting of g-dimensional linear time

series, e.g the partial correlation graph (cf. Dahlhaus and Eichler 2003).

Besides presenting some theory, we also identify empirically some

cases where our multivariate L^Boosting is better than methods based

on individual estimation: we compare with individual univariate i^Boosting
and with another i^Boosting method in a multivariate regression model

where every predictor variable either influences all or none of the re¬

sponse components. Some real data sets are analyzed as well.

3.2 Multivariate Linear Regression

We consider the multivariate linear regression model with n observations

of a g-dimensional response and a p-dimensional predictor (for more

detailed information, see for example Seber (1984) or Timm (2002)). In

matrix notation:

Y = XB + E, (3.2.1)

with Y G RnXq, X G RnXp, B G RpXq and E G RnXq. We de¬

note with y^) the response of the i-th sample point (row-vector of Y)
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and with y^ the k-th response-variable for all sample points (column-
vector of Y). For each y^ (k = 1,..., q) we have a univariate regres¬

sion model with the predictor matrix X and the coefficient vector b^.

For the row-vectors e^) (i = 1,..., n) of the error matrix, we assume

e^) i.i.d., E[e^)] = 0 and Cov(e^)) = S. Additionally, we assume

w.l.o.g. that all covariates and responses are centered to have mean

zero, so we need not worry about intercepts.

The ordinary least squares estimator (OLS) of B is given by (assum¬
ing X is of full rank p)

Bols = (XTX)~1XTY (3.2.2)

and is nothing else than the OLS's of the q univariate regressions. In

particular, it is independent of S.

To test whether a covariate has a significant influence on the mul¬

tivariate response we can use Wilk's A, which is derived from the like¬

lihood ratio test. For an overall test with null-hypothesis Hq : B = 0

we compare the empirical covariance matrix of the residuals to the one

from the responses:

|(Y-XBOLg)T(Y-XBOLg)|
|YTY|

'

where | • | denotes the determinant of a matrix. We reject the null

hypothesis Hq if A is smaller than a critical value.

3.2.1 Forward stepwise variable selection

As for univariate regression, we can define a multivariate forward step¬

wise variable selection algorithm in a straightforward manner: start

with the empty model and add in each step the most significant co¬

variate according to Wilk's A. Notice that in each step the entries of a

whole row b^) of B are changed from zero to non-zero by using OLS on

the reduced space of all included covariates. Therefore, this approach
is not suited for the SUR model where a covariate may only have an

effect on some but not all components of the response.
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3.3 L2Boosting for multivariate linear re¬

gression

For constructing a boosting algorithm, we define a loss function and

a base procedure (simple fitting method). The latter is usually called

"weak learner" in the machine learning community: it is an estimator

which is repeatedly used in boosting.

3.3.1 The loss function

Regarding the loss-function, we use the negative Gaussian log-likelihood
as a starting point:

-J(B,E) = -log((2n)»^|S|»^)+I^(yT)_xT)B)S-i(yT)_xT)B)^
%=1

As before, | • | denotes the determinant of a matrix. The maximum

likelihood estimator of B coincides with the OLS solution in (3.2.2) and

is therefore independent of S. The covariance matrix S becomes only
relevant in the seemingly unrelated regressions (SUR) model when there

are covariates which influence only a few components of the response.

Because S is usually unknown, we use the following loss function

L(B) = \ £(yj, - x&Bjr-HyÊ, - x^Bf, (3.3.1)
%= 1

where T is the implementing covariance matrix. We may use for it an

estimate of S (e.g. from another model-fit such as univariate boosting
for each response separately) or we can choose something simpler, e.g.

r = I (in particular if q is large, see also Remark 2). The choice for

r will show up again in our Theorem 1 in section 3.4 (and Theorem 2

in section 3.5): there it becomes clear that also T = I can be a very

reasonable choice.
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3.3.2 The componentwise linear least squares base

procedure

Now we specify the base procedure which will be repeatedly used in

boosting. Given is the design matrix X and a pseudo-response matrix

R G M.nXq (which is not necessarily equal to Y).

We focus here exclusively on what we call the componentwise linear

least squares base learner. It fits the linear least squares regression with

one selected covariate (column of X) and one selected pseudo-response

(column of R) so that the loss function in (3.3.1), with R instead of

Y, is reduced most. Thus, the base procedure fits one selected matrix

element of B:

(si) = arg min {L(B);Bjk = ßjk,Buv = 0 (uv ^ jk)}

(V9 rTx T'1)2
= arg max

^ ——î—'—,
l<J<p,l<k<q Xj XjVkk

ß0k

V9 rTx r_1
l^v=l Lv^3L vk

3K
—

T x ,

Xj XJi kk

Bst = ßsb Bjk = 0, (jk)^(st). (3.3.2)

Corresponding to the parameter estimate, there is a function estimate

g(-) : M.p —> W1 defined as follows: for x = (x\,. .., xp),

(iMx) = {^ l^l t = i,...,9.

From (3.3.2) we see that the coefficient ßjk is not only influenced by the

k-th response but also by other response-components, depending on the

partial correlations of the errors (via T_1 if T is a reasonable estimate

of S) and by the correlations of the other response-components with

the j-th covariate (i.e. r^x7).

3.3.3 The boosting algorithm

The base learner is fitted many times to different pseudo-responses R

and the function estimates are added up as described by the algorithm
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below. We build the multivariate regression function f : M.p —> Mq step

by step, where f (x) = BTx.

Multivariate i^Boosting with componentwise linear least

squares

Step 1 (initialization): fk (.) = 0, k = 1,..., q. Set m = 1.

Step 2: Compute the current residuals r\ = y^)
— f^m~1\x^) (i =

1,..., n) and fit the base learner to them as in (3.3.2). The fit is denoted

byg(m)(-)-

Update f(m)(-) = f(-i)(.) +gM(.).

Step 3 (iteration): Increase the iteration index m by one and go back

to Step 2 until a stopping iteration mstop is met.

Multivariate i^Boosting is thus iteratively fitting of residuals where

in each step we change only one entry of B. Also, every iteration m

corresponds to an estimate B*-"^ with f(m)(x) = ÇÈ^m^)Tx. The esti¬

mate f(ms*°p)(.) is an estimator of the multivariate regression function

E[y|x=-].

It is often better to use some shrinkage in Step 2: this has been

first recognized by Friedman (2001), and there are also some supporting
theoretical arguments for it (Efron et al. 2004, Bühlmann and Yu 2005).
We modify Step 2 to:

fM(.) =f(m-1)(.)+i/.g(m)(.),

with is < 1, for example is = 0.1. We then need more iterations but

often achieve better out-of-sample predictions. The boosting algorithm
does depend on is, but its choice is surprisingly insensitive as long as

it is taken to be "small". On the other hand, the number of boosting
iterations mstop is a much more crucial tuning parameter.

The computational complexity of the multivariate i^Boosting algo¬
rithm for m iterations is 0(npqm) if T is diagonal and 0(npq2m) for

arbitrary T.
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3.3.4 Stopping the boosting iterations with the cor¬

rected AIC

The number of iterations mstop can be estimated by cross validation, a

separate validation set or by an internal AIC criterion. We pursue the

latter because of its computational attractiveness.

First we recall the definition of the AIC for the multivariate linear

regression model. For d < p covariates in a sub-model Md

AIC(Md) = \og(\t(Md)\) + ^.
n

where S(M^) is the MLE of the error covariance-matrix. Note that we

have a total of q d parameters. In small samples, the corrected AIC

(Hurvich and Tsai 1989 and Bedrick and Tsai 1994) is often a better

model selection tool:

AICc(Md) = \og(\±(Md)\)+
q{n + d)

n — d — q
— 1

To apply the AIC or the AICC for boosting we have to determine the

number of parameters or degrees of freedom of boosting as a function

of the number of iterations. Clearly, the degrees of freedom of boosting
increase as the number of iterations grow, but this increase is heavily
sub-linear (Bühlmann and Yu 2003).

We first consider the hat-operator of the base learner in (3.3.2),
mapping Y to Y = XB. After having selected the j-th predictor and

k-th component of the response, the fitting is a linear operation which

can be represented by a hat-matrix. In the multivariate case, we stack

the q responses yi,... ,yq end-to-end in a vector of length nq (written
as vec(Y)). The hat-matrix is then of dimension nq x nq and, with the

j-th predictor and the k-th response selected in the base learner, it is
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of the form

/ o

jjOfe)

0

0 0

o \

0

W fci W kl

\

0

0

kk

0

0

kk

p-1

1
kk

0

0

k-th row,

/

where each entry is a n x n matrix and the non-zero matrix-entries

are at row k and EL7 = x^x^/x^x-, is the hat-matrix of the univariate

componentwise linear learner using the j-th predictor variable.

Due to the nature of iterative fitting of residuals, the hat-matrix of

multivariate ./^Boosting after m iterations is then (cf. Bühlmann and

Yu 2003, Bühlmann 2006)

Km = I - (I - i/H(s%£m))(I - £/H (sr l)' :i-vn(êiîih.

Here, (smtm) denote the selected covariate and response-component

from the base learner in (3.3.2) in boosting iteration m. The com¬

putation of the hat-matrix has a complexity of 0(n2p + n3q2m) and is

not feasible if n (and/or q) is large.

The trace of Km gives the number of degrees of freedom. For the

AICC we need the degrees of freedom (number of equivalent parame¬

ters) per response variable: thus, we divide the total number of degrees
of freedom by q to get the average number of degrees of freedom per

response. The AIC and the AICC for multivariate i^Boosting as func¬

tions of the number of iterations m then become:

AIC(m) =log(|S(m)|) +

AICc{m) = log(|Ê(m)|) +

2 • trace(KT

n

q(n + trace(Km)/<2<)
n — trace(Km)/g — q

— 1

where S(m) = ra"1 £r=i(y(.) - f^(xw))(yw - f()(xw))T. The

number of boosting iterations is chosen to minimize the AIC or AICC,

respectively:

mstop = argmin AfCc(ra)
0<m<M
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where M is a pre-specified large, upper bound for the candidate number

of boosting iterations.

3.3.5 L2Boosting with whole rows of B

Multivariate i^Boosting changes in each step only one entry of B. This

might be suboptimal if we believe that a covariate has either some in¬

fluence on all response-components or no influence at all. It may then

be better to update in each step a whole row of B. This can also be

done with a i^Boosting type algorithm, which we call "row-boosting":
we select in each step the covariate which gives the best multivariate

fit to the current residuals (according to Wilk's A) and add it to the

multivariate function estimate. This algorithm is more closely related

to multivariate forward variable selection, see section 3.2.1, with the

difference that we don't adjust the coefficients of the covariates already
included in the model.

3.4 Consistency of multivariate L2Boosting

We present here a consistency result for multivariate L^Boosting in

linear regression where the number of predictors and the dimension of

the response are allowed to grow very fast as sample size n increases.

Consider the model

yw =f(xw)+ew, i = l,...,n, yW)e(!)Gffi?", xweRp",

f(x) = BTx, BeMPnXqn, (3.4.1)

X(s) i.i.d. and e^) i.i.d., independent of {x(^; 1 < i < n}

withEfe^)] = 0 and Cov(e^)) = S.

Because pn and qn are allowed to grow with n, also the predictors and

the responses depend on n. We ignore this notationally most of the time.

To identify the magnitude of Bjk we assume E|x(i):/|2 = 1, j = l,...,pn.

We make the following assumptions:

(Al) The dimension of the predictor and the response in model (3.4.1)
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satisfies pn = 0(exp(Cn1 ^)), qn = 0(exp(Cn1 ^)) (n —> oo), for

some 0<£<l,0<C<oo.

(A2) supnN^x H=1 |£jM| < oo.

(A3) For the implementing T in 3.3.1:

suPnN,l<fc<9n Z)?=l lrfe£,nl < °°> infnN,l<fc<9n ^kk,n > °-

(A4) sup1<:/<Pn ||#(i)j||oo < OO) where ||a;||oo = su-Pto£Q,\x(UJ)\ (^ de¬

notes the underlying probability space).

(A5) sup1<fe<gnE|e(i)fc|s < oo for some s > 2/£ with £ from (Al).

Assumption (Al) allows for very large predictor and response di¬

mensions relative to the sample size n. Assumption (A2) is a /i-norm

sparseness condition for the underlying multivariate regression func¬

tion f(-). If qn grows with sample size, it seems quite restrictive. But

we describe a potential application in section 3.4.1 (second example),
where (A2) could be reasonable even if qn grows. Assumption (A3) is a

sparseness condition on T_1 which holds when choosing T = I (or other

reasonable diagonal matrices). Assumption (A4) and (A5) are the same

as in Bühlmann (2006); (A4) can be relaxed at the price of a polynomial

growth 0(n5) (0 < Ö < oo) in (Al) and assuming sufficiently high-order

moments, cf. section 3.5.

Theorem 1 Consider the model (3.4-1) satisfying (Al)-(A5). Then,

the multivariate L^Boosting estimate f(m) with the componentwise lin¬

ear learner from (3.3.2) satisfies: for some sequence (mn)nN with

mn —> oo (n —> ooj sufficiently slowly,

E, (f(m-}(x) - f (x)) r-1 (f<m«) (x) - f (x)) op(l) (ra-> oo]

where x denotes a new observation, independent of and with the same

distribution as the x^), i = 1,..., n.

A proof is given in section 3.9. Theorem 1 says that multivariate

i^Boosting recovers the true sparse regression function even if the di¬

mensions of the predictor and response grow almost exponentially with

sample size n.
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Remark 1 We can also use the multivariate L^Boosting for multi-

category classification with q categories labelled by l,...,q. This can

be encoded with a multivariate q-dimensional response y = (yi,..., yq),
where

_

( 1 if the category-label = j,
3 | 0 if the category-label ^ j.

Assuming that the data (x^), y(i)), • •

•, (x(n), y(n)) «^e independent and

identically distributed, the conditional probabilities 7Tj(x) = P[% = l|x]
are linear in x and if (Al)-(A^) hold, then multivariate L^Boosting is

consistent: e.g. with T = 1, ^=1Ex[(irjmn)(x) - t^(x))2] = oP(l).

The proof of Remark 1 is a consequence of Theorem 1. Note that for

binary classification, we typically encode the problem by a univariate

response. Multi-category problems could also be represented with a

q
— 1-dimensional response. But this would require to tag a particular

label as the complement of all others; we typically want to avoid such

arbitrariness.

3.4.1 Two potential applications with large response

dimension q

One problem is classification (see Remark 1) of biological objects such

as genes or proteins into subsets of various functional categories, e.g. in

Gene Ontology (GO) (cf. Kriegel et al. 2004). Because many biological

objects belong to many functional categories, the labels for classification

are subsets of functional categories, resulting in a large value of q (and p
is large here as well).

Another application occurs when screening for associations of q can¬

didate random variables yi,... ,yq with a system of p target variables

xi,... ,xp. This occurs in Wille et al. (2004) when screening expres¬

sions of q = 795 genes which exhibit some potential associations to

the expressions of p = 39 genes from two biosynthesis pathways in

Arabidopsis thaliana. We would like to know whether the partial cor¬

relation Parcor(y/c,x:/|{xM; u G {l,...,p} \ j) is zero or not, for all

1 < k < q, 1 < j < p. This is equivalent to check in linear regressions

yk = BjkXj + ^2 Buk*u + efe,
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whether B3k = 0 or not. We could imagine that only a few of the q

candidate variables yi,... ,yq have something to do with the p target

variables xi,... ,xp (i.e. there are many /c's where B0k = 0 for all j)
and that existing relations between the candidate and target variables

are sparse in terms of the corresponding regression coefficients, i.e. (A2)
could be a reasonable assumption.

Remark 2 Using an estimate of S for T may result in a poor fit when

q is large relative to n. In this case we may choose something simpler,

e.g. diagÇÈ) or I (only reasonable when the responses are standardized)
or a convex-combination 7Ë + (1 — ^)diagÇÈ) with 0 < 7 < 1 small.

IfT is diagonal, multivariate L^B00sting fits q independent univariate

linear regressions. For each response it produces the same sequence

of selected covariates as univariate L^Boosting. The only difference

of the multivariate method is that it mixes the individual sequences of
selected covariates for the different responses and uses only one stopping
iteration. From a theoretical point of view, the multivariate method

(even for T = I) allows to derive consistency for growing q.

3.5 Multivariate L2Boosting for vector AR

processes

Obviously, the boosting method from section 3.3 can be used for vec¬

tor autoregressive processes (VAR, see for example Reinsel (1993) or

Lütkepohl (1993))

p

x(t) = ^2^j^(t-j)+e(t), t G Z, (3.5.1)

where X(t) G Mq is the g-dimensional observation at time t, Aj G M.qXq

and e(t) G M.q i.i.d. with Efe^)] = 0 and Cov(e(t)) = S. The model

is stationary and causal if all roots of det(I — X^=i Ai2^) (z ^ ^) are

greater than one in absolute value.

For observations X(t) (t = l,...,n), the equation in (3.5.1) can

be written as a multivariate regression model as in (3.2.1) with Y =

[x(p+1),...,x(n)]T G R(»-p)x9, B = [A!,...,Ap]T G Rqpxq andX G

-^(n-p)xqp ^g correSp0n(iing design matrix.
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The consistency result from Theorem 1 carries over to the time series

case. We assume that the data is generated from the following q = qn-

dimensional VAR(oo) model:

oo

x(*) = Y AJX(^) + e(0 '
t G Z' (3.5.2)

with e(t) G Bßn i.i.d. withEfe^)] = 0, Cov(e(t)) = S and e^) indepen¬
dent of {x(s)5 s < t}. Again, we ignore notationally that the model and

its terms depend on n due to the growing dimension qn. Assume that:

(Bl) {x(t)}tz in (3.5.2) is strictly stationary and a-mixing with mixing
coefficients an(-).

(B2) The dimension satisfies: q = qn = 0(ns) for some 0 < 5 < oo.

(B3) SUpnN 2^= 1 l^,k,v=l \Akv;j,n\ < OO, Akv;j,n = {^j,n)kv

(B4) The mixing coefficients and moments satisfy: for some s G N with

s > 2(1 + ô) - 2 (ô as in (B2)) and 7 > 0

00

5](A; + l)fl-1an(A;)^2fl+^ < 00,

k=i

sup E|x(i)fe|4s+27 < 00, sup E|e(i)fe|2s+7 < 00.

Theorem 2 Assume the model (3.5.2), satisfying the assumptions (Bl)-
(B4) and require that (A3) holds. Consider multivariate L^Boosting
with componentwise linear least squares (as in section 3.3) using p = pn

lagged variables (as in model (3.5.1)) withpn —> 00, pn = 0(n1~K) (n —>

00); where 2(l+^)/(s+2) < k, < 1. Then, the assertion from Theorem 1

holds with f(x) = J2=i Ajx(i_j); f(m-)(x) = ^1 Â^^x^.^ and x

a new realization from (3.5.2), independent from the training data.

A proof is given in section 3.9. Note that if in (B4) the mixing
coefficients decay exponentially and all moments exist, i.e. for a suitably

regular Gaussian VAR(p) of finite order, Theorem 2 holds for arbitrarily

large ô in (B2) and arbitrarily small k, > 0, implying pn = 0(n1~K) is

allowed to grow almost as fast as n.
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3.6 Simulation study

In this section we compare multivariate i^Boosting (MB) to individ¬

ual i^Boosting (IB, univariate i^Boosting for each response alone; cf.

Bühlmann (2006)), row-boosting (RB, see section 3.3.5) and multivari¬

ate forward stepwise variable selection (MFS, see section 3.2.1) on sim¬

ulated data sets.

3.6.1 Design

The sample size is always n = 50 and the number of responses is q =

5. We take two numbers of covariates (p = 10 and p = 30) and two

proportions of non-zero entries of B (peff = 0.2 and peff = 0.5, where

Peff = 0-2 means that 20% of the entries of B are non-zero).

The covariates are generated according to a multivariate normal dis¬

tribution with covariance matrix V,

xw~A/"(0,V), with ^ = 0.9^1.

The value 0.9 seems to be pretty high, but when having p = 30 covari¬

ates, the average correlation between the covariates is 0.42 only. Smaller

values lead to similar results among the boosting methods, only MFS

performs then a bit better.

For the true coefficient-matrix B we take two different types, charac¬

terized by the non-zero entries: for the first type, we arbitrarily choose

the q • p •

Peff non-zero entries of B with the only constraint that each

response must depend on at least one covariate. We will call this type

"B arbitrary" (this is the case of seemingly unrelated regressions). For

the other type, we randomly choose p-Peff rows of B and set the entries

of the whole rows unequal to zero ( "B row-complete" ). The non-zero

entries of B are for both types i.i.d. ~ A/"(0,1).

The errors are again generated according to a multivariate normal

distribution with covariance-matrix S,

ew~A/"(0,£).

The diagonal elements of S are constructed to give individual signal-to-
noise ratios of 0.71, 0.84, 1.00, 1.19, 1.41. The off-diagonal elements



58 Chapter 3. Boosting for Multivariate Responses

of S are chosen to give the following correlations between the errors:

Cor(efe,ew)=/>lfe-wl,

with p taking the values 0, 0.6, and 0.9.

All responses are standardized to unit variance to make them com¬

parable.

The design of this simulation comprises two types of B-matrices,
three values for the correlations between the errors, two values for the

number of predictors and two values for the number of effective predic¬
tors. A complete factorial design over all these levels gives rise to 24

settings. Each setting is replicated 100 times and the different methods

are applied.

To select the number of boosting iterations or the number of steps

in MFS we use either a validation set of size 50 or the AICC. For all

boosting methods we choose the shrinkage factor is = 0.1.

For the implementing covariance-matrix T in MB we use the empir¬
ical covariance-matrix of the residuals rf-? of the IB:

n

r = Ê = n-1^rf,f(rf,fr.
%= 1

3.6.2 Performance measure

In simulations we can measure how close the prediction for an additional

observation comes to the true value. For the k-th response, the mean

squared prediction error is given by

(xT(bfe - bfc)) cLP(x) = (bfc - bfe)TV(bfe - bfc).

Our performance measure is the mean of the individual MSPE's

q

MSPE = q-1 Y^ MSPEk.
k=i

This is a reasonable measure, because we have standardized the re¬

sponses.
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3.6.3 Results

The results are summarized in table 3.1 and figure 3.1. We give the

mean of the MSPE of the 100 replicates (multiplied by 1000) for each

method and setting. Additionally, paired sample Wilcoxon tests are

performed which compare for each setting the best method to the other

three methods. A p-value below le —9 is set to zero. The iterations are

stopped with a validation set.

For p = 0, multivariate L^Boosting is a few percent worse than

individual i^Boosting. But for p = 0.6 and p = 0.9 MB performs

significantly better than IB and the gain can be up to a factor of 1.5

(for less correlated predictors the gain is even bigger). Thus, MB is able

to exploit the additional information of the multivariate response.

As expected, MB and IB perform well when B is arbitrary and RB

performs well when B is row-complete. MFS gives only good results in

the easier settings, especially with B row-complete, p = 10 and peff =

0.2. It is interesting to see that MB performs best in the case when B

is row-complete, p = 0.9 and peff = 0.5 even tough the setting favors

methods which work with whole rows of B.

The given results come about with stopping by a validation set.

Stopping methods which only use the training data (like the AICC) lead

on average to worse results because they use much less information.

Therefore we can use the validation set stopping as a benchmark to

assess the performance of the AICC stopping: MB is 6.3% worse (median
over all 24 settings) when we use the AICC instead of the validation set.

RB is 3.5% worse, MFS 10.2% worse and IB 25.0% worse. The AICC

stopping works relatively better for the multivariate methods (MB, RB
and also MFS) than for IB. A possible explanation is that MB and

RB have to be stopped only once and not q times. This gives less

variability in the final boosting estimate and makes it easier to stop

at a good point. Note that for IB, it is desirable or even essential to

allow for individual stopping iterations because we often need varying

complexities for modelling the different response variables.
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MSPE Wilcoxon p-value
B P P Peff MFS RB IB MB MFS RB IB MB

arb itr. 0.0 10 0.2 84 63 50 51 0 0 le-1

arb itr. 0.0 10 0.5 96 71 66 67 0 8e-5 9e-2

arb itr. 0.0 30 0.2 176 125 112 116 0 le-9 5e-3

arb itr. 0.0 30 0.5 216 132 130 135 0 le-1 le-3

arb itr. 0.6 10 0.2 73 60 50 44 0 0 2e-6

arb itr. 0.6 10 0.5 93 71 67 62 0 8e-8 3e-4

arb itr. 0.6 30 0.2 164 116 109 100 0 0 4e-6

arb itr. 0.6 30 0.5 203 126 127 117 0 6e—6 5e—7

arb itr. 0.9 10 0.2 62 53 49 33 0 0 0

arb itr. 0.9 10 0.5 93 71 68 51 0 0 0

arb itr. 0.9 30 0.2 149 107 110 72 0 0 0

arbitr. 0.9 30 0.5 183 115 126 85 0 0 0

row-c. 0.0 10 0.2 26 41 48 50 0 0 0

row-c. 0.0 10 0.5 70 66 67 71 6e-2 2e-l 4e-6

row-c. 0.0 30 0.2 123 105 118 121 le-4 le-9 0

row-c. 0.0 30 0.5 203 132 136 139 0 7e-2 le-5

row-c. 0.6 10 0.2 25 38 49 50 le-9 0 0

row-c. 0.6 10 0.5 64 60 64 63 2e-2 6e-4 7e-2

row-c. 0.6 30 0.2 109 101 120 110 3e-2 0 3e-6

row-c. 0.6 30 0.5 186 128 137 129 0 le-5 8e-l

row-c. 0.9 10 0.2 31 33 50 45 6e-2 6e-9 2e-5

row-c. 0.9 10 0.5 62 54 63 48 5e-5 2e-l le-9

row-c. 0.9 30 0.2 88 88 120 89 7e-l 0 5e-l

row-c. 0.9 30 0.5 179 120 137 102 0 4e-7 0

Table 3.1: Mean squared prediction error MSPE, multiplied by 1000,

of multivariate forward stepwise variable selection (MFS), row-boosting

(RB), individual L^ Boosting (IB) and multivariate L^ Boosting (MB)
averaged over the 100 replicates. The best method for each setting is in

bold face. P-values of the paired sample Wilcoxon tests, which compare

for each setting the best method to the other three methods, are also

given.
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Figure 3.1: Mean squared prediction error MSPE, multiplied by 1000,

of multivariate forward stepwise variable selection (o), row-boosting (+),
individual L^ Boosting (A) and multivariate L^ Boosting (x).
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3.7 Real data

We have analyzed the following data sets:

Chemical reaction data (Box and Youle 1955; Rencher 2002):
This is a planned experiment involving a chemical reaction with 3 input

(predictor) variables (temperature, concentration, time) and 3 output

(response) variables (percentage of unchanged starting material, per¬

centage converted to the desired product, percentage of unwanted by¬

product). We fit a quadratic model including the first order interactions

(product of the predictor variables). This gives a total of 9 covariates.

Macroeconomic data (Klein, Ball, Hazlewood and Vandome 1961;

Reinsel and Velu 1998): This is a 10 dimensional time series from the

United Kingdom from 1948 - 1956 with quarterly measurements. 5

terms are taken as predictor variables (total labor force, weekly wage

rates, price index of imports, price index of exports, price index of con¬

sumption) and 5 terms are taken as response variables (industrial pro¬

duction, consumption, unemployment, total imports, total exports). We

ignore the time-dependency of the observations and fit again a quadratic
model with first order interactions.

Chemometrics data (Skagerberg, MacGregor and Kiparissides 1992;
Breiman and Friedman 1997) : This is a simulation of a low density tubu¬

lar polyethylene reactor. There are 22 predictor variables (20 reactor

temperatures, wall temperature of the reactor, feed rate of the reac¬

tor) and 6 responses (number-average molecular weight, weight-average
molecular weight, frequency of long chain branching, frequency of short

chain branching, content of vinyl groups, content of vinylidene groups).
Because the responses are skewed, they are all log-transformed.

Arabidopsis thaliana data (Wille et al. 2004): This is a microar¬

ray experiment. There are 795 genes (the responses) which may show

some association to 39 genes (the predictors) from two biosynthesis

pathways in A. thaliana. All variables are log transformed.

All responses are standardized to unit variance to make them com¬

parable. The predictive accuracy of each method is estimated by leave-

one-out cross-validation (for the A. thaliana data set we used 5-fold
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cross-validation) :

q n

mspecv = q-1 Y n~l Efe(o* - /r(*(o))2-
k=l 1=1

Note that we compare the prediction with the observation, the lat¬

ter being an unbiased rough estimate for the true unknown function

f. Therefore the prediction accuracy contains also the error variances

which makes it harder to see clear differences between the methods.

The datasets are summarized in table 3.2 and the results are given
in table 3.3. We use 5-fold cross validation and the AICC to stop the

iteration. The implementing T in MB is the empirical covariance-matrix

£ of the residuals from IB (for the A. thaliana data set we used the

diagonal matrix diag(S)).

Data set n p q aac

Chemical reaction

Macroeconomic

Chemometrics

A. thaliana

19 9 3

36 20 5

56 22 6

118 39 795

0.56

0.71

0.48

0.21

Table 3.2: Summary of the analyzed data sets: sample size (n), number

of predictors (p), number of responses (q) and average absolute empirical
correlation between the responses (aac).

Data set OLS MFS

CV AICC

RB

CV AICC

IB

CV AICC

MB

CV AICC

Chemical

Macroe.

Chemom.

A. thaliana

1.343

0.499

0.411

0.753

1.261 0.616

0.209 0.224

0.360 0.386

0.532 0.500

0.193 0.197

0.253 0.262

0.744 0.527

0.194 0.195

0.260 0.208

0.559 0.556

0.488 0.479

0.202 0.204

0.259 0.263

0.551

Table 3.3: Leave-one-out (5-fold for A. thaliana) cross-validated mean

squared prediction error MSPEcv for four data sets. Iteration stopped
either by 5-fold cross validation or AICC. The AICc-stopping for A.

thaliana is not easily feasible (see section 3.3.4) and the computation of
Wilk's A (MFS and RB) is only possible if n > q.

MFS performs worst, but there is no overall best boosting method.

As mentioned already in section 3.6.3, it seems easier to stop the it-
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eration for MB and RB than for IB. Therefore, the cross-validation

stopping and the AICC stopping differ only slightly for MB and RB.

For IB, stopping by AICC works much better than using cross val¬

idation in two examples. The mean squared prediction error of 0.208

for the chemometrics data is quite good compared to the numbers pub¬
lished in Breiman and Friedman (1997). We remark here that we only
have rounded data (taken from Skagerberg et al. (1992)) and therefore

we get slightly different prediction errors (e.g. for OLS: 0.411 instead

of 0.431 in Breiman and Friedman (1997)).

3.8 Conclusions

We propose a multivariate i^Boosting method for multivariate linear

models. The multivariate i^Boosting inherits the good properties from

its univariate counterpart: it does variable selection and shrinkage. Our

multivariate i^Boosting method is suitable for a variety of different sit¬

uations: (i) multivariate linear regression, with or without seemingly
unrelated regressions (SUR), and with covariates which can be arbi¬

trarily correlated; (ii) for multivariate vector autoregressive time series.

The method is particularly powerful if the predictor dimension p or the

dimension of the response q are large relative to sample size n.

Our multivariate i^Boosting takes potential correlations among the

components of the multivariate error-noise into account. It is therefore

very different from OLS and other methods which work on individual

responses only. Correlation among the errors can arise from various

sources: for example via an unobservable covariate which influences the

responses in the same way.

We prove here, for i.i.d. data as well as for time series, that multivari¬

ate L2Boosting can consistently recover sparse, very high-multivariate

and very high-dimensional linear functions. When having high-multi-

variateness, a non-trivial element arises how to control the estimation

error over all multivariate components simultaneously: our theory seems

to be among the first which actually addresses such questions.

An important question in multivariate regression is whether "joint-
ness" pays off: is the multivariate method better than q estimates from
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a univariate method? Our simulation study shows that multivariate

i^Boosting outperforms individual univariate i^Boosting by a substan¬

tial amount when the errors are correlated and is almost as good when

the errors are independent. On real data, we were not able to see a

clear difference (which may be masked by substantial noise variance):
this has already been found in other work, e.g. Brooks and Stone (1994).

3.9 Proofs

3.9.1 Proof of Theorem 1

The proof of Theorem 1 is similar as in Bühlmann (2006), where the

univariate case is discussed. We define an appropriate Hubert space and

dictionary of basis functions; then, it is sufficient to prove Lemma 1 from

Bühlmann (2006) for the setting of multivariate i^Boosting.

A population version

The L2Boosting algorithm has a population version which is known

as "matching pursuit" (Mallat and Zhang 1993) or "weak greedy algo¬
rithm" (Temlyakov 2000).

Consider the Hubert space L2{P) = {f : Rp - R«; ||f||2 = (f,f) <

00} with inner product (f, g) = Jf(x)Tr_1g(x)dP(x). Here, the prob¬

ability measure P is generating the predictor x in model (3.4.1). To

be precise, the probability measure P = Pn and the function f = fn

depend on n, but we often ignore this notationally (a uniform bound in

(3.9.4) will be a key result to deal with sequences of Hubert spaces).

Denote the components of x = (x\,..., xPn) viewed as a scalar or a

1-dimensional function from M.Pn —> R by

Sfj(x) =Xj

and denote the components of x

vector or a function from M.Pn -

from zero by

(g(j,fe))/W

Kx\,..., xPn) viewed as a gn-dimensional
l.qn with only component k different

Xn II I K,

0 ïîl^k.
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For notational simplicity, we assume that Hg^^H = Jx2TkkdP(xj) =

Tkk = 1 for all k (it simplifies e.g. the formula (3.9.2)); the proof for

non-equal Tkk would work analogously using the second assumption in

(A3).

Define the following sequence of remainder functions, called match¬

ing pursuit or weak greedy algorithm:

R°f = f,

Rmf = Rm-if _ ^m-if ? g(Wm)) g(Wm), m =1,2, .(.3.9.1)

where (sm,tm) would be ideally chosen as

(sm,tm) = argmax | (Äm_1f,g(J)fe)) |.

The choice functions (sm,tm) are often infeasible to realize in practice,

because we have finite samples. A weaker criterion is: for every m

(under consideration), choose any (sm, tm), which satisfies for some 0 <

d< 1

\{Rm-1î^{Sm,tm))\>d- sup \(Rm~ 1f,gü)fe))|. (3.9.2)
l<J<Pn]l<k<qn

Of course, the sequence Rmî = Rrn's'tf depends on (si,ti), (s2,t2), ,

(sm,fm) how we actually make the choice in (3.9.2). Again, we will

ignore this notationally.

It easily follows that

m—l

f = YI (R3f>S(s3 + 1,t3 + 1))g(s3 + 1,t3 + 1) +
^mf-

Temlyakov (2000) gives a uniform bound for the algorithm in (3.9.1)
with (3.9.2).

If the function f is representable as

f(x) = ]T^fegü)fe)(x), ^|^|<D<oo, (3.9.3)

which is true by our assumption (A2), then

||iümf|| < D(l +md2)-d/(2(2+d)), 0 < d < 1 as in (3.9.2). (3.9.4)



3.9. Proofs 67

To make the point clear, this bound holds also for sequences Rmî =

ßrn,s,t,nf wnjcn depend on the choice function (s,t) in (3.9.2) and on

the sample size n (since x ~ P depends on n and also the function of

interest f): all we have to assume is the condition (3.9.3).

A sample version

The multivariate i^boosting algorithm can be represented analogously
to (3.9.1). We introduce the following notation:

(f>g>(n) =n-1^fT(xw)r-1g(xw) and ||f||2n) = (f,f) (n)
z=l

for functions f, g : M.Pn —> R9. As before, we denote by Y = (y(i),..., y(
the matrix of response variables.

Define

RlJ = f " (Y, Z{sUt{)){n) 8(5!,*!) =

>m— lc / om—1
Rn$ ~ Rn f -

\Rn
f

> ë(sm,fm) / S(Wm) >
m ~ 2> 3>

where

,si,ti)= argmax |(Y,g0)fe)/r)

(sm,tm) = argmax | (R xf, g(j>fe) ) |, m = 2, 3,....
l<^<Pn;l<fc<<?„

X ' (n)

With some abuse of notation, we denote by Rr^~1î and g(§m fm) ei¬

ther functions from M.Pn —> R9 or n x qn matrices evaluated at the

observed predictors. We emphasize here the dependence of R on n

since finite-sample estimates ( R~xî, ë(j,k) ) are involved. We also

assume without loss of generality (but simplifying the notation) that

l|g(j,fe)ll(n) = 1 f°r all 3,k and n (note that we have already assumed

w.l.o.g. before that Hg^^H = 1 for all j,k): then, the formulae above

are the same as in (3.3.2) (because Hg^^Hfn) = xJxj^kk)- Hence,

Äf = f-fH.

For analyzing \\Rf\\ = Ex|(f(m")(x)-f(x))Tr"1(f(m")(x)-f(x))|,
which is the quantity in the assertion of Theorem 1, we need some

uniform laws of large numbers, as discussed below.
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Uniform laws of large numbers

Lemma 1 Under the assumptions (Al)-(A5), with 0 < £ < 1 as in

(Al),

(i) ^^Vl<JjU<Pn]l<k,v<qr,

Op(n-V2),

(ii) sup1<J<Pn.1<k<qr

(in) sup1<J<pTi.1<fe<qT;

g(j>fe)>g(M>v)/(n) \ë(j,fc)> g(u,v)

Cn,2 = 0P(n-^2),

Cn,l

gÜ,fe)'E)(n)

g(.J,k),î)(n) -\g(3,k) Cn,3 = 0P{n-^2),

(iv) ^Vy<3<Pn-y<k<qn (gü,fe),Y) -(gü)fe),Y) =ÇnA = Op(n V2).

Proof: Assertion fi]

SUP {ë(3,k),g(u,v)),n)
~

\ë(3,k),g(u,v)
j,u,k,v

sup
J,u,k,v

sup
J,u,k,v

n

n

'1YsO,k)(xM)T 1g(u,v)(*(z)) -E g^,fe)(xw)r 1g(Uj„)(xw)

n

sup |rfeJ

i=i

n

J,u,k,v

_1

5^5,j(x(»))5'u(xw) -E [&(x(i))sfu(x(i))]
î=i

< sup \T^\ Op(n-^/2) = Op(n-^/2).
k,v

We have used here that

sup^tt|n-1^=1^(xw)5ftt(xw) -E[^(x(1))5ftt(x(1))] | = Op(rr^2)
(Bühlmann 2006), and also the first assumption in (A3).

Assertion (ii) : We write

qn n n

v=l 1=1

(3.9.5)
%=i
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where Qt(k) = YZU rJe(*K

Note that Qt{k) is independent from X, E[Q«(/c)] = 0 for all i, k and

k k

supE|Qt(fc)|fl < sup(^ \r^\(E\^i)v\8)1/8)8 < oo, (3.9.6)
v=l

using assumptions (A3) and (A5). The form in (3.9.5) with the moment

property in (3.9.6) is the same as in Lemma 1 (ii) from Bühlmann (2006).

Assertions (iii): Note that

sup|(g(j,fe),f)(n) -(g(j,fc),f)| < ^2\Buv>n\ -Cn,i =Op(n~i/2)
J'k

u,v

using assumption (A2) and the bound from assertion (i).

Assertion (iv): This follows immediately from assertions (ii) and

(iii). D

The rest of the proof is the same as in Bühlmann (2006). We only
have to replace the basis functions g3 by our double indexed basis func¬

tions g(j)fe). D

3.9.2 Proof of Theorem 2

As we have seen from the proof of Theorem 1, a substantial part of

the analysis can be borrowed from Bühlmann (2006): we only need

to reconsider uniform laws of large numbers, as in Lemma 1, but for

dependent data. This can be done by invoking the following result.

Lemma 2 Consider sequences {Zt,n}t£Z, n G N; which are strictly sta¬

tionary and a-mixing with mixing coefficients az,n{')- Assume that

E[Zt,n\ = 0 for all n G N, supnNE|Zi)nj2s+7 < oo for some s G N, 7 >

0; and the mixing coefficients satisfy for some constants 0 < C\, C2 <

00;

00

J2(k + l)s" W(*07/(4s+7) < Cipsn + C2,
k=0
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where s G N is linked to the moments of Ztjn as above. Then,

n

Ein"1 ]T Zt,n\2s = 0(psnn-s) (n - oo).
t=i

Proof: The reasoning can be done analogously to the proof of The¬

orem 1 in Yokoyama (1980). D

The only part of the proof of Theorem 1 which needs to be changed is

Lemma 1. A version of Lemma 1 also holds for stationary VAR(oo) pro¬

cesses; the predictor variables at time t are the pn lagged qn-dimensional
variables x.(t-i) -, -, x(*-p) and the response variable is the current X(t).

Instead of exponential inequalities we first invoke Markov's inequal¬

ity and then Lemma 2. For example, for the analogue of Lemma 1 (i)
we bound

n

^[\{n-pn)~l ^2 X(t-j)kX(t-u)v -^j[x(t-0)kX{t-u)v]\ > e]
t=pn+l

n

< £~
S

E|(n - pn)~ 2_^ X(t-j)k%(t-u)v -MX(t-j)k%(t-u)v}\ S-

t=pn + l

(3.9.7)

We now observe that Zt,n = x^t_j)kx^t_u)v -^[x^t_j)kx^_u)v] is still

stationary and a-mixing whose coefficients satisfy the requirement from

Lemma 2. Due to different lags j and u, the mixing coefficients of

ZtjU usually don't decay for the first \j — u\ lags (therefore the special
construction with C\psn + C<l in Lemma 2). Invoking Lemma 2 for the

right hand side of (3.9.7) we get

n

'P[\(n-pn)~1 ^2 X{t-j)kX{t-u)v -T^xit-rikXit-v^vW > e]
t=pn + l

< e-2sO(psnn-s) = 0{n~SK)

since pn = 0(n1~K) by assumption. For the supremum over the different

lags and components we then get

n

P[ SUP {(n-pn)'1 ^2 X(t-j)kX(t-u)v -^[X(t-3)kX(t-u)v]\ > e]
l<j,u<pn,l<k,v<qn

t=pn + l

= Otfnqln-aK) = 0(n2(1+5)-(s+2)K).
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Hence, since k, > 2(1 + ô)/(s + 2), we have proved that there exists a

c > 0 such that

n

SUp \{n-Pn)~l ^2 X(t-j)kX(t-u)v-'E[X(t-3)kX(t-u)v]
l<j,u<pn,l<k,v<qn

t=pn + l

= 0P(n-c).

The version of Lemma 1 (ii) follows analogously; and the versions of

Lemma 1 (iii) and (iv) can be proved exactly as in Lemma 1. D





Chapter 4

Robustifîed L2Boosting

We consider five robustifications of L2Boosting for linear regression with

various robustness properties. The first two use the Huber loss as im¬

plementing loss function for boosting and the second two use robust

simple linear regression for the fitting in i^Boosting (i.e. robust base

learners). Both concepts can be applied with or without down-weighting
of leverage points. Our last method uses robust correlation estimates

and appears to be most robust. Crucial advantages of all methods

are that they don't compute covariance matrices of all covariates and

that they don't have to identify multivariate leverage points. When

there are no outliers, the robust methods are only slightly worse than

i^Boosting. In the contaminated case though, the robust methods out¬

perform i^Boosting by a large margin. Some of the robustifications are

also computationally highly efficient and therefore well suited for truly

high dimensional problems.

4.1 Introduction

Freund and Schapire's AdaBoost algorithm for classification (Freund
and Schapire 1996) has attracted much attention in the machine learn¬

ing community and related fields, mainly because of its good empirical

performance. Some boosting algorithms for regression were also pro-

73
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posed, but the first practical algorithm was not possible until Breiman

(1999) showed, that boosting can be viewed as a functional gradient
descent algorithm. Friedman (2001) then proposed LS_Boost (least
squares boosting, we will call it ./^Boosting) and also more robust boost¬

ing methods in conjunction with regression trees.

Boosting with the L2-I0SS (./^Boosting) and componentwise linear

fitting was worked out in detail in Bühlmann (2006). It is essentially
the same as Mallat and Zhang's (1993) matching pursuit algorithm in

signal processing and very similar to stagewise linear model fitting (see
for example Efron et al. (2004)). Boosting is then not just a black

box tool, but fits sound linear models. It does variable selection and

coefficient shrinkage and for high dimensional problems, it is clearly

superior to the classical model selection methods.

The usage of the L2-I0SS is dangerous when there are outliers. Fried¬

man (2001) discussed some robust boosting algorithms with regression
trees. In this paper we develop some robust boosting algorithms for lin¬

ear models by using either robust implementing loss functions in boost¬

ing or robust estimators as base (weak) learners. They all do variable

selection and estimation of regression coefficients. Some of our methods

are also well suited for very high dimensional problems with many co¬

variates and/or large sample size. Besides more classical work in robust

fitting and variable selection for linear models (Ronchetti and Staudte

1994, Ronchetti, Field and Blanchard 1997, Morgenthaler, Welsch and

Zenide 2003), our approaches are closest to "robust LARS" (Van Aelst,
Khan and Zamar 2004). However, the concepts of robust loss functions

and robust base learners are much more general.

4.2 L2Boosting with componentwise linear

least squares

We consider the linear model y = X/3 + e with y G Rn and X =

(xi,X2,. .. ,xp) G M.nXp and will use boosting methods for fitting it.

For a boosting algorithm we need a loss function L:lxl^ Rq~ ,
that

measures how close a fitted value F{xl) comes to the observation y% and

a base learner (simple fitting method), that yields a function estimate

/ : W - R. L2Boosting uses the L2-loss L(y, F) = (y - F)2/2 and as
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base learner we take componentwise linear least squares, which works

as follows: a response r G Rn with r = 0 is fitted against xi,..., xp:

Componentwise linear least squares learner

a§ + ßgx§, iGlp

A
.
.A ^

argmin ||r — a3
— ßj^-jW = argmax \ßJ\ sd(x<J =

1—j—P 1—j—P

arg max | corr(r, x-, ) |.
i<j<p

In words: we fit a simple linear regression with one selected covariate.

The selected covariate is the one which gives the smallest residual sum

of squares. This is equivalent to the variable that gives the "largest
contribution to the fit" or has the highest absolute correlation with

the response r. The requirement r = 0 is without loss of generality
for boosting since we always center the response variable before, see

the algorithm below. The learner can be simplified if all covariates are

centered (mean subtracted). Then we can fit simple linear regressions

through the origin.

A boosting algorithm constructs iteratively a function F : M.p —> R

by considering the empirical risk n-1 Y^=i L{yi} F(xt)), x% G W and

pursuing iterative approximate steepest descent in function space. This

means that in each iteration, the negative gradient of the loss function is

fitted by the base learner. i^Boosting is especially simple, because the

negative gradient becomes the current residual vector and the algorithm
amounts to iteratively fitting of residuals:

i^Boosting with componentwise linear least squares

1. Initialize F^ = argmin J2=i L(yi,a) = y. Set m = 0.

2. Increase m by 1. Compute the negative gradient (also called

pseudo response), which is the current residual vector

d
Tl = ~7rFL^y^F^F=F^-^{Xl) =yt-Fim~1)M, i = l,...,n.

f(x) =

ßo =
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3. Fit the residual vector (ri,..., rn) to xi,..., xp by the componen¬

twise linear least squares base procedure

(^,rX=i^/(m)(-)-

4. Update F(m)(-) = F(m"1)(-) + v /(m)(-)> where 0 < v < 1 is a

step length factor.

5. Iterate steps 2 to 4 until m = mstop for some stopping iteration

'W^stop-

The number of iterations m = mst0p is usually estimated using a valida¬

tion set or with cross validation. The step-length factor v is also called

shrinkage factor and is typically less crucial than mst0p- The natural

value is 1, but smaller values have empirically proven to be a better

choice. We will always use v = 0.3. Since the base learner yields a lin¬

ear model fit in one covariate and because of the linear up-date in step

4, i^Boosting with componentwise linear least squares yields a linear

model fit (with estimated coefficient vector ß(m>). Since least squares

fitting is used, the method is not robust to outliers.

4.3 Robustifications

There are several ways to robustify L2Boosting with componentwise
linear least squares as described next. Whenever we need a robust

location estimate we will use the Huber estimator with MAD scale (see
Huber 1964, Huber 1981 and Hampel, Ronchetti, Rousseeuw and Stahel

1986). The Huber ^-function is given by

Q

M/C(x) = minjc, max{x, —c}} = x • min{l, -—-}.

As robust scale estimator we use the Qn estimator of Rousseeuw and

Croux (1993). It is defined as

Qn(xi,...,xn) = 2.2219- {\xt -Xj\;i <j}(k),

where k = ( 2 )• That is, we take the k-th order statistic of the (2)
inter-point distances. The Qn estimator has a breakdown point of 50%

and an efficiency of 82% at the Gaussian distribution (Rousseeuw and

Croux 1993).
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4.3.1 Boosting with a robust implementing loss func¬

tion

The easiest robustification is to use a robust loss function, e.g. the

Huber loss function (the derivation yields the Huber ^-function):

T (V F\-l (^-F)2/2, \y~F\<c,

^cU/'^j~\ c*(\y-F\-c/2), \y-F\>c.

The parameter c should be chosen in dependence of the scale of y
— F.

We choose it adaptively in each iteration as c = 1.345 • MAD({^ —

F^m~1\xl),i = l,...,n\) as proposed in Friedman (2001). The neg¬

ative gradient in step 2 of the boosting algorithm then becomes the

huberized residual vector. As learner we can take componentwise linear

least squares as described above. This means we look in each iteration

for the covariate that best fits the huberized residuals (the criterion is

the huberized residual sum of squares). We found that it is better to

also estimate an intercept in each iteration than robust centering the

covariates and estimate the intercept only at the beginning. We shall

call this version RobLoss boosting.

Remark 3 If we want to exactly apply the Gradient Boost algorithm of
Friedman (2001) we have to do an additional line search between step

3 and 4- This means each p111^ must be multiplied by a constant to

minimize the Lc-loss. This would yield factors slightly greater than 1.

Since we are going to use shrinkage v = 0.3 it is not important to know

the optimal (greedy) step size exactly and we can omit the additional

line search.

It is obvious that RobLoss boosting is only robust in "Y-direction"

but not in "X-direction". But it is not possible to incorporate "X-

direction-robustness" in the loss function and therefore, we do it in the

base procedure when fitting the negative gradient in step 3. The idea

is to down-weight the leverage points and to use weighted least squares

for fitting (a Mallows type estimator). Since every covariate is fitted

alone, the weight of an observation is solely determined by the value of

the one covariate. Therefore, the same observation can have different

weights for the p candidate fits with the p covariates in one iteration,

according to its outlyingness of the corresponding coordinate. For the
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position
weights we use (wP°SÏ

%on

is the weight of observation i when fitting the

j-th covariate)

'position • r-,
1.O40

,.

<7 =mm{1»TZ: TT./ U/MAn/„ m>-
[x%3

-

Huber(xJ))/MAD(x3

We can go one step further and down-weight only the leverage points
that have also a large residual (a Schweppe type estimator). The weights
we use in iteration m are

w

y%-F^m-1\xl)
1.345-?°s"ton lMAD({j,,-F(-i)(i,), i=1,...,n})

posztzon

13
VT, ( yi-F(m-l){xl)
^1.345

MAD({y%-F(m-V{x%), i=l,...,n})

So far, we only discussed how to fit the pseudo response to a co¬

variate, but the selection of the "best" covariate is equally important.
It seems quite natural to select the covariate that gives the smallest

weighted residual sum of squares. But since the p simple linear fits in

each iteration use different weights for the same observation, this can

lead to bad choices. It is better to use the estimated ß3 's and to select

the variable that has highest \ß3\- Qn(x.j): note that this is of the form

as used in the classical componentwise linear least squares base pro¬

cedure in section 4.2. Roughly speaking we choose the covariate that

contributes the most to the fit. We shall call this version RobLossW

boosting. Here is the formal description of the learner (wtJ as described

above with r% instead of y%
— F^m~1\xl)):

Componentwise linear weighted least squares learner

f(x) = ag+ßsX

[àj ,ßj) = arg min^ wl3 (n - a3
- ß3 xl3)'

s = argmax \ß31 • Qn(x.3).
i<j<p
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4.3.2 Boosting with robust regression learner

Here we use the idea of iteratively fitting of residuals. Instead of fitting
the ordinary residuals by least squares, we use a robust linear regression:

Componentwise robust linear regression learner

Q-s i Ps^s j

robust linear fit of r against x-,,

argmax \ß31 • scale(x.3).
i<j<p

In each iteration of the boosting algorithm we calculate a robust linear

regression with each covariate alone (and an intercept). This needs more

computation than the RobLoss methods, since the robust fits are usually
calculated iteratively itself (the RobLoss methods do in some sense only
the first iteration of the iteration). As criterion for the variable selection

we use again argmax-, \ß31 • scale(xJ), where scale(x:/) is a scale estimate

that will be specified below. This is much better than using a robust

estimation of residual standard error.

For the robust linear fit of the base procedure we use two different

types: M-regression with Huber's ^-function (and rescaled MAD of the

residuals) and a Schweppe type bounded influence (BI) regression (see
for example Hampel et al. (1986)) with Huber's ^-function and position

weights as described in section 4.3.1. We chose these types of robust

regression to have a direct comparison to the RobLoss methods. One

could even use MM-regression, but this would be computationally very

expensive. The proposed algorithms will be called RobRegM boosting
and RobRegBI boosting. For the former method, which is robust in

"Y-direction" but not in "X-direction", we use the standard deviation

as scale estimate for the variable selection and for the latter, which is

robust in "Y- and X-direction", we use the Qn estimator.

We expect that RobLoss and RobRegM boosting perform similar

and likewise for RobLossW and RobRegBI boosting. The former meth¬

ods first huberize the residuals and then use (weighted) least squares

and the latter methods use robust methods with the same huberiza-

tion and weighting. As already mentioned, the RobLoss methods do in

(a3,ß3) =



80 Chapter 4. Robustified i^Boosting

some sense the first iteration of the robust fitting of the RobReg meth¬

ods. The great advantage of the former methods is that they are much

faster. Thus, the latter methods must achieve better performance to be

worthwhile.

4.3.3 Boosting with robust correlation learner

It is also possible to use robust correlation estimators to construct a base

procedure. The idea is the following: in each iteration, the covariate

with the highest robust correlation with the residuals is chosen, see

also the selection in classical componentwise least squares described in

section 4.2. We shall call this version RobCor boosting:

Robust correlation learner

f(x) = a§+ß§x§,

ß3 = RobCor(xj ,r) -Qn (r) /Qn (x3 ),

ol3 = Huber(r) — ß3 • Huber(x^),

s = argmax | RobCor(xJ,r)|.
i<j<p

Recall that it is not important to have very accurate /3-,'s because we

use shrinkage v = 0.3. As robust correlation estimate we use a proposal
from Huber (1981) with the Qn estimator as module:

RobCor(x,y) =

Q"^ +^\ ~ Q"^ ~ ^\.

4.3.4 Stopping the boosting iteration

To stop the boosting iteration, we propose to use cross validation or a

separate validation set. After each iteration we use the actual model

to predict on the validation sample and we measure the quality of the

fit. For L2Boosting we use the mean squared prediction error on the
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validation set and for the robust methods, we use a robust measure of

prediction error. Ronchetti et al. (1997) propose to use the Huber loss of

the errors of the validation set. We found that using the Qn-estimator
of the errors on the validation set gives better results and therefore, we

tune all robust boosting methods with the Qn-estimator.

4.3.5 Properties of the robust boosting methods

An unaesthetic property of RobCor boosting with v = 1 is that the

same covariate can be chosen consecutively. This is because the robust

correlation between the residuals and a covariate is usually not equal
to zero after fitting the covariate in the iteration before. This is in

contrast to i^Boosting and the RobReg methods, where, with v = 1,

we cannot improve the fit by selecting and fitting the same covariate as

in the iteration before. For the RobLoss methods it can also happen
that they choose the same covariate consecutively (even with v = 1).

RobCor boosting empirically shows the following behavior: after

running for a large number of iterations, it always selects the same

variable and gets stuck. Then the estimated coefficients are all of ap¬

proximately equal size and successive coefficients are of opposite sign.
This means that RobCor boosting estimates the coefficient of the se¬

lected variable to high and in the next iteration it undoes the previous

step. The good thing is that this doesn't happen until over-fitting oc¬

curs, so we would stop the iteration before anyway. We can also delay
the getting stuck by choosing a smaller v.

Regarding the break down point we can state the following simple

proposition:

Proposition 4 The boosting method inherits the breakdown point of
the base procedure.

Since we are performing only a finite number of iterations, the whole

boosting algorithm can only break down when the base learner breaks

down in one iteration. RobCor boosting has therefore a breakdown

point of 0.5.
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4.4 Simulation study

In this section we compare the different boosting methods on simulated

data sets from a linear model y = X/3 + e as described at the beginning
of section 4.2.

4.4.1 Design

The sample size of the training set (and also the validation set, used to

stop the iteration) is n = 100 and the number of covariates is p = 10

in the first example and p = 100 in the second example. The true coef¬

ficient vector ß is an arbitrary permutation of (8,7,6,5,4,0,0,0,0,0)T
for p=10 and (18,17,16,15,14,13,12,11,10,9,0,..., 0)T for p = 100.

Thus, we have 5 effective and 5 noise variables for p = 10 or 10 and 90

for p = 100, respectively. We use two design matrices for the covari¬

ates and two error distributions. For the first design (normal design),
the covariates are generated according to a multivariate normal distri¬

bution with mean zero and Cov(xî,x:/) = T,t3 = 0.5^~JK The second

design (leverage design) is the same, except that 10% of the data-points

are multiplied by 5. This is done after the true y-values have been

determined. Therefore we have bad leverage points. The error distri¬

butions are standard normal (N) and 90% standard normal and 10%

from J\f (0, 52) (10%N5). The errors are multiplied by a constant to

give a signal-to-noise ratio of 4 in the first example and 9 in the second

example for normal errors. Each setting is replicated 100 times.

4.4.2 Performance measure

Our main performance measure is the mean squared prediction error,

which can be calculated as

intercept + 0 - ß)T^{ß - ß).

We use paired sample Wilcoxon tests to examine whether a method is

significantly better than another. Additionally, as a measure of variable

selection accuracy, we count how many variables have been chosen until

the 5 (respectively 10) effective covariates have been selected (optimal
would be 5 or 10, respectively).
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4.4.3 Results for p = 10

Normal design
N 10%N5

Leverage design
N 10%N5

L2

RobLoss

RobRegM
RobLossW

RobRegBI
RobCor

7.7 (4.1) 25.5 (13.9)
8.9 (5.0) 11.4 (5.8)
8.8 (5.3) 11.4 (5.9)
9.1 (5.2) 11.5 (6.0)
9.1 (4.8) 11.8 (6.0)

11.3 (6.8) 13.8 (7.7)

138.4 (24.5) 148.4 (27.9)
87.2 (41.3) 102.8 (47.5)
86.1 (41.0) 99.9 (44.4)
19.7 (8.8) 25.4 (11.8)
19.3 (8.8) 25.4 (12.2)
15.5 (9.5) 18.8 (9.4)

Table 4.1: Mean squared prediction error of the different boosting
methods when stopping with a validation set, averaged over 100 repli¬
cates forp = 10. The standard deviations are given in parentheses.

Table 4.1 gives the average of the mean squared prediction error

when stopping with the validation set. The results are as expected. For

the normal design with normal errors, L2Boosting performs significantly
best. The robust methods are only slightly worse, except perhaps Rob¬

Cor boosting which is significantly worse than the other robust methods.

For the normal design with error 10%N5, i^Boosting performs much

(and significantly) worse than the robust methods, and RobCor boost¬

ing is still significantly worse than the other robust methods.

The leverage design shows the biggest differences. i^Boosting per¬

forms really bad and RobLoss and RobRegM boosting are not much bet¬

ter. RobCor boosting performs best and all differences are highly signif¬
icant (except the pairs RobLoss-RobRegM and RobLossW-RobRegBI).

In table 4.2, we examine whether we can stop the boosting iteration

at a good point. Given is the percentage loss when using a validation

set (of same size as the training set) to stop the iteration compared to

optimal stopping (stopping at the iteration which gives smallest mean

squared prediction error, also called "oracle" stopping). The stopping
works quite satisfyingly for i^Boosting for the normal design, but not

so well for the robust methods. They lose about 20% in performance

compared to optimal (oracle) stopping.

In table 4.3 we state how many variables have been chosen (on av¬

erage) until all 5 effective covariates have been selected. The outcomes
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Normal design Leverage design
N 10%N5 N 10%N5

L2 13 10 48 45

RobLoss 25 22 14 19

RobRegM 25 21 13 16

RobLossW 24 21 19 16

RobRegBI 23 24 19 19

RobCor 27 26 33 25

Table 4.2: Percentage loss of stopping with a validation set compared
to optimal stopping forp = 10.

Normal design Leverage design
N 10%N5 N 10%N5

L2 5.2 5.7 6.7 7.1

RobLoss 5.2 5.3 6.6 6.7

RobRegM 5.1 5.2 6.6 6.9

RobLossW 5.2 5.2 5.9 6.1

RobRegBI 5.2 5.2 5.4 5.7

RobCor 5.3 5.4 5.4 5.6

Table 4.3: Average number of covariates that have been chosen until

all 5 effective variables have been selected for p = 10.

confirm more or less the results of table 4.1, in the sense that the meth¬

ods with bad prediction performance usually also select too many vari¬

ables. The big difference is that RobRegBI boosting selects the variables

better than RobLossW boosting, although they have comparable pre¬

dictive power. This indicates that some noise variables in the fitted

model with small coefficients don't hurt for prediction.

4.4.4 Results for p = 100

The results for p = 100 are contained in tables 4.4, 4.5 and 4.6. This

setting is much harder. The methods not only have to cope with outliers

but also with high dimensional observations. The results are qualita¬

tively more or less the same as for p = 10. The main differences are: for
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Normal design
N 10%N5

Leverage design
N 10%N5

L2

RobLoss

RobRegM
RobLossW

RobRegBI
RobCor

112 (41) 371 (166)
124 (45) 186 (81)
125 (45) 189 (77)
138 (49) 196 (87)
134 (48) 200 (84)
187 (77) 268 (129)

1060 (231) 1203 (220)
538 (210) 668 (252)
560 (242) 665 (245)
417 (170) 569 (221)
389 (148) 525 (196)
326 (149) 472 (231)

Table 4.4: Mean squared prediction error of the different boosting
methods when stopping with a validation set, averaged over 100 repli¬
cates forp = 100. The standard deviations are given in parentheses.

Normal design
N 10%N5

Leverage design
N 10%N5

L2

RobLoss

RobRegM
RobLossW

RobRegBI
RobCor

4 6

9 8

10 8

9 9

8 9

8 7

126 68

8 13

12 11

6 9

8 10

8 13

Table 4.5: Percentage loss of stopping with a validation set compared
to optimal stopping forp = 100.

Normal design
N 10%N5

Leverage design
N 10%N5

L2

RobLoss

RobRegM
RobLossW

RobRegBI
RobCor

10.9 16.8

11.0 12.2

10.9 12.0

11.4 12.4

11.1 12.2

12.1 13.9

26.3 48.5

27.3 33.1

27.7 34.3

25.5 34.8

20.9 26.9

16.9 20.3

Table 4.6: Average number of covariates that have been chosen until

all 10 effective variables have been selected for p = 100.
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the normal design, RobCor performs much worse than the other robust

methods. For the leverage design, the differences between the methods

are less pronounced but there is now a significant difference between

RobLossW and RobRegBI boosting.

The stopping of the boosting iteration is relatively easier in this high
dimensional setting. The robust methods lose only about 10% compared
to optimal stopping.

4.5 Real data

As a real data set we analyze the measurements of Maguna, Nunez,
Okulik and Castro (2003) (see also Maronna, Martin and Yohai 2006).
There are 38 observations (17 monocarboxylic, 9 dicarboxylic and 12

unsaturated carboxylic acids) and the goal is to predict the logarithm
of the aquatic toxicity (y) from nine molecular descriptors {x\,..., xg).
The scatterplot matrix of the data (not included) shows a quite good
linear dependence between y and x\ except for some outliers. The other

covariates have no clear "univariate" influence on y.

We applied the boosting methods with shrinkage factor v = 0.3 and

used 5-fold cross-validation to stop the boosting iterations. The results

are as follows: L2-, RobLoss and RobRegM boosting select several times

x\ and xs at the beginning and then also some other covariates. The

residual plots (not included) show no outliers. RobLossW, RobRegBI
and RobCor boosting select only several times x\ and then stop. The

residual plots (not included) indicate some clear outliers, which are

leverage points.

A closer look at the data shows that all the clear outliers are unsat¬

urated carboxylic acids. RobLossW, RobRegBI and RobCor boosting
lead to the insight that there is no linear model which fits all the data

well. L2-, RobLoss and RobRegM boosting find a second variable (xs)
that seems to explain also the unsaturated carboxylic acids, but this is

doubtful.
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4.6 Conclusions

We compared several robust boosting methods to i^Boosting. For the

ideal normal case, the robust methods are only slightly worse than

i^Boosting. In the contaminated case though, the robust methods out¬

perform i^Boosting by a large margin. An advantage of the boosting
methods (for example over robust LARS) is that they don't have to

compute covariance matrices of the covariates or to identify multivari¬

ate leverage points.

RobLoss, RobLossW and RobCor boosting are computationally ef¬

ficient and hence well suited also for truly high dimensional problems.
In the high dimensional setting, the differences between the methods

are less pronounced, because the methods not only have to cope with

outliers but also with high dimensional observations.

The additional computation of RobRegM boosting does not pay off.

It has no advantages over RobLoss boosting. The case is different for

RobRegBI boosting. It is better than RobLossW boosting in variable

selection and the predictions are more accurate in high dimensions. The

prediction and variable selection performance of RobCor boosting are

surprisingly good in the contaminated case.

It seems quite natural that it is harder to stop the robust boosting
methods than i^Boosting in the normal case, since they use a robust

measure of prediction error. In the leverage case though, the stopping
works quite well for the robust methods and disastrously for i^Boosting.
The stopping works also well in the high dimensional setting, for which

the boosting methods are mainly designed.

In practice, it is always a good advice to employ more than one

method and to compare the results. Our robustified versions of i^Boosting
offer additional possibilities for good, advanced data analysis.





Chapter 5

LogitBoost with Trees

Applied to the WCCI

2006 Performance

Prediction Challenge
Datasets

We apply LogitBoost with a tree-based learner to the five WCCI 2006

performance prediction challenge datasets. The number of iterations

and the tree size is estimated by 10-fold cross-validation. We add a

simple shrinkage strategy to make the algorithm more stable. The re¬

sults are very promising since we won the challenge.

5.1 Introduction

In recent years a lot of new methods for classification have been pro¬

posed and therefore there is a need for a fair comparison. The WCCI

2006 performance prediction challenge (http://www.modelselect.inf.ethz.ch)
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offers a platform for that. The challenge consists of five binary classifi¬

cation problems. Each problem consists of a training set (input-output-
pairs) to fit the model and a test set (inputs only) to predict on new

data and evaluate the performance. The datasets are summarized in

Table 5.1.

Dataset Variables/
Features

Training

Samples

Test

Samples

Proportion
of class +1

Ada 48 4562 41471 0.248

Gina 970 3468 31532 0.492

Hiva 1617 4229 38449 0.035

Nova 16969 1929 17537 0.285

Sylva 216 14394 130858 0.062

Table 5.1: The five challenge datasets.

The performance measure is the balanced error rate (BER) which

is the average of the errors on each class on the test set. An additional

task on the prediction challenge is to predict the BER (make a BER

guess) which will be realized on the test set (generalisation BER). The

final test score combines the BER and the guess error.

We decided to use LogitBoost (Friedman et al. 2000) in conjunc¬
tion with trees. LogitBoost is a "statistical" version of Freund and

Schapire's well known and successful AdaBoost (Freund and Schapire

1997) because it minimizes the negative binomial log-likelihood instead

of the exponential loss. LogitBoost has already been applied success¬

fully to high dimensional microarray data by Dettling and Bühlmann

(Dettling and Bühlmann 2003).

The most popular choice for the base learner are trees. They can

easily model different degrees of interaction (model complexities) and

no variable transformations are needed.

5.2 Methods

The terminology we are going to use is x% G M.p for the input of the i-th

observation/sample and y% G {—1, +1} for the label/output of the i-th
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observation (i = 1,..., n; n is the sample size). We recode the y% to

V* = (?/* +1)/2 G {0,1}. The LogitBoost algorithm works in the logistic
framework. This means we have a predictor function F : M.p —> R and

conditional probabilities p(x) = P[Y* = 1\X = x], which are linked by

p(x) =
V /V,;

xx
and F(x) = log

' Fy ' »

1 + exp(F(x)) \1 — p(x) J

Since the BER is used as performance measure, the misclassification

of a sample belonging to the smaller class (always +1) is punished harder

than the misclassification of a sample belonging to the bigger class (—1).
Therefore, it is a good advice to classify the doubtful observations as

+1. The best cut off is the proportion of class +1 in the data. For Ada

for example, the sample i is classified as +1, if p(xt) > 0.248.

5.2.1 LogitBoost

The LogitBoost algorithm uses Newton steps for fitting a logistic model

by maximum binomial likelihood. The algorithm works as follows:

1. Start with F^°\xz) = 0 and p(xt) = \, i = 1,...,

2. Repeat for m= 1,..., M:

(a) Compute the weights and working response

Wi = p{xt)(l-p(xt)),

_

y
* -PM

%i

n.

p{x,)(l -p(xt))'

(b) Fit the function f^m\x), using the tree-based learner, by a

weighted least-squares regression of z% to x% using weights wl.

(c) Update F^m\xt) = F^m~1\xt) +vf{m){xt) and p(xt) =

exp(F(m)(^))/(l+exp(F(m)(;r,))).

An implementation protection is necessary: enforce thresholds on

the weights and working responses:

w = max(w, 10~ 5),

z = mm max z, "max I j ^max 1
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Figure 5.1: CV BER as a function of the boosting iteration for Ada

for v = 0.3 with trees of depth one (left) and depth two (right). Both

curves show the usual behavior of first going down and then going up

again because of over-fitting. Trees of depth one are the better choice

because we reach a smaller CV BER.

Friedman, Hastie and Tibshirani (Friedman et al. 2000) suggest to use

values between 2 and 4 for zmax, but our experience is, that this is too

small, especially for unbalanced data. So we use zmax = 30 for Hiva

and zmax = 10 for the other datasets.

The number of iterations M is estimated by 10-fold cross-validation

(CV). This means that the data is split into ten parts. One part is set

aside and the algorithm is run for a large number of iterations on the

other nine parts. At each iteration, we predict on the excluded part

and calculate the BER. The procedure is repeated for each part and

the ten resulting BER curves (as functions of the boosting iteration)
are averaged to give the CV BER curve (see Figure 5.1). The stopping
iteration M is the iteration which minimizes the CV BER. Actually, we
did the cross-validation three times with different folds and averaged
the results.

The learner (fitting method) in step 2b) is a regression tree of pre¬

fixed depth. The depth controls the degree of interaction of the fitted

model. At each iteration the tree is grown without pruning to the pre¬

fixed depth and each split is allowed (even when only one observation
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remains in a node). We run the whole boosting algorithm five times.

In each run we use another tree depth: in the first run, the learner is

always a tree of depth one (stump); in the second run, the learner is

always a tree of depth two (tree with four terminal nodes) ; and so on

until depth five. The tree depth which gives the best CV BER curve is

finally chosen. When different tree depths lead to approximately to the

same CV BER, we take the smaller one to keep the model simple. Most

of the time a tree depth of one or two is enough (see also Figure 5.1).

The v in step 2c) is the so-called shrinkage factor. The natural

value is one, but smaller values are often a better choice. This makes

the algorithm slower, since more iterations are needed, but more stable,
since the steps taken are smaller. Additionally, this often leads to some

improvement of predictive power and only rarely to a deterioration.

We suggest to start with v = 1 and look at the CV BER curve as a

function of the boosting iteration (see Figure 5.2). If the curve is very

rough around its minimum, or if the minimum occurs already after a few

iterations, we reduce v by a factor of approximately three and rerun the

algorithm until the CV BER curve is smooth enough. We don't have

a strict mathematical criterion for stopping and we choose v by visual

inspection. Most of the time a value of 0.3 or 0.1 is reasonable.

Our BER guess for the test set (generalisation BER) is the CV BER

at the stopping iteration. On the one hand, this is a little bit too

pessimistic, since the estimation of generalisation BER by CV is biased

upward because only nine tenth of the data is used to fit the model. On

the other hand, it is slightly too optimistic, since the stopping iteration

is explicitly chosen to minimize the CV BER on the given training data.

This effect however is most of the time small, since the CV BER curve

is usually smooth (ensured by a small v). Our hope is that the two

effects cancel each other out.

5.2.2 Special Treatment of the Nova Dataset

Because the Nova dataset has a large number of variables and is sparse

(each variable is binary and most of the values are zero), some prepro¬

cessing seems to be adequate. We drop the variables with only one or

two entries equal to one (training and test set) and calculate the princi¬

pal components with the remaining 16881 variables (with centered and
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Figure 5.2: CV BER as a function of the boosting iteration for Hiva

with trees of depth two for v = 1, 0.3, 0.1, 0.03. For v =1 the minimum

occurs already after four iterations and the CV BER curve goes up again

quickly. Smaller v lead not only to smoother curves but also to smaller

minima.

scaled variables). It is important to use also the observations from the

test set for the calculation. We take the first 400 principal components

for LogitBoost.
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5.2.3 Variable Pre-selection

To reduce the high dimensional datasets one could do a variable pre¬

selection with simple univariate tests. It is not clear whether this im¬

proves or worsens the performance of LogitBoost. At least it reduces

the computation time a lot. We try both and apply LogitBoost with

and without variable pre-selection. For the pre-selection we use the

Wilcoxon test for continuous variables (the two groups are given by the

labels y) and the Fisher exact test for the binary variables (with the

2x2 contingency table constructed with the x-variable and the labels

y). Each variable with a p-value above 0.1 is dropped. This threshold

is chosen ad hoc and reduces the number of variables (principal com¬

ponents for Nova) for Ada from 48 to 38, for Gina from 970 to 482, for

Hiva from 1617 to 686, for Nova from 400 to 237 and for Sylva from 216

to 81.

5.3 Results

5.3.1 LogitBoost without and with Variable Pre¬

selection

Table 5.2 contains the results without and Table 5.3 with variable pre¬

selection. The outcomes are very similar. In the challenge, these two

submissions ranked fourth and second. For Ada and Sylva, a main ef¬

fects model performed best. For Hiva and Nova, first order interactions

were needed and for Gina, quite complicated trees of depth five were

fitted. This is no surprise since Gina was originally a ten class classifi¬

cation problem. The two classes for the challenge were constructed by

combining five original classes at a time. For Ada, Gina and Sylva, a

shrinkage factor v of 0.3 seems to be small enough, while for the very

unbalanced Hiva dataset a smaller value is needed.

Our BER guess method worked quite satisfactorily. On Ada, Hiva

and Sylva we were too optimistic, while on Gina and Nova we were too

pessimistic.
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Dataset Tree

depth

V No. of

iterations

CV BER =

BER guess

BER on

test set

Ada 1 0.3 1043 0.1565 0.1712

Gina 5 0.3 741 0.0415 0.0385

Hiva 2 0.03 353 0.2756 0.2888

Nova 2 0.1 294 0.0506 0.0491

Sylva 1 0.3 273 0.0058 0.0064

Average 0.1060 0.1108

Table 5.2: Results without variable pre-selection. CV BER is the

cross-validated BER on the training set at the stopping iteration and

also our BER guess.

Dataset Tree

depth

V No. of

iterations

CV BER =

BER guess

BER on

test set

Ada 1 0.3 979 0.1550 0.1708

Gina 5 0.3 1308 0.0388 0.0357

Hiva 2 0.03 249 0.2795 0.2946

Nova 2 0.1 365 0.0503 0.0469

Sylva 1 0.3 229 0.0062 0.0066

Average 0.1060 0.1109

Table 5.3: Results with variable pre-selection. CV BER is the cross-

validated BER on the training set at the stopping iteration and also our

BER guess.

5.3.2 A Mix: Predicted Probabilities Averaged

We made a third submission for which we averaged the predicted prob¬
abilities of LogitBoost with and without variable pre-selection (with
acronym "LB tree mix" ). Our BER guess for each data set is the min¬

imum of the two individual BER guesses. The results are contained in

Table 5.4. For Ada and Nova, the BER on the test set of the mix was

better than the BER of the two individual methods. For the other data

sets, the BER of the mix was always nearer to the BER of the better

individual method. All in all, this gave a small improvement. In the

challenge, this submission was fifth.
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Dataset BER

guess

BER on

test set

Guess

error

Test

score

Rank

Ada 0.1550 0.1705 0.0155 0.1859 7

Gina 0.0388 0.0361 0.0027 0.0386 5

Hiva 0.2756 0.2904 0.0148 0.3035 9

Nova 0.0503 0.0467 0.0036 0.0498 5

Sylva 0.0058 0.0064 0.0006 0.0070 15

Average 0.1051 0.1100 0.0074 0.1170 8.2

Table 5.4: Results for the mix (averaged probabilities of LogitBoost
with and without variable pre-selection).

5.3.3 Intercept Adaptation

For our forth and challenge winning submission we made a last small

adjustment by adapting the intercept on the logit scale (the acronym

"LB tree mix cut adapted" is kind of misleading). We added the same

constant to all F(xt) of the mixed submission so that the average of the

resulting probabilities is exactly the proportion of class +1 in the data.

This is a kind of bias correction and improved the BER of four data sets

and had no effect for Gina. The results are given in Table 5.5. For the

BER guess we took the same values as for the mixed submission (except
for Hiva where we hoped to be better and reduced the BER guess from

0.2756 to 0.27).

Dataset BER

guess

BER on

test set

Guess

error

Test

score

Rank

Ada 0.1550 0.1696 0.0146 0.1843 3

Gina 0.0388 0.0361 0.0027 0.0386 5

Hiva 0.2700 0.2871 0.0171 0.3029 8

Nova 0.0503 0.0458 0.0045 0.0499 8

Sylva 0.0058 0.0063 0.0005 0.0067 7

Average 0.1040 0.1090 0.0079 0.1165 6.2

Table 5.5: Results with "intercept adaptation".
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5.4 Conclusions

We have shown by winning the challenge that LogitBoost with trees can

perform very well on high-dimensional classification problems.

There are three tuning parameters, which have to be chosen: the

shrinkage factor v, the tree depth and the number of iterations M.

Our choice of the shrinkage factor v is somewhat arbitrary. We chose

it by visual inspection of the CV BER curve. A simple alternative would

be to take always i/ = 0.1asa good default. Smaller values are seldom

needed and v = 1 should not be used. With a small v we can ensure

that enough iterations are performed and that all the relevant variables

have been chosen during the iteration. The selection of the number of

iterations M then becomes easier, too.

The tree depth and the number of iterations M can simply be chosen

by CV.
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