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Abstract. Many climate models have difficulties in prop-

erly reproducing climate extremes, such as heat wave con-

ditions. Here we use the Weather Research and Forecasting

(WRF) regional climate model with a large combination of

different atmospheric physics schemes, in combination with

the NOAH land-surface scheme, with the goal of detecting

the most sensitive physics and identifying those that appear

most suitable for simulating the heat wave events of 2003

in western Europe and 2010 in Russia. In total, 55 out of

216 simulations combining different atmospheric physical

schemes have a temperature bias smaller than 1 ◦C during

the heat wave episodes, the majority of simulations showing

a cold bias of on average 2–3 ◦C. Conversely, precipitation

is mostly overestimated prior to heat waves, and shortwave

radiation is slightly overestimated. Convection is found to be

the most sensitive atmospheric physical process impacting

simulated heat wave temperature across four different con-

vection schemes in the simulation ensemble. Based on these

comparisons, we design a reduced ensemble of five well per-

forming and diverse scheme configurations, which may be

used in the future to perform heat wave analysis and to in-

vestigate the impact of climate change during summer in Eu-

rope.

1 Introduction

An increasing number of simulations and studies project a

higher frequency of several types of extreme weather events

in the future (e.g., Schär et al., 2004; Meehl et al., 2004;

Della-Marta et al., 2007; Beniston et al., 2007; Kuglitsch et

al., 2010; Fischer and Schär, 2010; Seneviratne et al., 2012;

Orlowsky and Seneviratne, 2012). Since summer heat waves

are among the most impacting of such phenomena – threaten-

ing society and ecosystems – climate models used for future

projections must provide accurate simulations of these phe-

nomena, or at least their uncertainties should be documented.

Even if climate models have been evaluated using observed

weather in past decades, it is unclear whether they will be

able to simulate extreme heat waves in future climates that

may not have analogues in the historical record. At a min-

imum, models should be able to reproduce the conditions

measured during recent extreme heat wave cases, some of

them having been shown to be unprecedented when consid-

ering the climate over the past 5 or 6 centuries (Chuine et al.,

2004; Luterbacher et al., 2010; García-Herrera et al., 2010;

Barriopedro et al., 2011; Tingley and Huybers, 2013).

Given the importance of forecasting summer heat waves

well in advance, many studies have analyzed their pre-

dictability, which remains poor in seasonal forecasts. For

instance, the 2003 European heat wave was not simulated

realistically (neither timing nor intensity) by the opera-

tional European Centre for Medium-Range Weather Fore-

casts (ECMWF) system, but improvements were clear with
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the use of a new land-surface hydrology, convection and ra-

diation schemes (e.g., Weisheimer et al., 2011; Dole et al.,

2011; Koster et al., 2010; van den Hurk et al., 2012). How-

ever, seasonal forecasting experiments do not straightfor-

wardly allow for the assessment of a model’s physical pro-

cesses underlying extreme temperatures during heat waves

because it is difficult to separate model biases due to defi-

ciencies in the model representation from sensitivity to initial

conditions. These may inhibit the effect of the representation

of physical processes in reproducing the exact atmospheric

circulation when starting simulations at the beginning of the

season.

From a statistical perspective, extreme temperatures have

been found to be reasonably well represented in global sim-

ulations of the current climate (IPCC, 2013), as well as

in regional simulations (Nikulin et al., 2010). In recent re-

gional modeling evaluation experiments, using an ensemble

of state-of-the-art regional models guided by re-analysis at

the boundaries of a European domain, summer extreme sea-

sonal temperatures were shown to be simulated with biases in

the range of a few degrees (Vautard et al., 2013). Individual

mega heat waves (2003 in western Europe, 2010 in Russia)

were reproduced by most models. However, it was difficult

to infer whether these models could also simulate associated

processes leading to the extreme heat waves. The exact same

events with similar atmospheric flow and persistence could

not be reproduced due to internal variability (internal degrees

of freedom) of the models.

A comprehensive assessment of simulations of recent

mega heat waves has only been the object of a limited num-

ber of such studies. Process-oriented studies of high extreme

temperatures over Europe have focused on land–atmosphere

feedbacks (e.g., Seneviratne et al., 2006, 2010; Fischer et

al., 2007; Teuling et al., 2009; Stegehuis et al., 2013; Mi-

ralles et al., 2014) because, beyond atmospheric synoptic

circulation, these feedbacks are known to play an impor-

tant role in summer heat waves. However, the sensitivity

of simulated heat wave conditions to physical processes in

models has not yet been explored in a systematic way. This

could be important because error compensation among pro-

cesses that involve land–atmosphere interactions, radiation

and clouds may cause high temperatures for the wrong rea-

sons (Lenderink et al., 2007).

The goal of the present study is threefold. First we exam-

ine the ability of a regional climate model, Weather Research

and Forecast (WRF, Skamarock et al., 2008), to simulate re-

cent European mega heat waves with a number of differ-

ent model configurations. Analysis of these experiments then

allows understanding which physical parameterizations are

prone to reproduce the build up of extreme temperatures and

thus the need for carefully constraining them in order to sim-

ulate these events properly. Finally, using observational con-

straints of temperature, precipitation and radiation, we select

a reduced ensemble of WRF configurations that best sim-

ulates European heat waves with different sets of physical

schemes combinations. This constrained multi-physics en-

semble aims therefore at spanning a range of possible physi-

cal parameterizations in extreme heat wave cases while keep-

ing simulations close to observations.

Our multi-physics regional ensemble approach contrasts

with the classical multi-model ensembles that are constructed

by the availability of model simulations in coordinated exper-

iments (see e.g., Déqué et al., 2007, and references therein) or

by arbitrarily configured combinations of parameterizations

selected by different groups using the same model system

(García-Díez et al., 2015). In the latter ensemble, the lack

of overall design strategy may lead the uncertainty estima-

tion to be biased and the models to be farther from obser-

vations. In addition, the real cause of model spread is dif-

ficult to understand because of shortcomings in the repre-

sentation of physical processes and their interactions. Re-

gional perturbed-physics or multi-physics ensembles could

help understand and constrain uncertainties more effectively,

but so far they have been seldom explored. García-Díez et

al. (2015) showed that even a small multi-physics ensemble

confronted to several climate variable observations can help

diagnose mean biases of a regional climate model. Bellprat et

al. (2012) showed that a well-constrained perturbed-physics

ensemble may encompass the observations. Their perturbed-

physics ensemble was designed by varying the values of a

number of free parameters and selecting only the configu-

rations that were closest to the observations; however, the

number of combinations of different physical parameteriza-

tion schemes was limited to a total of eight different config-

urations.

The WRF model offers several parameterization schemes

for most physical processes, and is thus suitable for a multi-

physics approach. In fact, a WRF multi-physics approach has

been used in several studies (e.g., García-Díez et al., 2011;

Evans et al., 2012; Awan et al., 2011; Mooney et al., 2013),

also with its predecessor MM5, but not specifically to simu-

late extreme heat waves.

Here we run an ensemble of 216 configurations of WRF

physical parameterizations and compare each simulation

with a set of observations of relevant variables in order to

select a reduced set of five configurations that best represent

European summer mega heat waves. The evaluation is made

over the extreme 2003 and 2010 events. The ensemble is also

evaluated for a more regular summer (2007) in order to test

the model configurations under non-heat wave conditions.

2 Methods

2.1 Simulations and general model setup

We use the WRF version 3.3.1 and simulate the 3 summers

(2003, 2007, 2010) using an ensemble of physics scheme

combinations. We first test the time necessary to initialize the

soil moisture on a limited number of cases. Soil conditions

Geosci. Model Dev., 8, 2285–2298, 2015 www.geosci-model-dev.net/8/2285/2015/
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Table 1. Physics schemes used in this study (with references). All possible permutations are made, yielding a total of 216 simulations. The

numbers in the table refer to the number the schemes have in the Weather Research and Forecasting (WRF) model.

Microphysics (MP) PBL+ surface (PBL-

SF)

Radiation (RA) Convection (CU) Soil

(6) WRF-SM6 (Hong

and Lim, 2006)

(1-1) Yonsei Uni-

MM5 (Hong et al.,

2006; Beljaars, 1994)

(3) CAM (Collins et

al., 2004)

(1) Kain-Fritsch

(Kain, 2004)

(2) NOAH (Tewari et

al., 2004)

(8) New Thompson

(Thompson et al.,

2008)

(2-2) MYJ-ETA (Jan-

jic, 1994, 2002)

(4) RRTMG (Iacono

et al., 2008)

(3) Grell–Devenyi

(Grell and Devenyi,

2002)

(10) Morrison DM

(Morrison et al.,

2009)

(4-4) QNSE-QNSE

(Sukoriansky et al.,

2005)

(5) Goddard (Chou

and Suarez, 1999)

(6) Tiedtke (Tiedtke,

1989; Zhang et al.,

2011)

(5-2) MYNN-ETA

(Nakanishi and Niino,

2006, 2009; Janjic,

2002)

(14) New SAS (Han

and Pan, 2011)

(5-5) MYNN-MYNN

(Nakanishi and Niino,

2006, 2009)

(7-1) ACM2-MM5

(Pleim, 2007; Bel-

jaars, 1994)

are initialized using the ERA-Interim (Dee et al., 2011) soil

moisture and temperatures; thereafter, soil moisture and air

temperature are calculated as prognostic variables by WRF.

For the August 2003 case, we find that temperatures differ

by less than 0.5 ◦C among one another when starting exper-

iments before 1 May. Thus, in the current study, each sim-

ulation is run from the beginning of May to the end of Au-

gust for the years 2003, 2007 and 2010. The regional domain

considered is the EURO-CORDEX domain (European Coor-

dinated Downscaling Experiment; Jacob et al., 2014; Vautard

et al., 2013) and the low-resolution setup of 50km× 50km

(∼ 0.44◦ on a rotated lat–long grid) is used – note that Vau-

tard et al. (2013) recently concluded that a higher spatial

resolution did not provide a substantial improvement in heat

wave simulations. We use a vertical resolution with 32 lev-

els for WRF. Boundary conditions come from ERA-Interim,

including sea surface temperatures, initial snow cover, and

soil moisture and temperature. In order to focus on physi-

cal processes in the boundary layer and the soil–atmosphere

interface, and to avoid chaotic evolution of large-scale at-

mospheric circulation, we constrain the model wind fields

with ERA-Interim re-analyses above model level #15 (about

3000 m), similar to previous studies (Vautard et al., 2014), us-

ing grid nudging, with a relaxation coefficient of 5.10−5 s−1

corresponding to a relaxation time approximately equivalent

to the input frequency (every 6 h) (Omrani et al., 2013). Tem-

perature and water vapor were not constrained, to allow feed-

backs to fully develop.

2.2 Physics schemes

We test 216 combinations of physics schemes. We con-

sider different physics of the planetary boundary layer and

surface layer (PBL; six schemes), microphysics (MP; three

schemes), radiation (RA; three schemes) and of convection

(CU; four schemes). For each type of scheme, a few options

were selected among the ensemble of possibilities offered in

WRF. The selection was made to avoid variants of the same

scheme and to maximize the difference of temperature and

precipitation outputs in preliminary experiments. At the time

of study and model development stage, different land-surface

schemes were available in WRF: five-layer thermal diffusion

scheme (Dudhia, 1996), NOAH (Tewari et al., 2004), Rapid

Update Cycle (RUC) (Benjamin et al., 2004) and Pleim–Xiu

(Gilliam and Pleim, 2010). We decided however to only use

one, the NOAH land-surface scheme in order to focus our

study on atmospheric processes, while limiting the number

of simulations, and because the NOAH scheme is the most

widely used in WRF applications. This was also motivated

by the poor performance and extreme sensitivity of the RUC

land-surface scheme for the land latent and sensible heat

fluxes as compared with local observations in 2003. It simu-

lates strong latent heat fluxes in the beginning of the season

www.geosci-model-dev.net/8/2285/2015/ Geosci. Model Dev., 8, 2285–2298, 2015
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Figure 1. Time series of daily land heat fluxes in 2003 from May to the end of August on three different FLUXNET sites, with latent heat

flux (LH) on the first row, sensible heat flux (SH) on the second row, and evaporative fraction (EF – latent heat flux divided by the sum of

latent and sensible heat flux) on the last row (DOY is day of year). The three columns represent three sites, with Neustift/Stubai (Austria –

ATneu 47◦ N, 11◦ E) in the first column, Tharandt (Germany – DETha, 51◦ N, 4◦ E) in the second, and Soroe-LilleBogeskov (Denmark –

DKsor, 66◦ N, 11◦ E) in the third column. Vegetation types on the three sites are respectively grassland (GRA), evergreen needleleaf forest

(ENF), and deciduous broadleaf forest (DBF). In gray all 216 simulations with the NOAH scheme. Observational data is shown in black

(FLUXNET). The green line is one configuration with NOAH, while the blue line represents the same configuration but with RUC instead

of NOAH.

and an extreme drying at the end, while sensible heat flux is

overestimated. The NOAH scheme appeared more realistic

and robust in the tests that were done for capturing both latent

and sensible heat fluxes during the 2003 heat wave at selected

flux tower sites in western Europe (Fig. 1). Furthermore, the

Pleim–Xiu scheme is especially recommended for retrospec-

tive air quality simulations and is developed with a specific

surface layer scheme as coupled configuration (Gilliam and

Pleim, 2010). The last possible option is the five-layer ther-

mal diffusion scheme (Dudhia, 1996) which predicts ground

and soil temperatures but no soil moisture and is therefore

also not suitable for our study. Table 1 describes the physical

schemes that were combined to simulate the weather over the

3 summer seasons.

2.3 Observational data

In order to evaluate the ensemble and to rank and select its

best-performing simulations, we use gridded observed daily

temperature and precipitation from E-OBS with a 0.25◦ res-

olution (version 7.0) (Haylock et al., 2008). Bilinear interpo-

lation is used to regrid E-OBS data and the model output to

the same grid. Furthermore, we use station data of monthly

global radiation from the Global Energy Balance Archive

(GEBA) network (Wild et al., 2009). For France 2003 the

Geosci. Model Dev., 8, 2285–2298, 2015 www.geosci-model-dev.net/8/2285/2015/
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Figure 2. Domains used in this study: France, Iberian Peninsula,

Russia and Scandinavia.

data of 21 stations were available, for 2007 this number was

20. Observations over Russia were too scarce and have there-

fore not been considered. Model data are interpolated to these

stations using the nearest neighbor method. In addition, in

order to check land–atmosphere fluxes and the partitioning

of net radiation into sensible and latent heat fluxes, we use

the satellite observation-driven estimates of daily latent heat

fluxes from GLEAM (Miralles et al., 2011). Since the lat-

ter is not a direct measurement we do not use them to rank

the model configurations. Furthermore, latent and sensible

heat flux measurements are used from three FLUXNET sites

(Neustift/Stubai – Austria (Wohlfahrt et al., 2010); Tharandt-

Anchor station – Germany (Grünwald and Bernhofer, 2007);

and Soroe-LilleBogeskov – Denmark (Pilegaard et al., 2011),

from the Carbon-Extreme database), for the evaluation of the

land-surface schemes.

2.4 Evaluation and ranking of model simulations

For ranking, we set up several measures of model skill based

on the differences between observed and simulated spa-

tial averages over two domains: France for 2003 and 2007

(5◦W–5◦ E, 44–50◦ N), and Russia for 2007 and 2010 (25–

60◦ E and 50–60◦ N) (Fig. 2). A first scheme selection is

made based on the skill to reproduce air temperature dynam-

ics, since this is the primary impacted variable, while cor-

responding observations are reliable. Because we are inter-

ested in heat waves, we select only those simulations that are

within a 1 K regional average difference between simulated

and observed temperature, for heat wave periods; these pe-

riods are defined as 1–15 August for France (in 2003), and

1 July till 15 August for Russia (in 2010). The 1 K thresh-

old was arbitrarily chosen and is used to avoid processing

a large number of simulations that have unrealistic temper-

atures. Only 55 of the 216 simulations meet this criterion

and are further considered. Then, the ranking of the retained

simulations is done based on (i) the daily temperature differ-

ence between simulations and observations during the heat

wave periods (as above for 2003 and 2010), and during the

period 1–31 August for the normal year 2007; and (ii) the

root mean square error of monthly precipitation and radia-

tion for the months July, June and August. The GEBA data

set only contains scarce radiation observations over Russia

and therefore we could not consider this region for rank-

ing models against incoming shortwave radiation. As a fi-

nal step, an overall ranking is proposed by averaging the

ranks obtained from the three variables (temperature, precip-

itation and radiation). From this final ranking, and in order

to select an elite of multi-physics combinations, we selected

the top-five highest-ranked configurations. Note that obser-

vational uncertainty is not considered in this study, which

was shown to potentially impact model ranking over Spain

(Gomez-Navarro et al., 2012).

3 Results

3.1 Large systematic errors found during heat wave

periods

Figure 3 shows the large temperature range spanned by the

216 ensemble members for the spatial average over the heat

wave areas. The min–max range between ensemble members

is up to 5 ◦C during heat wave periods (Fig. 3). Locally, at

50 km resolution, the difference between the warmest and

the coldest simulation during a heat wave is larger, reach-

ing more than 10 ◦C in 2003 (Fig. 3d). In 2007, when sum-

mer temperatures were not extreme, the range is about twice

as small. Only a few simulations match the observed high

temperatures (Fig. 3a–c). In Fig. 3a, we select two extreme

configurations (blue and red lines) based on daily mean tem-

perature over France during the 2003 heat wave. Interest-

ingly, they are extreme in all regions and years, indicating

that each configuration tends to induce a rather large system-

atic bias. This bias, however, is different for the “warm” and

the “cold” configurations. It seems not to be due to a mis-

representation of the diurnal cycle, since they remain when

analyzing time series of maximum and minimum daily tem-

peratures independently (see Fig. S1a–f in the Supplement).

However, minimum temperatures show a less consistent bias

than maximum daily temperatures. A systematic temperature

underestimation by WRF simulations over Europe has also

been found in other multi-physics ensemble studies over Eu-

rope (e.g., Awan et al., 2011; García-Díez et al., 2011, 2015).
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Figure 3. Time series of daily mean temperature over France in 2003 (a) and 2007 (b) and Russia in 2010 (c). Every simulation is shown

in gray and observations of E-OBS in black. The blue and red lines are the coldest and the warmest simulations over France during the heat

wave. These lines have the same set of physics in all the figures (3, 4, 5). Panel (d) shows the simulated temperature min–max range during

the heat wave of 2003 (1–15 August). The range is calculated as the difference between the warmest simulation and the coldest simulation

during the heat wave period between the 216 members of the ensemble.
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Figure 4. Monthly precipitation over France in 2003 (a) and 2007 (b) and Russia 2010 (c). The box plots show the extremes, 25th, 50th, and

75th percentiles. The blue and red dots are the coldest and the warmest simulations over France during the heat wave (as in Fig. 3).

For monthly precipitation we obtain a large range of

simulated values, with most configurations overestimating

monthly summer rainfall (JJA) during heat wave years, and

to a lesser extent during the wetter 2007 season (Fig. 4a–c).

This is in line with the findings reported by Warrach-Sagi

et al. (2013) and Awan et al. (2011) and with the overesti-

mation of precipitation by many EURO-CORDEX models

shown by Kotlarski et al. (2014). The two selected extreme

configurations (based on temperature, as explained above)

are reproducing precipitation overall without a major bias.
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Figure 5. Scatter plot of soil moisture content on 31 July, and temperature in August. Every point is one simulation. Different colors and

symbols represent different physics for convection (CU) (a), microphysics (MP) (b), radiation (RA) (c) and planetary boundary layer–surface

(PBL-SF) (d).

This suggests that the temperature bias in these two extreme

simulations is not explicitly caused by a misrepresentation of

the atmospheric water supply from precipitation. However,

soil moisture (the soil moisture over the whole column) does

show a strong relation to temperature biases in model sim-

ulations. Figure 5a–d shows soil moisture at the end of July

versus temperature in August 2003 for each model configu-

ration. Configurations with low soil moisture level are asso-

ciated with higher temperatures and vice versa, confirming

the role of land–atmosphere feedbacks during heat waves,

already pointed out by previous studies. This indicates that

the evapotranspiration from spring to summer depleting soil

moisture can be a critical process during summer for the de-

velopment of heat waves, and that this process is not simply

related to summer precipitation.

For solar radiation, the mean differences between our sim-

ulations over France 2003 and 2007 reach approximately

100 Wm−2 (Fig. 6a, b). Observations for France (black dots)

are found below the median value of the simulations, so a

slight overestimation of the ensemble is obtained. The first

(warmest) extreme configuration (red dot) is associated with

an overestimated radiation of 10–50 Wm−2 while the other

(coldest, blue dot) extreme configuration exhibits an under-

estimated radiation by about the same amount. Since the

warmest simulation agrees better with temperature observa-

tions than the coldest simulation, one may therefore suspect

that it contains a cooling mechanism that partly compensates

for the overestimated solar radiation.

3.2 Sensitivity of temperatures to physical

parameterizations and sources of spread

In order to identify the physics schemes to which the devel-

opment of heat waves is most sensitive, we examine how re-

sulting temperatures are clustered as a function of the scheme

used. We find that the spread between all simulations – both

in terms of temperature and soil moisture – is mostly due

to the differences in convection scheme (clustering of dots

with the same color in Fig. 5a). For instance the Tiedtke

scheme (blue dots) systematically leads to higher tempera-

tures and lower soil moisture, while the Kain–Fritsch scheme
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Figure 6. Monthly radiation over France in 2003 (a) and 2007 (b); no radiation data being available in Russia for 2010. The box plots show

the extremes, 25th, 50th, and 75th percentiles. The blue and red dots are the coldest and the warmest simulations over France during the heat

wave (as in Fig. 3).

Table 2. The five best-performing configurations of physics in ranked from the best to the fifth best.

Microphysics PBL-surface Radiation Convection Soil Rank

Morrison DM Yonsei Uni-MM5 RRTMG Tiedtke NOAH 1

WRF-SM6 MYNN-MYNN RRTMG Grell–Devenyi NOAH 2

WRF-SM6 ACM2-MM5 Goddard Tiedtke NOAH 3

New Thompson MYNN-MYNN RRTMG New SAS NOAH 4

New Thompson ACM2-MM5 RRTMG Tiedtke NOAH 5

(green dots) leads to wetter soils and lower temperatures, in-

hibiting heat waves. Microphysics and radiation schemes are

also contributing to the spread of simulated temperature and

soil moisture values (Fig. 5b, c), although their effect is less

marked than for convection. Heat wave temperatures and soil

moisture seem to be least sensitive to the planetary boundary

layer and surface layer physics schemes. The sensitivity of

the convection scheme in WRF has already been mentioned

in previous studies (Jankov et al., 2005; Awan et al., 2011;

Vautard et al., 2013; García-Díez et al., 2015). Note that the

soil moisture simulated in early August 2003 is better corre-

lated with preceding radiation than with precipitation (com-

pare Figs. S2 and S3), indicating that the way clouds, and

particularly convective clouds, affect radiation prior to the

onset of heat waves is a major driver of the spread for the de-

velopment of heat waves – higher radiation leading to drier

soils and higher temperatures during heat waves.

3.3 A constrained reduced ensemble of best simulations

Focusing only on the 55 selected simulations that differ less

than 1 ◦C from the observations during the heat waves, we

apply the ranking method introduced in Sect. 2 based on

temperature, precipitation and radiation model–observation

comparison metrics. The five highest-ranked simulations are

given in Table 2 and are actually the numbers 1–5 in Table S1

in the Supplement. Figure 7a confirms the ranking by show-

ing that these simulations also perform well in terms of tem-

perature, during the months prior to the heat wave. The same

is furthermore found for the years 2007 in France (Fig. S5)

and 2010 in Russia (Fig. S4), and also for other regions such

as the Iberian Peninsula and Scandinavia (Fig. S6a, d). The

selected simulations however performed less well for precip-

itation over France in 2003 (Fig. 7b), but do not show a large

overestimation of precipitation either. Precipitation over Rus-

sia for the five highest-ranked simulations does show good

performance (Fig. S4b), as well as for other European re-

gions (Fig. S6). The mean radiation of the ensemble of the

five best simulations is closer to the GEBA observations than

in the case of the original ensemble (Fig. 7c).

Nonetheless, the better match of the reduced ensemble of

the five highest-ranked simulations to the observations of

temperature, precipitation and radiation is to a very large de-

gree unsurprising: the selection was based on the fit to ob-

servations. However, it is still satisfactory to see that some

simulations are capable of matching all three variables. Con-

versely, we also compare simulations against another key

variable that was not used for evaluating and ranking simula-

tions, namely the latent heat flux (Fig. 7d). Albeit somehow

reduced compared to the full-ensemble spread, the spread

of the five best simulations for the latent heat flux remains

large over the whole period, on average between 50 and
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Table 3. Cross-comparison between France 2003 and Russia 2010. The (5, 10, 15, 20 and 25) best simulations, when only using one heat

wave to select the best configurations and vice versa, are taken and compared with their ranking for the other heat wave. If there would be no

correlation between the 2 years, the average ranking would lay approximately at half of the total number of simulations for both years that

lay within a first selection of 1 K (column eight). In bold the rankings that are lower than this number. Because observations of radiation are

lacking over Russia, we tested France with and without including radiation in the ranking.

Average ranking of 5, 10, 15, 20 and 25 best simulations Number of simulations

5 10 15 20 25 within 1 ◦C

With radiation average rank Fr–Ru 22.6 21.8 25.3 23.1 27.5 104

With radiation average rank Ru–Fr 15.75 15.2 14.7 13 39.3 58

Without radiation average rank Fr–Ru 53 37 28.4 27.6 25.5 104

Without radiation average rank Ru–Fr 20.25 16.8 18.1 17 19.9 58
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Figure 7. Daily time series of temperature (a) and latent heat flux (c), monthly time series of precipitation (b) and incoming shortwave

radiation (d). Observations are shown in black and the five best-performing runs in colors. Gray lines indicate other simulations. All figures

are a spatial average over France during summer 2003.

120 Wm−2 (observed values are around 75 Wm−2). How-

ever, during the 2003 heat wave over France, three of the

five best simulations exhibit a close resemblance to the latent

heat observations (approximately 5–10 Wm−2) (Fig. 7d).

The two simulations that are found to considerably overes-

timate latent heat flux by approximately 30–40 Wm−2 (as

compared to GLEAM) are those that use a different convec-

tion scheme than the Tiedtke scheme. The overestimation of

latent heat fluxes in these schemes is however not general-

ized for other regions and years (Figs. S4c, S5d, S6c, f–h),

for which the latent heat flux was fairly well simulated within

the range of uncertainty of GLEAM.
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Figure 8. Sensitivity test of the initialization of soil moisture. Difference between the perturbed simulations (red indicates 20 % reduction

of initial soil moisture, blue 20 % enhancement) performed with the five highest-ranked configurations compared to their corresponding

“control” simulations. The darkest lines refer to the simulation conducted with the best-ranked configuration (1), while descending color

shade agrees with descending ranking (1–5).

A cross-comparison for the years 2003 and 2010, that is,

using only the 2010 heat wave to select schemes and verify

the performance of the selected schemes over 2003 and vice

versa, yields some promising results. Table 3 shows the av-

erage ranking of the best (5, 10, 15, 20 and 25) simulations.

When only using one heat wave to select the best configura-

tions, they all lie in the top-ranked half, and even higher in

the ranking in the case of the 2010 heat wave over Russia be-

ing used to select the best configurations. This suggests that

the selection based upon one heat wave in one region should

also provide better simulations for other heat waves or heat

waves in other areas, i.e., that the bias of a member of the

WRF ensemble is not local but at least regional at the scale

of western Europe.

4 Concluding remarks

In this study we designed and analyzed a large multi-physics

ensemble with the WRF model. It is made of all possible

combinations of a set of different atmospheric physics pa-

rameterization schemes. They were evaluated for their ability

to simulate the European heat waves of 2003 and 2010 us-

ing the regional climate model WRF based on temperature,

precipitation and shortwave radiation. Even though the sim-

ulations were constrained by grid nudging, the multi-physics

ensemble contained a large spread in temperature, precipita-

tion and incoming shortwave radiation, the three variables we

used to create an overall configuration ranking. Most simula-

tions systematically underestimate temperature and overesti-

mate precipitation during heat waves, a model pattern that

was already found in previous studies dealing with much

smaller ensembles (e.g., Awan et al., 2011; García-Díez et

al., 2011; Warrach-Sagi et al., 2013). The spread among en-

semble members is amplified during the two extreme heat
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waves of study. Since we only considered a single land-

surface scheme, it is possible that the ensemble spread would

considerably increase when incorporating the uncertainty as-

sociated with modeling land-surface processes. Nevertheless,

considering only atmospheric processes, the magnitude of

the spread still reaches 5 ◦C during the peak of the heat

waves.

We also showed that among atmospheric process param-

eterizations, the choice of a convection scheme appears to

dominate the ensemble spread. We found indications that the

large differences between convection schemes seem to occur

mostly through radiation and therefore the way convective

clouds affect the surface energy and water budget prior to

and during heat waves. Changes in incoming radiation cause

changes in evapotranspiration and therefore soil moisture,

which may subsequently feed back on air temperature.

From this ensemble, we selected a small sub-ensemble

with the five best configurations of atmospheric physics

schemes based on the fit to observations. These configura-

tions capture well the temperature dynamics during the mega

heat waves of France and Russia and they perform better than

other configurations in other regions of Europe. In addition,

they are consistent with independent latent heat flux data

used for cross-validation. This indicates that the constraints

set for the selection reduce the uncertainty across the whole

European continent and point towards the creation of an op-

timized ensemble of WRF configurations specific for heat

waves, with reduced error compensations. A sub-ensemble

that outperforms a larger ensemble was also found by Herrera

et al. (2010). The sub-ensemble based on mean precipitation

showed better results for extreme precipitation as well.

However, a limitation of this study is the use of only

one land-surface scheme; the five selected WRF configura-

tions may actually all be affected by systematic errors of

the NOAH land-surface scheme. The importance of the se-

lected land-surface scheme is further confirmed by the larger

spread of the “best” ensemble for latent heat (in Wm−2) than

for shortwave radiation. In order to mimic radically different

land-surface processes, sensitivity tests in which the initial

absolute amount of soil moisture was artificially increased

and decreased by 20 % all along the soil column have been

conducted. Results confirm the sensitivity of the tempera-

ture simulations to soil moisture, a variable partly controlled

by the land-surface scheme (Fig. 8). The full answer to this

question is left for a future study in which different atmo-

spheric schemes and surface schemes will be jointly per-

muted.

Although our ensemble is trained on only summer condi-

tions, our results have several implications for climate mod-

eling. First, the constrained WRF ensemble may be used in

future studies of climate change; each of the five members

may exhibit a different sensitivity to future climate change

conditions, leading to a constrained exploration of the uncer-

tainty. Then it is important to notice that our study pinpoints

the need to carefully design or adjust the convection scheme

for a proper representation of the summer climate during

heat waves. This is particularly important in order to eval-

uate the impacts of climate change on ecosystems, health,

carbon cycle, water and cooling capacity of thermal energy

plants, since heat waves in the mid latitudes are expected to

be one of the most impacting phenomena in a human-altered

climate. Therefore, impact studies can be designed based on

the selected configurations.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-2285-2015-supplement.
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