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Abstract Soluble karyopherins of the importin-β (impβ) family use RanGTP to transport cargos

directionally through the nuclear pore complex (NPC). Whether impβ or RanGTP regulate the

permeability of the NPC itself has been unknown. In this study, we identify a stable pool of impβ at

the NPC. A subpopulation of this pool is rapidly turned-over by RanGTP, likely at Nup153. Impβ, but
not transportin-1 (TRN1), alters the pore’s permeability in a Ran-dependent manner, suggesting that

impβ is a functional component of the NPC. Upon reduction of Nup153 levels, inert cargos more

readily equilibrate across the NPC yet active transport is impaired. When purified impβ or TRN1 are

mixed with Nup153 in vitro, higher-order, multivalent complexes form. RanGTP dissolves the

impβ•Nup153 complexes but not those of TRN1•Nup153. We propose that impβ and Nup153

interact at the NPC’s nuclear face to form a Ran-regulated mesh that modulates NPC permeability.

DOI: 10.7554/eLife.04052.001

Introduction
The nuclear pore complex (NPC) is a very large cellular transport channel conserved among all

eukaryotes. The NPC controls the nuclear entry and exit of cargos ranging from single proteins to

large ribonucleoprotein complexes (Stewart, 2007; Peters, 2009). Cargos smaller than ∼40 kDa can

passively equilibrate across the nuclear envelope while larger cargos must bind special transport

receptors to move from the cytoplasm into the nucleus and accumulate there (Stewart, 2007; Peters,

2009). These transport receptors are able to bind cargos but can also interact with unstructured

phenylalanine–glycine repeat proteins (FG nucleoporins) within the pore. Directional transport of
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cargos is powered by the small GTPase Ran and a system of compartment-specific GTP hydrolysis

and GDP-to-GTP exchange, which establishes a sharp concentration gradient of RanGTP across

the nuclear envelope (Izaurralde et al., 1997; Kalab et al., 2002). Importin-β (impβ) and other

members of the karyopherin family of nuclear transport receptors form a complex with their

cognate cargos in the RanGTP-low cytoplasmic environment and release cargos upon binding to

RanGTP in the nucleus.

Contemporary transport models (‘selective phase’ hydrogel [Ribbeck and Gorlich, 2001; Frey

et al., 2006], ‘virtual gate’ [Rout et al., 2003], ‘reduction of dimensionality’ [Peters, 2005], and

‘polymer brush’ [Lim et al., 2007]) address the behavior of FG nucleoporins and transport receptors

to explain the NPC’s selectivity and ability to facilitate cargo diffusion. A tacit implication of these

models is that the diffusive movement of cargos through the NPC and the overall directionality of

active transport are fundamentally distinct and separate processes. In this perspective, cargo–

receptor complexes are expected to equilibrate freely across the nuclear envelope in the absence of

an energy bias such as the RanGTP gradient, and efficient cargo accumulation against a concentration

gradient requires only the Ran-driven unbinding of cargo molecules from their transport receptors.

However, several intersecting lines of evidence raise the possibility that RanGTP influences the

permeability of the NPC itself, rather than only acting on cargos once they have completely entered

the nuclear compartment. First, early studies have suggested that Ran is needed for cargos to move

through the NPC (Moore and Blobel, 1993; Gorlich et al., 1994; Moore and Blobel, 1994). Second,

it was shown that Ran plays an important role in dissociating impβ from the nuclear face of the NPC, in

addition to displacing impβ from cargos (Gorlich et al., 1996). Third, extended tracking of cargos

within single pores revealed a substantial RanGTP-dependent asymmetry in the cargo’s exit step.

Without RanGTP, cargos entered the pore but had an ∼100-fold higher probability of exiting the pore

at the cytoplasmic face than the nuclear face, suggesting that RanGTP influences barriers felt by

cargo-impβ complexes within the pore (Lowe et al., 2010). The Ran-sensitive exit asymmetry of large

cargo-receptor complexes suggests that a currently unexplained Ran-dependent process takes place

inside the channel near the nuclear face of the pore at about ∼70 nm along the transport axis (Lowe

et al., 2010) (Figure 1A). Fourth, the overall transport success of large cargos appears to be more

sensitive to RanGTP levels than other cargos (Lyman et al., 2002; Snow et al., 2013) and thus

RanGTP somehow influences the interplay of cargo size and active transport. This latter connection is

not necessarily mediated by cargo multivalency (Snow et al., 2013). Together, these observations hint

eLife digests In our cells, genetic material is contained within the nucleus, which is separated

from the rest of the cell by a double-layered membrane called the nuclear envelope. Within this

membrane there are pores that allow proteins and other molecules to enter and exit the nucleus.

Small molecules can pass through these pores unaided, which is known as ‘passive’ transport.

However, larger cargos need help from transport receptor proteins in a process called ‘active’

transport. Large cargos bind to transport receptors, such as importin-β, in the cytoplasm and are

then guided through the pore. Once the cargo and importin-β are inside the nucleus, a protein called

RanGTP binds to importin-β to release the cargo.

It is thought that importin-β and RanGTP are only important for the active transport of cargo.

Here, Lowe et al. studied how importin-β interacts with the pore. The experiments show that in the

absence of RanGTP, importin-β accumulates inside the pore and binds to a protein called Nup153,

which is part of the complex of proteins that makes up the pore. However, when RanGTP is present,

some of the importin-β is displaced from Nup153 and leaves the pore, which makes it easier for cargo

to pass through.

Further experiments show that when Nup153 and importin-β are mixed, they associate into a gel-

like material that can be ‘melted’ by RanGTP. Lowe et al. propose a model for how RanGTP may

control the flow of cargo through the nuclear pore by affecting the binding of importin-β to Nup153.

Lowe et al.’s findings suggest that passive and active transport of cargo across the nuclear pore are

fundamentally connected and suggest that RanGTP provides the cell with an additional layer of

control over nucleocytoplasmic transport.

DOI: 10.7554/eLife.04052.002
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at additional Ran-driven processes within the pore that are not addressed by current models of active

nucleocytoplasmic transport.

The spatial and temporal arrangement of factor(s) that allows the NPC to almost perfectly prevent

large cargo translocation in the absence of RanGTP (error rate <1% [Lowe et al., 2010]) but allows

efficient directional transport in its presence remains unknown. In this study, we investigate the

interaction of impβ and Ran within single NPCs using quantitative biophysical measurements, and we

relate those interactions to cargo translocation. We identify Nup153 as an important impβ binding

partner at the nuclear face of the pore. The impβ•Nup153 interaction is Ran-sensitive and contributes

Figure 1. Effect of Ran on impβ binding affinity and turnover at the NPC. (A) Schematic of the NPC showing the location of the Ran-dependent exit step

for cargo-receptor complexes. (B) Representative images of cargo-receptor complexes and impβ-YFP stalled within the pore and forming bright nuclear

rims in the absence of Ran. Fluorescence intensity profiles are plotted for the yellow lines showing the nuclear rim intensity drop when Ran is added. Scale

bar (white): 10 μm. (C) Nuclear rim fluorescence intensities of nuclei in (B) normalized to −Ran condition. Error bars represent the standard deviation about

the mean. Asterisks (*) indicate a significant p < 10–20 using the Mann–Whitney U test (N ≥ 97 for all conditions). (D) Representative FRAP recovery curves

of impβ-YFP at the nuclear envelope showing rapid initial recovery of impβ in the presence of Ran with evidence of a second, slower pool of impβ.
Recovery in the absence of Ran (blue trace) is considerably slower. (E) Photo-conversion based characterization of the slowly dissociating impβ pool. Ran

reduces the initial fluorescence signal but does not clear all impβ’s from the NPC as shown by the residual fluorescence at the nuclear rim lasting hundreds

of seconds. Shaded regions indicate the standard error of the mean (N = 20 for both conditions).

DOI: 10.7554/eLife.04052.003

The following figure supplements are available for figure 1:

Figure supplement 1. Effect of impβ concentration on active transport.

DOI: 10.7554/eLife.04052.004

Figure supplement 2. Schematic of the FRAP microscope.

DOI: 10.7554/eLife.04052.005

Figure supplement 3. Photoconversion experiment details.

DOI: 10.7554/eLife.04052.006
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to the NPC permeability barrier in vitro. Ran’s effect on impβ turnover, stoichiometry, and spatial

distribution at the nuclear pore is characterized, and the impβ•Nup153 binding behavior is examined.

We propose a mechanism for how Ran-dependent modulation of impβ at Nup153 may contribute to

the NPC’s selective permeability.

Results

Cargo-impβ complexes stall inside the NPC in the absence of Ran
We employed the commonly used in vitro nuclear transport assay (digitonin permeabilized HeLa cells

supplemented with exogenous recombinant transport factors) (Adam et al., 1990; Lowe et al., 2010)

to characterize impβ-mediated nuclear transport. This assay yields nuclei with functional NPCs while

allowing us to control the composition and concentrations of transport factors and cargos. A model

cargo consisting of a fluorescently labeled tetravalent streptavidin (SA) bound to biotinylated impβ
binding (IBB) domains was used to examine cargo binding at the NPC. The streptavidin-IBB tetramer

(SA-IBB4) cargo is large (∼218 kDa) and contains multiple import signals, as do many natural large

cargos. In the presence of physiological levels of impβ (1 μM, Figure 1—figure supplement 1), SA-

IBB4 strongly stains the nuclear envelope but does not efficiently enter the nuclear interior (Figure 1B,

C). This indicates that cargo molecules accumulate within the NPC, presumably due to their inability to

complete their translocation into the nucleus in the absence of Ran. However, when RanGDP (5 μM) +
GTP (2 mM) (henceforth referred to as RanGTP) is added, the fluorescence intensity of the nuclear rim

drops while that of the nuclear interior increases, showing that the cargos then efficiently exit the NPC

and accumulate in the nucleus.

To further characterize this RanGTP dependence, we fluorescently labeled impβ with a YFP tag,

yielding impβ-YFP, and examined how this transport receptor binds the NPC in the presence or

absence of RanGTP. As expected for a FG-binding karyopherin, impβ-YFP formed a bright nuclear rim

when added without RanGTP. However, as with the SA-IBB4 cargos, the impβ-YFP signal at the rim

was substantially reduced but not completely eliminated by RanGTP (Figure 1B,C). Ran thus

modulates the way in which the NPC interacts with both cargo-bound impβ and free impβ. Moreover,

since RanGTP reduces the impβ-YFP rim fluorescence, at least a subset of non-cargo engaged but

NPC-bound transport receptors must be RanGTP-sensitive.

Evidence for two functionally distinct pools of impβ at the NPC
We used fluorescence recovery after photobleaching (FRAP) to characterize the turnover kinetics of

impβ at the NPC and to examine the binding affinity of impβ for the pore. For the FRAP experiments,

impβ-YFP was allowed to form a fluorescent rim at the nuclear envelope and a section of that rim was

then photobleached (the custom hardware is described in Figure 1—figure supplement 2). We

subsequently monitored the recovery of rim fluorescence in the photobleached region. In the absence

of RanGTP, the initial recovery of the impβ signal after bleaching took several seconds (time to 20%

recovery = 1.6 ± 0.1 s, N = 20, Figure 1D, blue). However, with RanGTP, the initial recovery was

16-fold more rapid (time to 20% recovery = 0.1 ± 0.1 s, N = 20, Figure 1D, red). Therefore, as already

indicated by the simple rim fluorescence experiments, RanGTP is able to accelerate the cargo-

independent turnover of impβ bound to the NPC.

Inspection of the recovery traces hinted at a long-lived population of NPC-bound impβ with little or

no turnover. Consistent with this, previous single-molecule titration experiments have suggested the

presence of two types of impβ binding sites within the NPC (Tokunaga et al., 2008). To directly

observe the slow turnover impβ subpopulation, we used a two-color photo-conversion approach

(Figure 1—figure supplement 3). The photo-conversion hardware and geometry was optimized for

quantification of subpopulations with extremely slow or no turnover, at the expense of introducing

a multi-second dead time (Figure 1E, arrow) immediately following photo-conversion.

In these photo-conversion experiments, impβ was tagged with the photo-convertible fluorescent

protein mEos2 (impβ-mEos2), initially yielding a green signal at the nuclear envelope. A small portion

of the rim was then photo-converted to a red state. As bound (red) molecules are replaced by fresh

non-converted (green) impβ-mEos2 from solution, the red rim signal gradually fades and the green rim

signal gradually recovers, revealing the dissociation rate of bound impβ transport receptors. This

red-to-green replacement process can be quantified for long times with good signal-to-noise. In the

absence of RanGTP, the photo-converted (red) impβ-mEos2 signal decayed to half its initial value
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within 3–4 min (Figure 1E), showing that some impβ molecules remain at the pore for long times. In

the presence of RanGTP, the initial red signal was lower than without RanGTP (∼50 AU vs ∼75 AU),

consistent with the previously detected RanGTP-dependent rapid turnover of impβ within the pore.

Strikingly, however, some impβ molecules remained at the pore for several minutes, even in the

presence of RanGTP (Figure 1E).

Summarizing, the FRAP experiments allowed us to quantify fast reactions within the pore and the

photo-conversion experiments permitted quantification of slow reactions within the pore. Together,

these experiments suggest that there are at least two pools of impβ within the NPC. One pool is stably

bound to the NPC for many minutes, with and without RanGTP. The other pool is stably bound to the

NPC only in the absence of RanGTP.

Super-resolution imaging of impβ’s spatial distribution at the NPC
Having detected two kinetically distinct impβ pools within the pore, we sought to characterize their

spatial distribution and identify the nucleoporins they were binding. We were especially interested in

the RanGTP-sensitive impβ pool, since RanGTP drives active transport and RanGTP-induced

alterations of pore organization could therefore be relevant to active transport. We directly imaged

and localized individual Cy5 or Alexa647 dye-labeled impβ molecules within the pore using dSTORM

super-resolution localization microscopy (Heilemann et al., 2008; van de Linde et al., 2011)

(Figure 2A–D; mean spatial precision, σx,y of 12 nm, Figure 2—figure supplement 1). By directly

labeling impβ with a fluorescent reporter, we removed additional localization uncertainty error

(commonly referred to as linkage error) associated with the antibody labeling methods normally used

for super-resolution or electron microscopy.

The dSTORM images taken at the equatorial plane of the nucleus show discrete elongated

structures oriented normal to the nuclear envelope (Figure 2B,E). Viewed from the bottom of the

nucleus, we observe radially symmetric, punctate NPC structures (Figure 2D). We did not see

a recently reported (Ma et al., 2012) ‘ring’-like distribution of impβ, although this could be

a consequence of our spatial precision.

To visualize the axial distribution of impβ, we developed approaches for comparing hundreds to

thousands of individual NPCs. Individual NPCs were identified by calculating an ‘envelope histogram’

of the number of localizations in a window normal to the nuclear envelope path (Figure 2E).

Well-separated peaks within this histogram, containing a threshold number of localizations, indicate

the position of putative NPCs and were selected for further study. The impβ localizations belonging to

these NPCs were then extracted, rotated according to the interpolated envelope normal vector

(Figure 2F) and aligned along the transport axis. Those structures requiring very large alignment

shifts, or having poor correlation with the remainder of the data set, were removed.

Having extracted, rotated, and aligned the NPCs, we averaged the impβ localizations (Figure 3A).

Viewed along the transport axis, there are two pools of impβ localizations separated by approximately

90 nm and occupying a footprint and spatial arrangement consistent with structural studies (Frenkiel-

Krispin et al., 2010). Antibody labeling of Nup358/RanBP2 (located on the NPC cytoplasmic

filaments) with a second fluorescent dye was used to confirm that the outermost pool of the impβ
signal spatially overlapped with the cytoplasmic face of the NPC (Figure 3—figure supplement 2).

The central channel measured ∼50 nm at the narrowest point, consistent with single quantum dot

transport studies (Lowe et al., 2010) and other super-resolution measurements (Loschberger et al.,

2012). The addition of RanGTP, which produces a transport-competent pore with active impβ
turnover, markedly decreased the total number of impβ localizations (Figure 3A, ‘RanGTP’ and

Figure 3—figure supplements 1, 3) but also changed the shape of the probability density function

(PDF) of impβ molecules within the pore. In the presence of RanGTP, the PDF is bimodal and shows

a depletion of impβ from the nucleoplasmic face of the NPC (Figure 3C, compare red trace to black

trace). RanGTP was therefore not simply displacing impβ from the pore but was displacing impβ
preferentially from specific sites within the pore.

Based on the dSTORM data and particle-tracking studies that suggest that the end of the channel

is the functional site of Ran action (Lowe et al., 2010), we hypothesized that Nup153 might be a site

of RanGTP-sensitive impβ binding. Nup153 is an important terminal binding site for the impβ
transport pathway (Shah et al., 1998; Walther et al., 2001), can bind as many as seven impβ
molecules (Milles and Lemke, 2014), and interacts with Ran (Saitoh et al., 1996; Ball and Ullman,

2005; Schrader et al., 2008). Since Nup153 is essential for cell viability, we used partial RNAi

Lowe et al. eLife 2015;4:e04052. DOI: 10.7554/eLife.04052 5 of 24

Research article Biophysics and structural biology | Cell biology

http://dx.doi.org/10.7554/eLife.04052


knockdown to study how alterations of Nup153 levels influence the organization of impβ within the

pore. siRNA treatment led to ∼70% protein reduction of Nup153 (Δ15370%, Figure 3—figure

supplement 4). Indeed, when Nup153 was reduced by siRNA knockdown, the dSTORM signal

changed. The impβ map shows fewer impβ localizations overall and marked reduction of signal from

the entire nuclear side of the NPC, creating an asymmetric, teardrop-like pattern (Figure 3A, ‘impβ
Δ15370%’). Therefore, both addition of RanGTP and reduction of Nup153 alter the arrangement and

loading of impβ within the pore, especially towards the NPC’s nuclear face.

Although population averaging allows major differences to be detected, such averaging can

obscure more subtle changes. To compare many NPCs without population averaging, we represented

each NPC as a single vertical line whose color corresponds to impβ concentration, ranging from blue

to red. We placed each of those lines side-by-side, giving a ‘waterfall’ plot (Figure 3E). The pores with

most of the impβ at the nuclear face are at the left of the plots, while the pores with most of the impβ
at the cytoplasmic face are to the right. As can be seen, there is considerable pore-to-pore

heterogeneity in the axial distribution of impβ in all studied conditions. Some NPCs had a strong impβ
signal only at the cytoplasmic face, other NPCs had similar levels of impβ at both faces, and finally, some

Figure 2. Super-resolution imaging of Alexa647-labeled impβ in digitonin-permeabilized HeLa cells. (A) Simulated

widefield impβ localization at the equatorial plane of the nucleus and (B) corresponding dSTORM image. Mean

localization precision is 12 nm. (C and D) Corresponding widefield and dSTORM images taken at the basal surface of

the nucleus showing characteristic punctate NPC structures. (E) Zoom of the dSTORM image in (B), showing discrete

NPC structures (examples, blue arrows). Putative NPC structures (green) markers are automatically identified using

the linearized envelope localization histogram (shown in white, Supplementary methods). (F) Method for putative

NPC structure isolation and alignment. Peaks in the envelope histogram (black line) are identified as potential

locations for putative NPC structures (black circles). Localizations falling into a window (width, w, length, l) centred at

these locations (p) are cropped out and rotated to a common frame, c, by the angle θ, maintaining the cytoplasm-

nucleus vector, n.

DOI: 10.7554/eLife.04052.007

The following figure supplement is available for figure 2:

Figure supplement 1. Localization precision.

DOI: 10.7554/eLife.04052.008
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NPCs had most of their impβ at their nuclear face. The most notable difference was that when Nup153

was reduced, there were very few pores with a dominant impβ signal at the nuclear face.

Summarizing, in the absence of RanGTP, the pore is loaded with impβ. The addition of RanGTP

increases impβ turnover, depleting transport receptors from the pore. Partial knockdown of Nup153

reduces the overall impβ counts and depletes transport receptors from the nuclear side of the pore,

resulting in an asymmetric, cytoplasm-biased impβ distribution. Together, these results raise the

Figure 3. Localization microscopy of impβ spatial organisation and its Ran-dependence. (A) 2D histograms of impβ density in the NPC under different

conditions. To generate these panels, we sum all localizations for a given condition and divide by the number of NPCs per condition. Figure 3—figure

supplement 1 shows examples of the raw localization images for each of the conditions. Anti-Nup358 antibody was localized using a second dye pair, as

shown in Figure 3—figure supplement 2. Histograms of the number of localizations per NPC, for each condition are shown in Figure 3—figure

supplement 3. (B) Schematic of the NPC showing the tethering locations of Nup358 and Nup153. (C) Probability density functions (PDF) of impβ
localizations, showing the relative redistribution of impβ localizations in the presence of RanGTP and with Nup153 knockdowns. (D) ’Waterfall’ plots

showing PDF projections of NPC structures in each of the conditions tested. Each column of the plot represents a single NPC structure and is arranged

from left to right according to the ratio of cytoplasmic to nuclear localizations.

DOI: 10.7554/eLife.04052.009

The following figure supplements are available for figure 3:

Figure supplement 1. Examples of raw localization data for each of the conditions.

DOI: 10.7554/eLife.04052.010

Figure supplement 2. Two color STORM imaging.

DOI: 10.7554/eLife.04052.011

Figure supplement 3. Histogram of the number of raw localizations per NPC structure.

DOI: 10.7554/eLife.04052.012

Figure supplement 4. Quantification of siRNA knockdown of Nup153.

DOI: 10.7554/eLife.04052.013
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possibility that Ran can modulate the interactions between impβ and the NPC. We then turned to

a quantitative assessment of impβ levels within the pore, to determine whether Nup153 is a dominant

site of RanGTP-sensitive impβ binding.

Single-molecule photobleach step-counting of impβ at the NPC
Although dSTORM microscopy is able to localize populations of molecules and detect relative

changes in their spatial arrangements, it does not allow absolute numbers of molecules to be

estimated. We thus used a single-molecule photobleach step-counting assay (Leake et al., 2006) to

estimate the numbers of impβ molecules displaced by nuclear RanGTP at the NPC. Digitonin-

permeabilized nuclei from wild type and Δ15370% cells were incubated with impβ-mCherry with or

without RanGTP and then fixed, yielding nuclear pores that can be imaged at the basal surface of the

nucleus as bright spots (Figure 4A). Under the appropriate imaging conditions, discrete

single-molecule photobleaching steps can be resolved in the fluorescence bleaching traces of

impβ-mCherry at the pores (Figure 4B). The photobleaching fluorescence step-size, x, for a specific

NPC, can be calculated by taking the first peak of the power spectrum of the pairwise difference

distribution of the bleaching trace (Figure 4C). From the fluorescence step-size and initial intensity, ΔI,
of the pore, the relative amount of impβ molecules at a single NPC can be measured. Because of

potential systematic errors in determining absolute numbers of impβ molecules with this technique (e.

g., homo-FRET, incomplete mCherry maturation), relative analysis of impβ levels was performed by

defining the impβ signal of the wild type–RanGTP condition as 100% (Figure 4D). Wild type NPCs in

the absence of RanGTP contained the greatest number of impβ molecules (70 bleach steps counted),

whereas RanGTP caused a 27% decrease in impβ levels (Figure 4A, Figure 4—figure supplement 1,

Table 1). In Δ15370% nuclei, we found a 34% drop in the amount of impβ per pore without RanGTP

and a 33% drop with RanGTP. These results suggest that most of the impβ molecules that are

displaced from the NPC by nuclear RanGTP are those that are bound to Nup153.

Impβ interacts with Nup153 to modulate the NPC permeability barrier
and is Ran-sensitive
The detection of a stable RanGTP-sensitive pool of impβ in the pore, the tentative identification of

a binding partner, and the quantification of the energy-dependent changes within the pore motivated

functional studies seeking to detect possible impβ/RanGTP/Nup153-mediated alterations of passive

facilitated diffusion and active transport.

We first investigated Nup153’s relevance to impβ-mediated transport using the SA-IBB4 cargo. The

cargo was added to digitonin-permeabilized nuclei that either contained impβ only (to monitor

passive equilibration of the cargo across the nuclear envelope) or impβ, Ran, NTF2 (the RanGDP

importer), and GTP (to monitor active transport). Impβ was added to the nuclei before the cargo,

allowing us to examine how cargo molecules translocate through pores that already contain transport

receptors. As shown earlier (Figure 1), little cargo was able to enter the nucleus under conditions of

passive equilibration (i.e., in the absence of RanGTP) in wild-type cells. In contrast, the cargo

translocated the NPC faster in Δ15370% nuclei, indicating that the transport channel had become

leakier to large cargos and translocation became less dependent on the presence of RanGTP

(Figure 5A,B). Interestingly, the opposite was observed for active transport in the presence of

RanGTP, where net nuclear cargo accumulation was reduced for Δ15370% nuclei (Figure 5A,B). The

nucleoporin Nup153 therefore affects both the ease of passive impβ-mediated movement of large

cargos through the pore and the efficiency of active transport into the nucleus.

To further characterize the permeability barrier within the NPC, we determined whether impβ and

RanGTP affect the free diffusion of cargos through the pore under both normal and reduced levels of

Nup153. We employed a series of inert probes consisting of single GFPs, GFP dimers, and GFP

trimers (GFP1, GFP2, and GFP3) with molecular masses of 27, 54, and 83 kDa respectively. Because

these probes do not contain an IBB and cannot bind impβ, they exclusively undergo passive transport.

We found that 1 μM impβ significantly decreased the permeability of the NPC for the GFP1 and

GFP2 probes (Figure 5C,D). By contrast, when RanGTP was also added, the permeability was greatly

increased. The GFP3 probe translocated across the NPC at a relatively slow rate with or without impβ
and RanGTP, likely because GFP3’s size is considerably larger than the passive diffusion size cutoff of

the pore (Figure 5C). We therefore decided to focus on the GFP2 probe and we used it to further

explore the effects of impβ and Nup153 on the permeability of the NPC (Figure 5D,E). First, we
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tested the possibility that general molecular crowding, for instance due to widespread transport

receptor-FG nucleoporin interactions, was responsible for the observed permeability modulation by

impβ. We therefore repeated the previous experiments with the related transport receptor

transportin-1 (TRN1). TRN1 is the transport receptor for M9 signal peptide-containing cargos such

as hnRNPs and belongs to the same class of karyopherins as impβ (Pollard et al., 1996). At 1 and even

2 μM TRN1, there was no strong effect on NPC permeability (Figure 5E), suggesting that general

molecular crowding is not responsible for the changes to NPC permeability. Importantly, for Δ15370%
nuclei, addition of impβ no longer restricted the NPC (Figure 5D). Together, these results suggest

that specifically the impβ•Nup153 interaction causes the nuclear pore to become less permeable.

Figure 4. Photobleach step-counting of impβ at the NPC. (A) A 200-frame average image of impβ-mCherry at the basal envelope of the nucleus. Individual

NPCs can be identified (example highlighted in red). (B) Fluorescence intensity vs time trace for the NPC highlighted in (A) under continuous illumination.

The raw intensity signal is shown in gray and the Cheung-Kennedy filtered signal is shown in red. Inset: individual photobleaching steps (x) can be clearly

identified. (C) Pairwise difference distribution function calculated from the intensity trace shown in (B). Characteristic step sizes can be identified from the

peaks in the distribution. Inset: the power spectrum of the pairwise difference distribution, showing the characteristic intensity signal for a single mCherry,

x. We can then calculate the number of molecules by dividing the total intensity change in the trace in (B) by the fluorescence intensity of a single molecule

calculated from (C). (D) Impβ counts as a function of RanGTP and Nup153. Addition of RanGTP and reduction of Nup153 decrease the impβ counts by

approximately equal amounts. Normalized impβ abundance, number of pores analyzed, mean, and standard deviations are denoted. Error bars represent

standard deviations about the means.

DOI: 10.7554/eLife.04052.014

The following figure supplement is available for figure 4:

Figure supplement 1. Distribution of count values.

DOI: 10.7554/eLife.04052.015
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Furthermore, because the inert probes undergo purely passive translocation across the NPC, the

reduced permeability must be due to a specific steric ‘barrier’ within the pore and not due to a block

of transport receptor-specific binding sites. This steric barrier appears to involve impβ•Nup153

interactions that are very stable and long-lived in the absence of RanGTP. Indeed RanGTP causes the

pore to become more permeable even when no exogenous impβ is first added. This is likely due to

endogenous impβ and other transport receptors residing in the pore that were not washed away

during digitonin permeabilization (Figure 5—figure supplement 1).

Along with the observation that impβ can persist in the pore for minutes or tens of minutes, these

functional studies suggest that impβ could be considered a bona fide functional component of the

pore and not only a soluble transport receptor. Moreover, the impβ•Nup153 interaction may be

responsible for the permeability differences detected in our inert probe passive diffusion assays and

may contribute to the permeability barrier function of the NPC.

Impβ and Nup153 form higher-order complexes in vitro that are
dissolved by RanGTP
To explore the notion that impβ and Nup153 act together to form a Ran-sensitive permeability barrier,

we investigated their interaction in vitro. Upon co-incubation of recombinant impβ and Nup153FG

(the FG domain of Nup153 comprising amino acids 874–1475 [Lim et al., 2006]), large, micron-sized

structures formed on a timescale of minutes (Figure 6A). We turned to fluorescence fluctuation

spectroscopy (Chen et al., 2000; Tetin, 2013) to examine the structure’s assembly and disassembly

behaviors and requirements. The fluorescence intensity signal of diffusing impβ-YFP molecules

(50 nM) showed a fluctuation pattern characteristic of freely diffusing proteins (Figure 6B). However,

when Nup153FG (0.5 μM) was added, large intensity bursts appeared within tens of seconds. The

appearance of these spikes in intensity (along with their corresponding long tails in the photon

counting histograms) indicated the formation of large impβ•Nup153 complexes (Figure 6B,C, red

traces). These higher-order complexes were orders of magnitude brighter than the freely diffusing

impβ-YFP, suggesting that they are comprised of tens or even hundreds of impβ molecules. The

formation of large complexes can be explained by the many FG motifs found in Nup153’s FG domain

as well as the multiple sites on impβ’s surface that may bind FG repeats. Notably, the addition of

RanQ69L•GTP (2 μM), which does not hydrolyze GTP (Bischoff et al., 1994) and is therefore stably in

the GTP-bound form, entirely inhibited formation of the complexes. RanQ69L•GTP even dissolved

existing large impβ•Nup153FG complexes (Figure 6—figure supplement 1A). This Ran action

occurred specifically through impβ (and not Nup153FG) binding since Nup153FG in complex with an

impβ truncation lacking the Ran-binding domain, impβ(ΔN70), became insensitive to RanQ69L•GTP

(Figure 6—figure supplement 1B).

Performing similar experiments with TRN1-GFP (100 nM), we again detected spikes in intensity

upon addition of Nup153FG, indicating the formation of large complexes (Figure 6D). This is not

surprising given that TRN1 is structurally similar to impβ and likely also contains multiple FG-binding

sites (Chook and Blobel, 1999). However, although TRN1 and RanGTP are known binding partners

(Chook and Blobel, 1999), RanQ69L•GTP had no observable effect on the TRN1•Nup153FG

complexes, suggesting a functional difference between TRN1 and impβ. Indeed, it has been

previously reported that TRN1-mediated nuclear import is less dependent upon the RanGTP gradient

Table 1. Mann–Whitney confidence intervals of impβ changes seen in ±RanGTP and ±Δ15370%
conditions

WT − RanGTP WT + RanGTP Δ15370% − RanGTP Δ15370% + RanGTP

WT − RanGTP – [17.8, 18.9] [22.5, 23.7] [21.1, 22.2]

WT + RanGTP [−17.8, −18.9] – [4.5, 5.4] [2.9, 3.8]

Δ15370% − RanGTP [−22.5, −23.7] [−4.5, −5.4] – [−0.9, −1.8]

Δ15370% + RanGTP [−21.1, −22.2] [−2.9, −3.8] [0.9, 1.8] –

For example, the addition of RanGTP compared to baseline results in a drop of about 18 impβ counts (column 1, row

2); The Mann–Whitney confidence interval is [−17.8, −18.9].
DOI: 10.7554/eLife.04052.016
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Figure 5. Effect of Nup153 reduction on active transport and passive equilibration. (A) Confocal fluorescence microscopy images showing the change in

distribution of a fluorescently labeled 220 kDa SA-IBB4 cargo as a function of Nup153 knockdown. (B) Reduction of Nup153 enables the cargo to passively

equilibrate (pale blue region) more rapidly through NPCs loaded with impβ. However, reduction of Nup153 impairs the active transport of SA-IBB4

(pale yellow region). (C) Passive equilibration of the inert GFP1 and GFP3 probes as a function of impβ (1 μM) and RanGTP (5 μM). For GFP1, note the rate

decrease by impβ and the rate increase with RanGTP. For GFP3, passive equilibration is slow in all conditions. (D) Passive equilibration of GFP2 as

a function of impβ, RanGTP, and Nup153. For wild-type cells, impβ and RanGTP have similar effects on GFP2 as on GFP1. For Δ15370% cells, impβ no longer

slows passive diffusion of GFP2. RanGTP, however, still facilitates equilibration. (E) TRN1 does not significantly slow GFP2 diffusion through the NPC at 1 or

even 2 μM. In all plots, shaded regions indicate the standard error of the mean (N ≥ 3 for all conditions).

DOI: 10.7554/eLife.04052.017

The following figure supplement is available for figure 5:

Figure supplement 1. RanGTP and a Ran ‘wash’ increase the passive equilibration of GFP2 into wild type nuclei even when no impβ is present.

DOI: 10.7554/eLife.04052.018
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than impβ-mediated import (Ribbeck et al., 1999). Moreover, the passive diffusion assays (Figure 5E)

did not detect alterations of pore permeability in the presence of TRN1, suggesting that TRN1 either

does not form a meshwork inside the pore or that a hypothetical TRN1-mediated barrier has

significantly different biophysical characteristics (e.g., effective pore size) compared to the one

formed by impβ. In support of both those possibilities, TRN1 has been shown to bind different sites

within the Nup153 FG domain relative to impβ (Shah and Forbes, 1998). Therefore, despite the fact

that impβ and TRN1 are both transport receptors and that both can bind Nup153 and form higher-

order complexes with it, previous reports (Shah and Forbes, 1998; Ribbeck et al., 1999) and the data

shown in Figures 5E, 6D point to TRN1 being functionally and biophysically distinct from impβ.

Discussion
The importance of members of the impβ family of transport receptors and Ran in active nuclear

transport has been firmly established for many years. The basic import reaction involves the

RanGTP-driven displacement of impβ family members from their cargo in the correct compartment.

Figure 6. In vitro formation of large RanGTP-reversible impβ•Nup153FG complexes. (A) Confocal images of impβ•Nup153FG complexes. Brightfield and

YFP fluorescence images of Nup153FG (left), impβ-YFP (center), and Nup153FG + impβ-YFP (right). Complexes form only when both proteins are

co-incubated. (B) Fluorescence fluctuation intensity traces of impβ-YFP in the presence of Nup153FG and RanQ69L•GTP. Large intensity bursts appear

with the addition of Nup153FG but are inhibited in the presence of RanQ69L•GTP. (C) Photon counting histograms for the experiments shown in (B). Impβ
and Nup153FG form large, bright complexes (note the extended tail with Nup153FG); however, these complexes disappear when RanQ69L•GTP is added

(see inset schematic). (D) Photon counting histograms of fluorescence fluctuations for TRN1-GFP in the presence of Nup153FG and RanQ69L•GTP. Large

complexes also form between TRN1 and Nup153FG but are not affected by RanQ69L•GTP (see inset schematic).

DOI: 10.7554/eLife.04052.019

The following figure supplement is available for figure 6:

Figure supplement 1. Additional fluctuation traces.

DOI: 10.7554/eLife.04052.020
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However, there are multiple reports that RanGTP and impβmay have critical additional roles in passive

equilibration and active transport. Specifically, it was proposed that Ran is necessary for impβ-bearing
cargos to move past a barrier located at 70 nm along the transport axis (Gorlich et al., 1996; Lowe

et al., 2010). Based on the experiments reported here, we propose the existence of a Ran-sensitive

network of interactions between impβ and Nup153 centered at the nuclear face and including the

central channel of the NPC, which contributes to the permeability of the pore (Figure 7). Whilst other

nuclear basket localized Nups, such as Nup50, have been shown to promote cargo dissociation from

the pore in active transport (Sun et al., 2008), Nup153 appears to also have a role in controlling bulk

permeability of the NPC. The impβ•Nup153 interaction significantly restricts the ability of inert cargos

to diffuse across the NPC, indicating the presence of a non-specific physical barrier that cannot be

explained by simple molecular crowding. This barrier may take the form of a highly cross-linked

‘meshwork’ of long, flexible Nup153 FG domains fastened to each other by impβ molecules, which we

characterized in vitro at physiological pH and salt concentrations. The multiply cross-linked nature of

these impβ•Nup153 structures may be reminiscent of the FG gel materials reported by others (Frey

et al., 2006; Schmidt and Gorlich, 2015). However, these FG gels are held together by homotypic

interactions between the FG domains; here, materials form via specific coordination between impβ
and the FG domains. Moreover, the resulting impβ•Nup153 material is dynamic, in the sense that its

formation and final stability is sensitive to RanGTP, which can even dissolve existing large

impβ•Nup153 complexes (Figure 6—figure supplement 1). The in vitro fluorescence fluctuation

data obtained through spectroscopic studies of purified proteins correlate well with our localization

microscopy studies of impβ’s spatial distribution within the pore, where we see a sub-population of

impβ in the channel that is significantly reorganized by RanGTP. Furthermore, the photobleach

counting experiments with wild type and reduced Nup153 NPCs suggest that this Ran-sensitive pool

is predominantly located at Nup153, although the counting experiments do not rule out other

RanGTP-sensitive impβ binding sites within the pore. The sub-second turnover kinetics of the RanGTP-

sensitive impβ pool (Figure 1) are similar to kinetic values for impβ turnover inside living cells (Rabut

et al., 2004), suggesting that our reconstituted ‘in vitro’ permeabilized cell transport assay

recapitulates key features of transport in intact living cells.

Two quantitative imaging approaches, a two-color photo-conversion approach and single-protein

counting, were used to investigate an extremely stable subpopulation of impβ which cannot be easily

detected by other methods due to the reaction timescale, photo-bleaching effects, and limitations of

instrument stability. We estimate that on average, 73 ± 16% of impβ molecules in each pore are

insensitive to nuclear RanGTP and bound stably to the NPC for many minutes. These results, coupled

with our observation that impβ contributes to the NPC’s permeability, suggest that impβ is

a functional component of the pore and does not just facilitate cargo translocation. Indeed, other

theoretical and experimental studies have suggested that transport receptor binding at the NPC plays

Figure 7. Model of Ran-sensitive impβ•Nup153 interactions at the nuclear face of the NPC. In this model,

multivalent interaction of impβ with Nup153 yields a cross-linked mesh that restricts the movement of inert

molecules and cargo-receptor complexes. This impβ•Nup153 barrier is modulated by Ran.

DOI: 10.7554/eLife.04052.021
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a critical role in the non-specific occlusion of inert cargos from entering the pore (Zilman et al., 2007;

Jovanovic-Talisman et al., 2009; Zilman and Bel, 2010; Schleicher et al., 2014, Kapinos et al.,

2014). A functional role of impβ within the NPC is particularly intriguing in light of the structural and

functional relationship between karyopherins and scaffold nucleoporins (Andersen et al., 2013;

Sampathkumar et al., 2013; Stuwe et al., 2014), suggesting that these two classes of proteins may

share a common evolutionary ancestry. The possible functional and structural roles of the Ran-

insensitive impβ pool remain to be discovered. At present, we only know (1) that the bulk of these

Ran-insensitive impβ molecules are located near the cytoplasmic face of the pore and (2) that they are

not bound to Nup153, since reduction of Nup153 (i.e., Δ15370%) did not reduce the impβ counts

relative to the RanGTP condition.

Although we have emphasized the ‘average’ characteristics of the NPC vis-à-vis changes in RanGTP

levels and other experimental manipulations, the single-pore resolution dSTORM and counting

experiments revealed significant NPC-to-NPC variation. The distributions for our counting experi-

ments give an idea of the heterogeneity of impβ binding amongst NPCs even within one nuclear

envelope. The variability of NPC composition may reflect variation of the instantaneous functional

state of the cellular pool of several hundred NPCs; perhaps, not all NPCs are functionally equivalent at

all times. In the future, it will be interesting to directly relate NPC-to-NPC variation of molecular

composition to possible variation of functional transport characteristics.

The observation that the permeability of the NPC, specifically its size-filtering, is sensitive to

RanGTP levels is interesting in light of recent results that suggest that cells might actively regulate the

RanGTP gradient. The RanGTP gradient is generated and maintained by the chromatin-associated

RCC1 exchange factor (Bischoff and Ponstingl, 1991) whose activity as well as the local concentration

of its RanGDP substrate is subject to multi-tiered regulation (Li and Zheng, 2004; Hood and Clarke,

2007; Yoon et al., 2008; Hitakomate et al., 2010). Overall, our studies raise the possibility that the

cell might have an extra layer of control over nucleocytoplasmic transport processes by regulating the

spatiotemporal characteristics of the RanGTP gradient, which would then modulate both the size-

cutoff of passive permeability and the extent of active transport.

Beyond clarifying the RanGTP-dependent composition and organization of the intact pore, the

ability to form the Ran-reversible impβ/Nup153 material in vitro will allow the interplay of energy,

impβ, and Ran to be directly investigated and should also allow efficient and selective molecular

rectifiers to be created in vitro, not just for biological cargos but also for other substrates.

Materials and methods

Plasmids; protein expression and purification

Plasmid construction
Plasmids were synthesized using the SLIC procedure (Li and Elledge, 2007). DNA primers were

purchased from Elim Biopharmeuticals, Inc. XL1-Blue chemically competent Escherichia coli cells were

transformed and selected for by antibiotic resistance. Plasmids were purified using the Qiagen QIAprep

Spin Miniprep Kit and sequenced. Constructs and Plasmids are listed in Supplementary file 1.

Protein expression and purification
Proteins were expressed and purified as detailed previously (Lowe et al., 2010). Briefly, E. coli

(BL21 DE3) were transformed with the appropriate plasmid and grown in 1 l of LB media with the

appropriate antibiotic. The cells were grown at 37˚C to an A600 of ∼0.6 and then cooled to room

temperature. Protein expression was induced with 0.5 mM IPTG overnight. Biotinylated proteins were

expressed in the presence of 0.1 mM biotin and a biotin ligase. Cells were harvested by centrifugation

at 5000×g at 4˚C for 15 min, and the pellet was resuspended in PBS (pH 7.4) containing 20 mM

imidazole, 1 mM β-mercaptoethanol, and protease inhibitors (Complete Protease Inhibitor Cocktail

Tablet, Roche Diagnostics Corporation, Indianopolis, IN). Proteins were purified by Ni-NTA affinity

chromatography, followed by size-exclusion chromatography (Superdex 75, GE Healthcare,

Pittsburgh, PA). Proteins were typically dialysed into XB buffer (10 mM HEPES pH 7.7, 1 mM MgCl2,

100 mM KCl, 50 mM sucrose), flash frozen in liquid nitrogen, and stored at −80˚C. Protein purity was

judged by SDS-PAGE, and concentrations determined by UV absorbance (using calculated extinction

coefficients) or Bradford assays. Nucleotide loading of Ran was performed as described previously

(Askjaer et al., 1999). Briefly, Ran was incubated for 40 min on ice with 6 mM EDTA and a 50-fold
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excess of nucleotide (GDP or GTP). The reaction was stopped with a final concentration of 25 mM

MgCl2 added slowly (in four portions in 1 min intervals). The protein was then dialysed against 30 mM

potassium phosphate pH 7.6, 2 mM Mg-acetate, 2 mM GDP or GTP, 7% glycerol, and 2 mM

β-mercaptoethanol, at 4˚C overnight. For Nup153FG purification, the cell lysate was run over a 5-ml

GSTrap HP column (GE Healthcare) equilibrated in PBS. Bound protein was eluted with 10 mM

reduced glutathione in 50 mM TrisHCl pH 8.0. The sample was concentrated and loaded onto

a HiPrep 16/60 Sephacryl S-300 High Resolution size exclusion column (GE Healthcare) equilibrated in

25 mM HEPES pH 7.5, 400 mM NaCl, 10% glycerol, 1 mM DTT, flash frozen, and stored at −80˚C.

Labeling, imaging buffers, cell culture, and import assays

Protein and antibody fluorescent dye labeling
Purified proteins were labeled for dSTORM using N-hydroxysuccinimidyl esters of Alexa649, Cy5, or

additionally with Alexa 405/488/532 for multicolor STORM, according to the manufacturers’

protocols. Antibodies were purchased from Abcam (Cambridge, UK): Anti-Nup153 antibody [SA1]

[ab96462], Anti-RanBP2 antibody [ab64276], Donkey polyclonal Secondary antibody to Rabbit

IgG—H&L [ab6701], Donkey polyclonal Secondary antibody to Mouse IgG—H&L [ab6707].

Antibody labeling protocol
HeLa cells were washed three times with PBS and then fixed in 4% PFA for 15 min. The PFA was

removed and the cells were washed 3 × 2 min in PBS with agitation (70 RPM on a rotary shaker). Cells

were permeabilized with 0.5% Triton X-100 for 5 min at RT followed by 3 × 2 min PBS washes. The

cells were incubated in blocking buffer (PBS + 10% vol/vol goat/donkey serum + 1.25 mg/ml BSA) for

1 hr at RT. The antibodies were diluted according to manufacturers’ suggestions in blocking buffer.

The cells were incubated with the primary antibody for 30 min, washed 3 × 5 min with blocking buffer,

incubated with the secondary antibody for 30 min, and washed 3 × 5 min with PBS.

STORM and dSTORM imaging buffers
Imaging was performed using the following buffer conditions: 10/100 mM mercaptoethylamine

(Sigma–Aldrich), 0.5 mg/ml glucose oxidase (Sigma–Aldrich, St. Louis, MO), 0.2% vol/vol catalase

(Sigma–Aldrich), 10% wt/vol D-Glucose in PBS pH 7.4.

Cell culture
HeLa cells were cultured in DMEM media supplemented with 10% FBS. Cells were plated on

glass-bottomed (size 0 thickness) poly-lysine-coated chambers (MatTek Corporation, Ashland, MA) at

a seeding concentration of 2.5 × 105 cells/ml the day prior to use.

Import assays
Import assays were performed as reported previously (Lowe et al., 2010). The buffers used were PBS

(137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 2 mM KH2PO4, pH 7.4), permeabilization buffer (50 mM

HEPES, 50 mM KOAc, 8 mM MgCl2, pH 7.3), and transport buffer (20 mM HEPES, 110 mM KOAc,

5 mM NaOAc, 2 mM MgOAc, 2 mM DTT, pH 7.3). The cell permeabilization protocol is based on that

of Adam et al. (1990). The cells were washed for 3 × 2 min with PBS, followed by a 2-min wash with

permeabilization buffer, followed by a 5-min permeabilization with digitonin (Sigma–Aldrich) at a

concentration of 50 μg/ml supplemented with an energy regenerating system of 100 μM ATP (Roche),

100 μM GTP (Roche), 4 mM creatine phosphate (Roche), and 20 U/ml creatine kinase (Roche) in

permeabilization buffer. The digitonin was subsequently removed by washing for 3 × 3 min with transport

buffer. After the final wash, excess liquid was removed and the appropriate experimental reaction mix was

quickly added to the nuclei. Control experiments with fluorescently (FITC) labeled dextrans (70 kDa) were

used to confirm that the nuclear envelope remained intact following the digitonin permeabilization.

Active nuclear import assays
Digitonin-permeabilized HeLa cells were treated with an active nuclear import reaction mix containing

a fluorescent import cargo probe, importin-β (various concentrations), RanGDP (5 μM), NTF2 (4 μM),

and an energy regenerating system (2 mM GTP, 0.1 mM ATP, 4 mM creatine phosphate, and 20 μ/ml

creatine kinase) in transport buffer. Import reactions proceeded at room temperature for 20 min

before the cells were fixed with a 4% PFA solution for 15 min and washed 3 × 2 min with PBS. Cells

were then imaged using a Zeiss LSM 700 confocal laser scanning microscope (Carl Zeiss AG,

Oberkochen, Germany).
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Passive nuclear import assays
Digitonin-permeabilized HeLa cells were treated with a passive nuclear import reaction mix containing

a fluorescent passive import probe (either 1xGFP, 2xGFP, or 3xGFP) and also (depending on the

experimental condition) importin-ß (1 μM), RanGDP (5 μM), NTF2 (4 μM), and an energy regenerating

system (2 mM GTP, 0.1 mM ATP, 4 mM creatine phosphate, and 20 μ/ml creatine kinase) in transport

buffer. Passive import reactions were imaged live for 15 min (at 20 s intervals) using a Zeiss 700 LSM

laser scanning confocal microscope.

RNA knockdown
RNA interference was used to knock down protein expression of Nup153 using an siRNA

corresponding to nucleotides 2593–2615 of human Nup153 (5′-AAGGCAGACUCUACCAAAU

GUdTdT-3′) (Harborth et al., 2001; Zhou and Pante, 2010). HeLa cells were plated in

glass-bottom dishes (MatTek) at a density of 1.25 × 105 cells/dish (2 ml volume) the day prior to

siRNA transfection. Lipofectamine RNAiMAX Transfection Reagent (Invitrogen, Carlsbad, CA) was

used following the manufacturer’s protocol. Briefly, 5 μl of Lipofectamine reagent was diluted 50-fold

into Opti-MEM I Reduced Serum Media (Invitrogen). 75 pmol of siRNA was diluted into an equal

volume of Opti-MEM media. The Lipofectamine and siRNA were then mixed together, incubated at

room temperature for 10 min, and then added to the cells. Cells were used for experiments ∼48 hr

after transfection as no noticeable difference was observed past 48 hr. Knockdown efficiency was

determined to be about 70% using immunofluorescence (measured to be 68%) and Western blot

(measured to be 72%) (Figure 3—figure supplement 2).

General imaging hardware and analysis

Confocal imaging, photoconversion, and bleaching
Imaging was performed on a Zeiss 700 confocal laser scanning microscope. GFP constructs were

imaged using the 488 nm laser. Photo-convertible mEos2 constructs were imaged in two separate

channels, with localized photoactivation performed using the 405 nm laser.

Confocal time-series analysis
Image analysis was performed using custom-written MATLAB (The MathWorks Inc., Natick, MA)

scripts for quantifying fluorescence intensities. Briefly, a mean value of intranuclear fluorescence

intensity was calculated for each nucleus in the image using an automated nucleus segmentation

algorithm. For passive import assays, the nuclear fluorescence intensity value was normalized against

the background fluorescence intensity.

Photobleaching hardware
FRAP was performed on a custom built microscope (Figure 1—figure supplement 2). The microscope

allows one to perform simultaneous high-speed widefield imaging with a controlled diffraction limited

bleaching/photoconversion spot at the center of the field of view. Briefly, four lasers (100 mW 405 nm

Coherent Cube, and 100 mW 488, 514 and 561 nm Coherent Sapphires, Coherent Inc., Santa Clara, CA)

were combined and expanded to a similar beam diameter. Each laser was under the controller of

a shutter. Half-wave plates allow for adjustment of polarization. A polarizing beam splitting cube (PBS)

splits the beam into two ‘arms’. The ‘focused spot’ arm passes via a matched pair of convex lenses

(f = 50 mm), one of which is mounted on a Z-translation stage to modify the focal depth position.

An additional shutter in this arm allows for control of timing of the activation. The ‘imaging’ arm has an

additional lens (f = 200 mm) in order to focus the beam at the back focal plane of the objective (BFP).

The two paths are recombined using a second PBS and pass through a quarter wave plate before the

remainder of the TIRF lens system to the objective (Olympus 60× 1.49 N.A. TIRF apochromatic

objective, Olympus Corporation, Tokyo, Japan) via a multi-edge dichroic filter (Semrock Inc., Rochester,

NY). An actively cooled EMCCD camera (iXon+ or iXon Ultra, Andor Technology, Belfast, UK) was

coupled to the camera port of the microscope via an additional magnifier. Sample positioning was

controlled via a motorized stage with an additional XYZ-Nanopositioning stage (Physik Instrumente,

Karlsruhe, Germany) for fine control. All software to control the microscope was written in C++.

FRAP analysis
Images were processed using custom written MATLAB code, which automated identification of the

cell and of the nuclear envelope. The image processing code generates masks for the bleached and
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unbleached portions of the nuclear envelope as well as the background. These masks were used to extract

raw intensity traces for the three regions. Raw intensity traces for the photobleached region of the nuclear

envelope were normalized using the unbleached portion of the nuclear envelope to correct for

‘background’ bleaching caused by the imaging laser. We then scaled the recovery curve such that the initial

pre-photobleach value is 1 and the value immediately after the photobleaching pulse zero. Normalized

recovery traces were then used to compute mean recovery trace for each experimental condition.

Photoconversion analysis
Images were processed using a custom-written MATLAB script that locates the cell in the field of view and

creates a mask for the region corresponding to the nuclear envelope and the photoconverted region of

the envelope. The mask for the photoconverted region of the nuclear envelope was used to compute the

mean intensity in this region in both red and green channels at each time point. The red channel intensity

of the region of interest prior to photoconversion (frames 1–4) was averaged to determine the

background, which was typically undetectably low. The 405 nm photoconversion laser pulse increases the

red intensity, which then decays as the photoconverted molecules leave the pore. The red and green

traces provide quantitative information about the kinetics of imp-β turnover in the pore.

Super-resolution hardware and algorithms

STORM/dSTORM imaging
All super-resolution imaging was performed on a custom built microscope, based on a Nikon TE-2000

base. Three lasers (100 mW 488 nm Coherent Sapphire, 100 mW 532 nm Coherent Compass, and

100 mW 640 nm Coherent Cube), each with their own shutter control, were expanded to the same

diameter and combined using a series of dichroic mirrors into a single free-space beam. Half-wave

plates were used to adjust the polarization before passing the beams through an Acousto-Optical

Tunable Filter (AOTF, AA Optoelectronics, France) to quickly modulate laser power. The combined

beams were again expanded and passed through a quarter-wave plate to circularly polarize the beam.

For two-color STORM imaging experiments, we added an additional 405 nm laser (100 mW Coherent

Cube), via an optical fiber. The free beam then passed through the TIRF lenses and was focused

directly onto the back focal plane of the objective (Olympus 60× or 100× 1.49 N.A. TIRF apochromatic

objective) via a multi-edge dichroic filter (Semrock). We used the HILO method of illumination

(Tokunaga et al., 2008) to image a thin plane through the nucleus. An actively cooled EMCCD camera

(iXon+ or iXon Ultra) was coupled to the camera port of the microscope via an additional magnifier.

Laser shutter, AOTF, and camera firing were synchronized using a Data Translation DT9834

data acquisition module. Sample positioning was controlled via a micrometer stage with

a XY-Nanopositioning stage (Mad City Labs Inc., Madison, WI or Physik Instrumente). Focal drift

during image acquisition was corrected using an Objective Z-Nanopositioning stage (Mad City Labs or

Physik Instrumente). Camera acquisition was at 40–120 Hz. All software to control the microscope was

written in C++ and Python. Data analysis was performed in MATLAB, C++, or Python. The source code

for the microscope control software is available at https://github.com/jliphard/OctopusScopeControl.

git and other materials (such as MATLAB scripts) are available at http://liphardtlab.stanford.edu/

materials.html and at https://github.com/quantumjot/.

Sub-pixel localization of single-molecules
For a sub-wavelength diameter fluorescent molecule, fitting of the point spread function (PSF) to

a Gaussian function yields the highest accuracy and precision of localization (Cheezum et al.,

2001). Each PSF in successive STORM/dSTORM movie frames was fitted to a symmetrical 2D

Gaussian function:

f ðx; yÞ≈Ae
−

�
ðx − x0Þ2

2σ2x
+ðy − y0Þ2

2σ2y

�
+B;

where A is the amplitude, B is the background, x0 and y0 are the mean x and y positions, and σx and
σy are the standard deviations in x and y (where x = y for symmetrical Gaussian functions).

Drift correction
Drift correction was split into two parts: (i) Real-time focus locking performed during the imaging and

(ii) post-imaging translational drift correction:
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Real-time focus lock
Fluorescent beads (0.2 μm Yellow-Green FluoSpheres, Invitrogen) were immobilized to the glass

surface of the chamber. The relative z-displacement of the equatorial imaging plane of the nucleus to

the surface beads was measured. Imaging proceeded by alternating between imaging the surface

beads and correcting for focus drift at the sample surface, and moving up to the imaging plane and

performing dSTORM/STORM imaging. Typically, focus drift was stabilized during the experiment, to

within ∼50 nm using this method.

XYZ stage translational drift correction
By tracking the fiducial markers at the sample surface plane over time, we can filter and interpolate

their trajectories in order to correct the imaging plane movie sequences. We used the interpolated

mean fiducial position in order to perform a per-frame drift correction. Typically, translational drift

over the experiment was stabilized to <5 nm.

Localization precision
The localization precision of our instrument refers to how precisely we can define the center of the

PSF, given the magnification and signal to noise ratio of the image. Since we use a symmetrical

Gaussian function to model the PSF, the mean-squared positional error is given by:

σ2x;y ≈
s2 + a2

12

Nm
+
4

ffiffiffi
π

p
s3b2

m

aN2
m

;

where s is the standard deviation of the PSF, a is the pixel size in the image, Nm is the total number of

photons measured from the molecule m, and bm is the number of background photons measured in the

localization window (Thompson et al., 2002). We calculate the photon conversion factor for our camera by

measuring the mean and variance of the camera response counts as a function of illumination intensity

(Newberry, 1998). The mean localization precision was 12 nm (Figure 2—figure supplement 1).

Two-color experiments
Two-color super-resolution imaging was performed with dSTORM and STORM, each of which has

advantages and limitations for this particular application. Briefly, for two-color dSTORM imaging of

Nup358 and importin-β, an antibody against Nup358 (abNup358) was labeled with either ATTO520 or

Alexa405, and importin-β was labeled as in single-color dSTORM imaging. For two-color STORM

imaging, abNup358 was labeled with both Cy3 and Cy5 (in an approx. 4:1 ratio), and importin-β was

labeled with Alexa405 and Cy5. Specific activation of these dyes was performed by providing a short

pulse (∼1 frame) of the appropriate 405 nm or 532 nm laser at low power.

Correct labeling of the two proteins was confirmed using widefield imaging. Activation with

532 nm and imaging with a 640 nm laser showed bright nuclear envelope staining, suggesting that

Nup358 was indeed labeled correctly. Activation using the 405 nm laser also yielded a bright nuclear

envelope, with significant protein localized within the nucleus; this staining pattern is typical of that

observed in our confocal imaging of importin-β.
We found that it is difficult to perform two-color localization imaging while trying to localize two

pools of protein (such as importin-β and Ab-Nup358) that are in close proximity (<50 nm). Standard

two-color dSTORM suffers from chromatic errors, as the two fluorophores must have well-separated

excitation profiles, which necessarily results in spectrally well-separated emission maxima and

therefore rendering the experiment very sensitive towards chromatic aberrations. The chromatic

aberrations manifest as uncertainty in alignment and co-localization of molecules. STORM does not

suffer from chromatic aberrations since both probe pairs use Cy5/Alexa647 as their reporter.

However, in STORM, activation cross-talk must be considered—since both probe pairs emit the same

color, it is no longer possible to assign the molecular identity of a signal with absolute certainty.

Given the various advantages and limitations of dSTORM and STORM, we judged it best to apply

both methods to equivalent samples and then compare the results as a consistency check. As shown in

Figure 3—figure supplement 1, imaging the equatorial plane (i.e., viewing the NPC from the side)

the importin-β signal does not coincide with the Nup358 signal demarcating the cytoplasmic face of

the NPC; rather the bulk of the imp-β signal was about 25 nm closer to the center of the nucleus,

consistent with the imp-β being primarily located within the NPC. As a further crosscheck, we applied

both methods also to the basal surface of the nucleus. As expected when imaging the ‘front’ of the
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NPC (i.e., looking at it from the cytoplasm), the signals from the Nup358 and imp-β spatially merged

when imaging the basal surface of the nucleus.

STORM images
Display images were created using the STORM localization data by bin-sorting the data with an

appropriate bin size. Let K be the set of n STORM localizations {x1,...,xn}. The data can be sorted into bins

with size h (typically the localization precision of our instrument) according to the following equation:

Ik =P1h  xkR:
NPC identification, extraction, and alignment
Individual NPCs were identified and extracted automatically, using a similar method to that used

previously (Lowe et al., 2010). After identifying a closed path describing the nuclear envelope from

widefield fluorescence and down-sampled dSTORM/STORM images, we use the interpolated surface

normal vectors of this path to position a sliding window normal to the envelope at positions along the

envelope path. We count the number of localizations found within the window at each position along

the envelope path. This ‘envelope histogram’ contains distinct regions containing high numbers of

localizations, which correspond to the centroids of NPCs.

Having located the NPCs in the envelope, we use the interpolated surface normal to rotate the

importin-β localizations corresponding to a single NPC into a common frame, whereby the

cytoplasm–nucleus vector is oriented vertically down. Next, we use cross-correlation and reference-

free alignment, to align each NPC image with sub-pixel resolution. Image clustering is used to identify

groups of structures within the data set. Once all NPC structures are correctly aligned, we can

calculate statistics including axial distributions, mean NPC images and positional variance maps.

Single molecule counting
The stepwise-photobleaching method was adapted from the approach of Leake et al. (2006). The

stepwise-photobleaching method relies on the irreversible and stochastic bleaching of fluorescent

proteins upon repeated exposure. The sample is illuminated with an excitation light intensity low

enough to slowly bleach it until background emission is reached. Plotting the intensity of a spot of

interest over time results in an exponential decay function. Ideally, this function contains discernible

steps. Each step corresponds to a bleaching event of a single molecule. When the number of molecules

to count increases, the chance of having several bleaching steps at the same time also increases,

resulting in steps having sizes that are multiples of a single bleach step. We added mCherry tagged

impβ to permeabilized cells, fixed them, and imaged the basal envelope of the nuclei. The angle of the

beam was chosen in such a way to minimize the background (normally just slightly higher than the

optimal TIRF angle). The desired focal plane was found using the lowest laser power possible (∼150 μW)

to avoid bleaching during focusing. As soon as the correct focal plane was found the laser power was

increased to about 3 mW and movie recording was started. Movies were acquired at 50 Hz and normally

have a length of about 180 s (or until background emission was reached). Four different conditions were

tested: WT +Ran+GTP, WT −Ran−GTP, R70%Nup153 +Ran+GTP, R70%Nup153 −Ran−GTP.

Cell preparation
Digitonin-permeabilized HeLa cells were treated with mCherry-impβ (0.5 μM), RanGDP (5 μM), NTF2

(4 μM), and an energy regenerating system (2 mM GTP, 0.1 mM ATP, 4 mM creatine phosphate, and

20 μ/ml creatine kinase) in transport buffer. The experimental mix was incubated at room temperature

for 20 min before the cells were fixed with a 4% PFA solution for 15 min and washed 3 × 2 min with PBS.

Energy deficient cells were prepared as above, but lacked RanGDP, NTF2, and the energy regenerating

system. Nup153-knockdown cells were transfected ∼48 hr before applying the protocol above.

Microscope set-up
We used HILO illumination (Tokunaga et al., 2008). Other microscope details:

Microscope: Olympus IX81 stage, TIRF module.

Objective: Olympus UApoN 100XOTIRF, NA: 1.49.

Laser: Coherent Compass 561, 50 mW, fiber coupled.

Filter Cube: Semrock BrightLine mCherry-40LP-A.
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Excitation Filter: 560/55, Dichromatic Mirror: 590LP, Emission Filter: 600LP.

Camera: Andor iXon 897.

A circular, step-variable neutral density filter was used to adjust the laser power between focusing

and bleaching.

Analysis code platform
The main analysis was written in Matlab R2012b (Mathworks). Spot detection was done using ImageJ.

Detecting the pore
Initial spot detection was done on an image averaged over 200 frames. The average image was

treated with simple convolutions to achieve spatial bandpass filtering. We convolved the original

image with a Gaussian, creating a lowpassed version. Convolving the original image with a boxcar

function created a second lowpass image. Subtracting the boxcar filtered from the Gaussian filtered

image resulted in a bandpass filtered image. This method not only suppresses noise (via an

appropriate Gaussian kernel) but also sharpens the object of interest (by adjusting the size of the

boxcar kernel) (Figure 4—figure supplement 1B). Peak detection was done on the bandpassed

image using the ImageJ plug-in FindMaxima. All local maxima were identified. For each maximum

a flood-filling algorithm with a threshold gray level was performed. Maxima that had a previously filled

area were discarded. For cases where several points had the same highest value inside the flood-filled

area, the pixel closest to its geometric center was used. The output of the peak detection step was

a binary image containing the locations of the maxima (or the geometric center in the case of multiple

neighboring pixels). All spots detected outside the nucleus were removed by manually constraining

the analysis to the nucleus (Figure 4—figure supplement 1C).

Creating the time traces
The coordinates of the points detected in the previous step were extracted and saved to a structure

array. For each region of interest a mask containing only its center point was created. These masks

were then dilated with a three-pixel radius disk to create a region covering a typical nuclear pore. The

time trace was then created for each pore by summing the pixel values inside the ROI for each frame

of the raw movie. The raw signal was filtered with the edge-preserving Chung-Kennedy filter

(Chung and Kennedy, 1991) (Figure 4—figure supplement 1D). All pairwise differences in this

filtered trace I(t) were calculated, that is, each ΔIxy = I(tx) − I(ty), where tx > ty. For performance

purposes, this part of the analysis was implemented in C. The distribution of the pairwise differences

was calculated through a histogram with 500 bins. This pairwise differences distribution (PDD) ideally

has periodical peaks separated by the most probable step size of the fluorophore (Figure 4—figure

supplement 1E). This distribution was then smoothed and the individual peaks were extracted using

a custom Matlab function. The mean differences between the peaks give a first approximation on the

single-step size. To find the correct step size more accurately a power spectrum of the smoothed

PDD was calculated using Matlab’s pwelch function.

Peaks in the power spectrum were extracted and compared to the previously obtained rough

estimate. The peak having the smallest absolute distance to the estimate was chosen. We now had the

most probable single step x for each of the bleaching traces. The calculation of the number of

molecules bleached in this particular spot was then straightforward: N= Iinitial − Ifinal
x , where Iinitial is the

initial intensity defined as the mean value of the first 10 samples. Ifinal is the final intensity, given by the

mean of the last 1000 points of the trace. Each nucleus gives usable information of about 80–200

pores. For each condition, 10–15 movies were recorded, yielding several thousand pores per

condition. All counts for a given condition were combined to generate statistics and histograms

(Figure 4—figure supplement 1).

Mann–Whitney confidence intervals of the differences
We used a confidence interval based on the Mann–Whitney distribution (Conover, 1999) to generate

Table 1. The Mann–Whitney test does not make any assumptions on the shape of the distributions.

It only requires both samples to be random samples from their respective populations. Consider two

populations having identical but unknown distribution functions: X1,...,Xn and X1,...,Xn. A parameter k

can be calculated as follows: wα=2 − n n+1
2 where wα=2 is the α

2 quantile for n and m. The quantile of the

Mann–Whitney distribution can be approximated using the quantile zp of the normal distribution:

wp =
nðN+1Þ

2 + zp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nmðN+1Þ

12

q
; where N = n + m. Next, all possible pairs (Xi, Yj) are created. The k largest
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and k smallest differences are extracted. The upper limit U is defined as the kth largest difference.

The lower limit L is defined as the kth smallest difference. The final confidence interval is then given

by P½L≤EðXÞ−EðYÞ≤U�≤ ð1− αÞ. The calculation of the confidence interval was implemented

in Matlab.

In vitro gelation; fluorescence fluctuation spectroscopy

Buffer conditions of the in vitro gelation study
Recombinantly-expressed impβ-YFP and the FG domain of Nup153 (amino acids 874–1475) were

mixed together in 500 μl of PBS with one or more of the following factors at final concentrations of

50 nM impβ-YFP, 0.5 μM Nup153FG, 2 μM Ran•GDP, 2 μM RanQ69L•GTP, 100 nM TRN1-GFP, and

2 mM DTT in a glass-bottomed Lab-Tek chamber (Nunc). Samples were prepared at room

temperature and analyzed either immediately after preparation (for analyzing kinetics of complex

formation) or after 30 min.

Microscope setup and analysis of the fluctuation traces
Fluorescence fluctuation spectroscopy measurements were performed on a home-built apparatus

based on a Nikon TE2000-E inverted fluorescent microscope as described previously (Forstner et al.,

2006). A 485 nm pulsed diode laser (PicoQuant, Berlin, Germany) were used to excite the sample. The

laser beam was coupled into an optical fiber and focused by a 100× TIRF objective (Nikon) into the

sample to excite the fluorescent probes. The emission light was filtered by a notch filter and a 50-μm
confocal pinhole, followed by a short-pass (550 nm) color filter before directing toward the avalanche

photodiodes (APDs) (Perkin Elmer, Canada). The photon arrival time was recorded and processed

with a hardware correlator (Correlator.com). Igor (WaveMetrics Inc., Portland, OR) was used to

analyze the photon counting histograms described previously (Muller et al., 2000; Xu et al., 2011)

with a bin time of 100 μs. Confocal volume was calibrated by 100 nM of Alexa-488 in room

temperature with known diffusion coefficient (D = 430 μm2/s) (Nitsche et al., 2004). Samples that

were directly compared were done on the same day to minimize differences in the instrument

settings.

Confocal imaging of large impβ•Nup153FG complexes
Impβ-YFP (4 μM) and Nup153FG (5 μM) were incubated together at room temperature and formed

large, micron-sized structures on a timescale of minutes (Figure 6A). These structures resembled

aggregated protein conglomerates that were massive enough to settle to the surface due to gravity.
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