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Abstract 

Demand-responsive pricing has been gaining attention in recent research, but its interdependency on searching-for-parking 

traffic is still unknown and a model is needed. In this paper, a dynamic macroscopic parking pricing model with its influence on 

cruising vehicles is developed. The methodology builds on a previous dynamic macroscopic urban traffic and parking study, 

whose model is extended by parking pricing to better replicate reality. 

This study describes a demand-responsive pricing scheme which takes parking search phenomena into consideration. The 

parking fee also changes in response to the demand, compared to previous studies that only focus on the current occupancy rate 

of parking spaces. In addition, the model investigates how parking pricing can affect the decision of searchers between paying the 

current parking cost or keep on searching to obtain a lower cost. In other words, it describes the trade-off of a user between a 

longer cruising time and a lower parking price. To do so, multiple user classes are considered with respect to their origin and 

valuation of time. Several cost variables are taken into consideration such as the predicted parking cost at future time and the 

penalty cost for the past cruising distance in the network. 

Compared to most literature, this macroscopic pricing model has rather low data requirements, mostly related to average 

values and probability distributions across time at the network level. Hence, this macroscopic pricing approach saves on data 

collection efforts and reduces the computation costs significantly. Moreover, the model can be easily solved with a simple 

numerical solver without the use of complex simulation software. 

The model also provides a preliminary idea for city councils regarding the impacts of parking fee policies on the searching-

for-parking traffic (cruising), the congestion in the network (traffic performance), the total driven distance (environmental 

conditions) and the revenue created by parking fees for the city. Based on the model, the influence of demand-responsive parking 

pricing on traffic can be better understood. It is then hoped that the knowledge and methodology obtained here can be transferred 

and used in urban areas. 

© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

In nearly all major cities, parking pricing policies can lead to significant changes on the performance of a 

transportation network. Short-term pricing strategies, for example, can have an influence on the performance of both 

the urban parking and traffic system, e.g., parking pricing can affect the parking availability, the congestion and 

traffic performance, or the traffic composition in the network. In this research, we provide a dynamic macroscopic 

parking pricing model which analyzes the interdependency between demand-responsive pricing and searching-for-

parking traffic. It includes several cost variables (e.g., predicted parking cost at future time, penalty cost for the past 

cruising distance in the network) to provide a more realistic parking pricing model with its influence on cruising 

vehicles. 

In general, the definition of a parking fee is normally based on empirical or modelling approaches. Empirical 

approaches usually collect data by using parking meters for on-street parking spaces, e.g., SFpark (2009), Xerox® 

(implemented in Los Angeles’s LA ExpressParkTM), or through questionnaires, e.g., Auchincloss et al. (2015); 

Bianco (2000). Moreover, several companies invest heavily in their “smart parking” technologies (e.g., Deteq, Fybr, 

Streetline, Libelium, etc.). Based on dynamic information, it is possible to predict real-time demand (Caicedo et al. 

(2012)). In our macroscopic model, we have the advantage that we do not require any specific parking or parking 

pricing data. Without any physical devices nor data collection efforts, we provide general results regarding the 

influences of parking pricing on a dynamic traffic network under more realistic generalized conditions. 

For modeling parking pricing, Arnott et al. (1991) were among the first to study parking in network equilibrium 

models. By using a parking fee policy to control the congestion of the city, low-income workers would try to avoid 

paying high parking fees and try to park further away from their destination in the center of the city. This model, 

however, does not represent traffic performance, i.e., the traffic performance parameters (e.g., travel speed value) 

are assumed as fixed for all conditions in the models. Mackowski et al. (2015) developed a dynamic Stackelberg 

leader-follower game theory approach to model variable parking prices in real-time for effective parking access and 

space utilization. This model provides a long-term demand management strategy capturing user competition and 

considering market equilibrium while our model provides an aggregated parking pricing methodology focusing on 

short-term effects. Ayala et al. (2012) work on a pricing model that sets the parking fees such that the total driving 

distance is minimized in the system. A static parking demand is assumed, i.e., the model cannot replicate a dynamic 

real-world environment. In recent research, Van Nieuwkoop (2014) develops a dynamic link-based model 

formulation as a mixed complementarity problem (MCP) that combines a traffic assignment model in the tradition 

of Wardrop (1952) and a parking search model into one single model. By having a distinction between curbside and 

garage parking spaces and a differentiation of user classes with respect to their origin and value of time (VOT), the 

objectives of the model are to analyze the efficiency and distributional effects of different parking fee policies and to 

impose a demand-responsive pricing scheme for parking. This agent-based MCP model has interesting results for 

the impact of parking fee policies on cruising and on congestion, whereas our research model considers these 

dynamic effects macroscopically with much less simulation data requirements. Qian and Rajagopala (2013) model a 

system optimal parking flow minimization problem that follows a real-time pricing approach for a parking lot based 

on its occupancy rate. This paper assumes a user equilibrium travel behavior and focuses on the pricing of off-street 

parking facilities that may not be transferred directly to an on-street parking pricing model. Arnott and Rowse 

(2009) develop an on-street parking policy with identical agents for a medium-sized city. Their outcome is that 

garage parking fees are overpriced compared to the underpricing of on-street parking fees. Other researches 

(Anderson and de Palma (2004)) analyze the parking pricing economics more formally and show that the social 

optimum can be achieved if the parking garages are owned privately. In this study, we only consider the aggregated 

number of vehicles that are looking for on-street parking in the network. 

In this research, we focus on a macroscopic demand-responsive pricing scheme which takes parking search 

phenomena into consideration. The parking fee also changes in response to the demand, compared to previous 

studies that only concentrate on the current occupancy rate of parking spaces. In addition, the model investigates 

how parking pricing can affect the decision of searchers between paying the current parking cost or keep on 

searching to obtain a lower cost, i.e., it describes the trade-off of a user between a longer cruising time and a lower 

parking price. This dynamic model can later be used to provide a preliminary idea for city councils regarding short-

term effects of parking fee policies on traffic systems. Although different parking pricing schemes have been 
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analyzed, proposed and implemented; to the author’s knowledge, no study has provided yet a parking pricing 

scheme built upon the macroscopic view of the interaction between parking pricing, parking demand, parking 

availability, and traffic conditions.  

This paper builds on a previous study from Cao and Menendez (2015a), in which a parking-state-based matrix 

was developed to model the interaction between urban parking and traffic macroscopically over time. The general 

model provides an approximation of the proportion of cars searching for parking, as well as an approximation of the 

time cars spent searching for parking, or traveling through the system. These approximations are now computed 

under the consideration of the influence of our demand-responsive parking pricing fee over time with its 

corresponding probability of deciding to park. 

In general, in the parking pricing model, when a searcher finds an available parking space, he makes the decision 

to stay or to keep on searching based on several cost factors:  

 the drivers’ VOT depending on where they enter the network; 

 the parking fee of the current parking space; 

 the expected cost of keep on searching (which include the predicted future parking fee at the next parking spot, 

the costs associated with traveling to the next parking possibility, and the penalty for past cruising time). 

 

All travelers come to a decision based on the comparison of parking costs, then the traffic and parking conditions 

can be found over time. Based on that, we analyze the efficiency of the proposed parking pricing scheme with its 

influence on the urban traffic and parking system. These short-term effects include: 

 the searching-for-parking traffic (cruising); 

 the congestion in the network (traffic performance); 

 the total driven distance (environmental conditions); and  

 the revenue created by parking fees for the city. 

 

The paper is organized as follows. Section 2 presents the overall methodology of the macroscopic parking pricing 

model. Section 3 reviews the probability of finding parking over time based on different drivers’ VOT. It is 

integrated into the matrix that describes the system dynamics of urban traffic based on its parking-related states. 

Section 4 introduces the analytical concept/framework of the dynamic macroscopic demand-responsive parking 

pricing. It determines the probability of deciding to park based on the cost of staying and the cost of keep on 

searching. Section 5 shows a numerical example to explore the use of the concept and the proposed methodology. 

Section 6 summarizes the findings of this paper. 

2. Framework 

In this section, the methodology of the dynamic macroscopic parking pricing model is developed. It enhances the 

dynamic urban parking and traffic system based on a matrix from Cao and Menendez (2015a). 

2.1. Overview of the parking-state-based matrix 

The entire model is described in detail in Cao and Menendez (2015a), but for the readers’ convenience, the core 

parts are summarized here. The study considers a small urban area as a simple spatially symmetric network where 

traffic is homogenously distributed. Inputs to this model are the demand, the size of the network, the amount of 

parking supply, and the distribution of parking durations. The parking-state-based matrix, as an output of this model, 

estimates the proportion of cars cruising-for-parking and the cruising time, as well as the traffic conditions and 

parking usage over time.  

Only identical on-street parking places are included in this analysis. The parking searchers have an indifferent 

attitude towards the parking spaces and choose the first available spot they find. The total time domain is split into 

small time slices (e.g., 1 minute), and the traffic/parking conditions are assumed steady within each time slice but 

they can change over time. Two types of traffic demands are considered in this network and they are generated 
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simultaneously in each time slice. The first group of vehicles searches for parking, i.e., they look for on-street 

parking places in the network. This portion of the traffic demand experiences five transition events in the area of 

interest as seen in Fig. 1(a). During one single time slice a vehicle may experience at most one of the transition 

events. The three parking-related traffic states and the five transition events are shown in details in Table 1. The 

second group of vehicles does not search for parking, i.e., the vehicles can be considered as through traffic and/or 

heading to a given parking garage. This portion of vehicles in Fig. 1(b) only experiences the transition events “enter 

the area” and “leave the area” in Table 1, and the decision to leave the area or not depends on their driven distance 

in the network. Each traffic state and transition event in Table 1 is explicitly modelled in Cao and Menendez 

(2015a). 

 

 

         (a) First group of vehicles.                                            (b) Second group of vehicles. 

Fig. 1. The transition events of urban traffic in-between different parking-related states (Source: Cao and Menendez (2015b)). 

It is assumed that all trips are exclusively made by car in this network (i.e., the mode choice has been previously 

made). At the beginning of each time slice, the parking searchers are homogenously distributed within the overall 

driving traffic, while the available identical parking spaces are on average uniformly distributed on the network. 

These assumptions aim at replicating typical conditions in a downtown area, where traffic and parking spaces are 

more or less homogenously distributed. 

      Table 1. Relevant key variables for matrix per time slice. 

Notation Definition 

𝑁𝑛𝑠
𝑖  Number of vehicles in the state “non-searching” at the beginning of time slice 𝑖 (Non-searching). 

𝑁𝑠
𝑖  Number of vehicles in the state “searching” at the beginning of time slice 𝑖 (Searching). 

𝑁𝑝
𝑖  Number of vehicles in the state “parking” at the beginning of time slice 𝑖 (Parking). 

𝑛
 /𝑛𝑠
𝑖

 Number of vehicles that enter the area and transition to “non-searching” during time slice 𝑖 (Enter the area). 

𝑛𝑛𝑠/s
𝑖  Number of vehicles that transition from “non-searching” to “searching” during time slice 𝑖 (Start to search). 

𝑛𝑠/𝑝
𝑖  Number of vehicles that transition from “searching” to “parking” during time slice 𝑖 (Access parking). 

 

Based on some initial conditions, the output of the model is the parking-state related matrix. It represents the 

number of vehicles experiencing each transition event as well as the resulting parking and traffic conditions (e.g., 

parking occupancy and average travel speed). These conditions affect the transition events in the next time slice and 

update iteratively the matrix. The iterations of the model continue over time until a defined criteria is reached (e.g., 

all the cars leave the area). This model is used as an underlying model and is extended to include a dynamic 

macroscopic parking pricing methodology. 
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2.2. Macroscopic parking pricing model 

The purpose of this research is to develop a dynamic macroscopic parking pricing model with its 

interdependency on searching-for-parking traffic. It is included into a traffic system with a parking search model 

over time to replicate reality.  

In Cao and Menendez (2015a), the transition event “Access parking” describes the vehicles’ transition from the 

“searching” to the “parking” state. In this paper, this transition event is enhanced with the parking pricing process in 

Fig. 2. 

 

          

Fig. 2. Modelling parking pricing enhancements between the “searching” and “parking” state. 

Fig. 2 shows an overview of our dynamic demand-responsive parking pricing model within the structure of this 

paper, that includes the probability of finding parking (section 3) and the probability of deciding to park (section 4). 

This last section explains the main model to determine the probability of deciding to park (section 4.1), that refers to 

the computation of the cost of staying (section 4.2), and the cost of keep on searching (section 4.3). 

When a searcher finds an available parking space, he/she makes the decision to park or to keep on searching for 

the next parking possibility. This decision needs to be modelled mathematically and it is dependent on various 

influence factors. Below is an overview of those influence factors and the parking pricing process shown in 

Fig. 2. 

 Probability of finding parking: In section 3, we adapt the transition events “Enter the area” and “Start to 

search” to include vehicles from different VOT origins. The probability of finding parking is determined in the 

transition event “Access parking” based on the number of vehicles 𝑛𝑠/𝑝
𝑖  transitioning from “searching” state to 

“parking” state in the matrix as shown in Cao and Menendez (2015a). 

 Probability of deciding to park 𝜹𝒑𝒂𝒓𝒌𝒊𝒏𝒈: In section 4.1, the main model to compute the probability of deciding 

to park 𝛿𝑝𝑎𝑟𝑘𝑖𝑛𝑔 is determined. This probability models the decision process to park or to keep on searching 
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dynamically. Incorporating the cost of staying and the cost of keep on searching, the probability 𝛿𝑝𝑎𝑟𝑘𝑖𝑛𝑔 refers to 

the vehicles that decide for parking at the current parking space. 

 Cost of staying: The cost of staying in section 4.2 shows the influence factors corresponding to the decision that 

the vehicles would like to stay at the current parking space and pay for parking. The dynamic demand-responsive 

parking fee over time is computed macroscopically dependent on the number of vehicles 𝑁𝑠
𝑖 in the “searching” 

state and the number of available parking spaces at the beginning of time slice 𝑖.  
 Cost of keep on searching: We consider in section 4.3 the cost of keep on searching, that are part of the model 

to determine the probability of deciding to park 𝛿𝑝𝑎𝑟𝑘𝑖𝑛𝑔. It includes 

 the predicted parking fee at the next parking spot in a future time slice (section 4.3.1), 

 the costs associated with traveling to the next parking possibility (section 4.3.2), and 

 the penalty term for the past cruising distance in the network (section 4.3.3). 

Depending on the probability of deciding to park 𝛿𝑝𝑎𝑟𝑘𝑖𝑛𝑔, the number of searching vehicles 𝛿𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ∙ 𝑁𝑠
𝑖 will 

access parking while all other searching vehicles (1 − 𝛿𝑝𝑎𝑟𝑘𝑖𝑛𝑔) ∙ 𝑁𝑠
𝑖  will keep on searching for a next parking 

possibility. 

The model can be used to provide a preliminary idea for city councils regarding the impacts of parking fee 

policies on the searching-for-parking traffic (cruising), the congestion in the network (traffic performance), the total 

driven distance (environmental conditions) and the revenue created by parking fees for the city. 

3. Probability of finding parking 

This section shows an overview of the assumptions, inputs and outputs of the parking pricing model. In addition, 

we determine the probability of finding parking over time based on the drivers’ VOT. 

3.1. Basic information for analytical model 

Basic model assumptions, inputs, and expected outputs are briefly described below. 

 

Assumptions: 

Basic assumptions from Cao and Menendez (2015a) for the matrix are kept here. They include, knowledge on the 

traffic demand over a period of time (e.g., a day), a homogeneous urban traffic network, knowledge on the 

distribution of parking durations, and knowledge on the length and traffic properties of the network. 

The searching time and distance depend on the current traffic conditions (i.e., 𝑁𝑠
𝑖, 𝐴𝑖, etc.) and on drivers’ luck 

finding an available parking spot (based on their own location, that of the available parking spots and the 

competitors). To specify now each vehicles’ driving time and driving distance, one normally needs to record the 

location of all cars and parking spots throughout the different time slices in the system. In this model, we can avoid 

that by using our macroscopic approach. We only consider the average number of vehicles that access parking 

during a time slice, and the total/average searching distance driven during this time slice. The location of parking 

searchers and available parking spots are reset at the beginning of each time slice 𝑖, such that the macroscopic model 

is not influenced by the randomness of vehicles’ location at that specific time slice 𝑖. Due to the fact that the 

locations of the parking spaces and searching vehicles are not tracked, the following two assumptions are used in 

this model. First, we assume the stochastically independent distribution of parking availability on the network, i.e., 

at the beginning of each time slice 𝑖 the locations of available parking spots are assumed as random. The second 

assumption guarantees that the traffic demand is homogeneously generated and the locations of all parking searchers 

are uniformly distributed on the network at the beginning of each time slice 𝑖. The second assumption of having a 

homogeneously generated demand is required for the macroscopic model that provides an average number of 

vehicles that access parking and an average amount of parking spots being taken. This, however, limits the model. In 

reality, searchers can focus on one street to find parking while parking spots are easily available in other areas of the 

network. In this case, the model would likely overestimate the amount of parking spots being taken. However, the 

model presents an idea of the influence of parking to traffic performance under general conditions, because we are 
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interested on whether there is on average at least one car that is able to take an available parking spot. 

In addition to these assumptions, we need to add some parking pricing specific assumptions to the macroscopic 

model. We assume that the VOT is different for individual vehicles depending on their origin. This VOT cost affects 

the parking decision of the cruising vehicles. The proportion of new arrivals that correspond to traffic that is not 

searching for parking is assumed to be independent of vehicles’ VOT. The same assumption is valid for the distance 

that must be driven by a vehicle before it starts to search for parking. 

Vehicles that use parking garages do not typically search for parking and they treat the parking garage as their 

target destination. Thus, it is not realistic to model them as searching traffic. We define a portion of travel demand 

as through traffic which represents trips that do not search for parking. These vehicles either want to park at off-

street, dedicated/private parking facilities, or they simply drive through the network. In this way, it is not necessary 

to model parking garages explicitly, but the vehicles using them are still taken into account. 

 

Inputs: 

Corresponding to the assumptions described above, Table 2 shows all the model’s independent variables. 

The first set corresponds to the travel demand and supply. These variables can be estimated based on some 

historical data, e.g., traffic data on main roads to enter the network; parking data from one day’s data collection, etc.  

The second set corresponds to the traffic network. These variables can be estimated based on real measurements, 

the macroscopic fundamental diagram, and/or simulation results. 

The third set corresponds to the initial conditions of the parking-related states. These variables can be measured, 

assumed or simulated. 

The fourth set corresponds to parking pricing specific input parameters. These variables can be estimated based 

on historical parking pricing data. 

      Table 2. Independent variables (inputs to the model). 

Notation Definition 

𝐾 Total number of origins for demand input of the network. Each origin has a different VOT. 

𝑉𝑂𝑇𝑘 VOT for origin 𝑘 ∈ 𝐾. 

𝑛
𝑘, /𝑛𝑠
𝑖  New arrivals to the network for origin 𝑘 ∈ 𝐾 during time slice 𝑖 (i.e., travel demand per VOT origin) 

𝛽𝑖 Proportion of new arrivals during time slice 𝑖 that correspond to traffic that is not searching for parking. 

𝐴 Total number of existing on-street parking spots (for public use) in the area. 

𝑙𝑛𝑠/𝑠 Distance that must be driven by a vehicle before it starts to search for parking. 

𝐿 Size (length) of the network. 

𝑡 Length of a time slice. 

𝑣 Free flow speed, i.e., maximum speed in the network. 

𝑁𝑛𝑠
0  Initial condition for the non-searching state. 

𝑁𝑠
0 Initial condition for the searching state. 

𝑁𝑝
0 Initial condition for the parking state. 

𝑝0(𝑥𝑟) Initial parking pricing for parking place 𝑥𝑟. 

𝛥𝑚𝑎𝑥 Maximum increase/decrease of pricing per time slice. 

𝜂𝑝𝑟𝑒𝑑 Fixed number of time interval slices to include for approximation of predicted parking pricing. 

𝑝𝑑𝑖𝑠𝑡 Price per kilometer driven on the network (i.e., external costs as petrol, wear and tear of vehicles). 

 

Outputs: 

The model provides, amongst others, the interactions between the dynamic demand-responsive parking pricing 

system, the urban parking system, and the urban traffic system. The demand-responsive pricing output over time and 

its interdependency on cruising vehicles can be studied. The short-term effects of parking pricing on traffic 

conditions can be investigated, i.e., the distance driven and the time spent for both, vehicles searching and vehicles 
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not searching. Besides these environmental, cruising-for-parking and traffic performance effects, we also analyze 

the revenue created by parking fees for the city. 

Table 3 shows a list of new variables we define and use for our methodology. The first set is used to quantify the 

number of vehicles that experience each transition event in a time slice. The second set corresponds to modelling of 

the dynamic demand-responsive pricing. The third set corresponds to the cost variables that are used to compute the 

probability of deciding to park. The fourth set is used to compute these costs variables. 

      Table 3. Intermediate model variables. 

Notation Definition 

𝐴𝑖 Number of available parking spots at the beginning of time slice 𝑖. 

𝛥
𝑁𝑠
𝑖

𝐴𝑖
 Ratio of number of searching vehicles 𝑁𝑠

𝑖 to available parking spaces 𝐴𝑖 between time slices 𝑖 − 1 and 𝑖. 

𝑣𝑖 Average travel speed in time slice 𝑖. 

𝑑𝑖 Maximum driven distance of a vehicle in time slice 𝑖. 

𝑥𝑟 Location of parking spots for all 𝑟 ∈ {1,2,… , 𝐴𝑖}. 

𝑥𝑐 Initial positions searching vehicles for all 𝑐 ∈ {1,2,… , 𝑁𝑠
𝑖}. 

𝛥𝑝𝑖(𝑥𝑟) Maximum increase/decrease of demand-responsive pricing per time slice. 

𝑝𝑖(𝑥𝑟) Fixed number of last time interval slices to include for approximation of predicted parking pricing. 

𝐶𝑡𝑜𝑡
𝑖  Total costs to keep on searching starting from parking space 𝑥𝑟 at time slice 𝑖. 

𝛥𝐶𝑝𝑎𝑦
𝑖  Maximum increase/decrease of demand-responsive predicted future pricing per time slice. 

𝐶𝑝𝑎𝑦
𝑖  

Predicted future parking pricing 𝐶𝑝𝑎𝑦
𝑖 ≈ 𝑝𝑖+1(𝑥𝑗) at next parking spot 𝑥𝑗 for next future time slice 𝑖 + 1 

determined in time slice 𝑖. 

𝐶𝑑𝑖𝑠𝑡
𝑖  

Costs for driving the distance from parking space 𝑥𝑟 to next parking location 𝑥𝑗 (i.e., external costs as petrol, 

wear and tear of vehicles). 

𝐶𝑝𝑒𝑛
𝑖  Costs for penalty term (i.e., driving costs in past old iterations). 

𝐸VOT
𝑖  Expectation value for all VOT costs considering all origins 𝑘 ∈ 𝐾 and all time slices {1, … , 𝑖}. 

𝜏𝑥𝑟𝑥𝑗
𝑖  Travel time from parking space 𝑥𝑟 to next parking location 𝑥𝑗. 

𝑑𝑥𝑟𝑥𝑗
𝑖  Travel distance from parking space 𝑥𝑟 to next parking location 𝑥𝑗. 

𝛿𝑝𝑎𝑟𝑘𝑖𝑛𝑔 Dynamic probability of deciding to park depending on demand-responsive parking pricing. 

𝛾𝑟
𝑖 

Boolean variable to model the decision to stay at current parking space 𝑥𝑟 or to keep on driving to next parking 

location 𝑥𝑗. 

𝛿(𝑑𝑖) Probability of finding parking dependent on 𝑑𝑖. 

𝑜𝑐𝑐𝑖 Parking occupancy in time slice 𝑖. 

𝜂𝐴𝐶𝑇
𝑖  Average cruising time expressed in time slices for time slice 𝑖. 

𝜂∞
𝑖  Average cruising time for searchers that will not find parking, i.e., the drivers search for an infinite distance. 

3.2. Probability of finding parking over time based on VOT 

Based on the assumption that the urban network is abstracted as one ring road with cars driving in a single 

direction, we introduce the modification of the transition events “Enter the area”, “Start to search” and “Access 

parking” as presented in Cao and Menendez (2015a). This assumption simplifies the model without affecting the 

model results, because the homogeneously distributed traffic demand and thus the demand-responsive parking 

pricing can be seen independently of the vehicles traveling in a single direction or two.  

The transition events are adapted to include vehicles from different VOT origins in the network and to access 

parking following the computation of the dynamic probability of deciding to park 𝛿𝑝𝑎𝑟𝑘𝑖𝑛𝑔 in section 4. 

The number of vehicles 𝑛
 /𝑛𝑠
𝑖  entering the area and transitioning to “non-searching“ state (transition event “Enter 

the area”) during time slice 𝑖 is an input to the model. A percentage 𝛽𝑖 of the number of vehicles 𝑛
 /𝑛𝑠
𝑖  does not 
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search for parking and will directly leave the area after driving a distance 𝑙𝑛𝑠/𝑠, whereas the remaining percentage of 

1 − 𝛽𝑖  will go through all transition events. For our parking pricing model we consider different VOTs and 

corresponding VOT costs 𝑉𝑂𝑇𝑘  for all origins 𝑘 ∈ 𝐾, where 𝐾 is the total number of different VOT origins in the 

network. This leads to the fact that the total number of vehicles 𝑛
 /𝑛𝑠
𝑖  is split into 𝑘 different numbers of input 

vehicles 𝑛
𝑘, /𝑛𝑠
𝑖 . The percentage 𝛽𝑖 of the number of vehicles 𝑛

𝑘, /𝑛𝑠
𝑖  is assumed to be 𝑘-independent for 𝑘 ∈ 𝐾. 

Based on these different inputs 𝑛
𝑘, /𝑛𝑠
𝑖  for all origins 𝑘 ∈ 𝐾  the next transition event “Start to search” is 

determined for all origins 𝑘 ∈ 𝐾. We assume that the vehicles start to search after driving a distance 𝑙𝑛𝑠/𝑠 since they 

enter the area. 𝑙𝑛𝑠/𝑠 can assumed to be fixed or to be determined by a given probability function. For simplicity, we 

assume it is fixed and not dependent on the individual origin 𝑘 ∈ 𝐾. Eq. (1) shows the number of vehicles 𝑛
𝑘, 𝑛𝑠/𝑠
𝑖  

starting to search for parking during time slice 𝑖. 
 

𝑛
𝑘, 𝑛𝑠/𝑠
𝑖 = ∑ (1 − 𝛽𝑖

′
) ∙  𝑛

𝑘, /𝑛𝑠
𝑖′

⏟            
term 1

∙ 𝛾𝑛𝑠/𝑠
𝑖′

⏟
term 2

𝑖−1

𝑖′=1

 (1) 

with 

𝛾𝑛𝑠/𝑠
𝑖′ = {

1,    if 𝑙𝑛𝑠/𝑠 ≤∑ 𝑑𝑗
𝑗=𝑖−1

𝑗=𝑖′
 and ∑ 𝑑𝑗

𝑗=𝑖−1

𝑗=𝑖′
≤ 𝑙𝑛𝑠/𝑠 + 𝑑

𝑖−1

0,    if otherwise                                                                          

  

 

The number of vehicles 𝑛
𝑘, 𝑛𝑠/𝑠
𝑖  in Eq. (1) consists of vehicles from origin 𝑘 ∈ 𝐾 that have entered the network 

area in any slice between 1 and 𝑖 − 1. Here we use 𝑖′ ∈ [1, 𝑖 − 1] to denote such a time slice. Term 1 in Eq. (1) 

shows all the vehicles that are not searching yet for parking spaces, whereas term 2 indicates as a binary variable 

whether these vehicles will start to search for parking in time slice 𝑖 or keep on driving without searching for 

parking. The vehicles start to search in case they have driven the required distance  𝑙𝑛𝑠/𝑠 ≤ ∑ 𝑑𝑗
𝑗=𝑖−1
𝑗=𝑖′  and in case 

they have not started to search in a former time slice (condition: ∑ 𝑑𝑗
𝑗=𝑖−1
𝑗=𝑖′ ≤ 𝑙𝑛𝑠/𝑠 + 𝑑

𝑖−1). The remaining vehicles 

that are not part of through traffic and/or vehicles heading to a given parking garage, keep on driving in the “non-

searching” state until these conditions in Eq. (1) are fulfilled. 

We consider the probability of finding parking determined in the transition event “Access parking” in Cao and 

Menendez (2015a). This number of vehicles that transition from “searching” to “parking” state are adapted based on 

the probability of deciding to park (section 4.1), the cost of staying (section 4.2), and the cost of keep on searching 

(section 4.3). 

4. Probability of deciding to park 

In this section, the modelling parts and the analytical formulations for the dynamic macroscopic demand-

responsive parking pricing methodology are shown. We propose the dynamic algorithms for the probability of 

deciding to park, including the corresponding cost of staying and the cost of keep on searching. The goal is to model 

the decision whether to park or keep on searching for a next parking possibility.  

4.1. Main model 

Recall, that 𝑝𝑖(𝑥𝑟) is the actual parking fee at parking spot 𝑥𝑟 . For a parking spot in reach of a car 𝑥𝑟 ∈
[𝑥𝑐 , 𝑥𝑐 + 𝑑

𝑖] for all 𝑟 ∈ {1, … , 𝐴𝑖} we check the following condition 

  

𝑝𝑖(𝑥𝑟) ≤ 𝐶𝑡𝑜𝑡
𝑖 , (2) 

 

i.e., we check whether the parking price at the current parking space 𝑥𝑟  is smaller than the total costs 𝐶𝑡𝑜𝑡
𝑖  of keep on 
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searching. If condition (2) is fulfilled, the driver decides to park at parking location 𝑥𝑟  in time slice 𝑖. Otherwise the 

driver will keep on searching for a next parking spot and as soon as he/she arrives at this next parking possibility, 

condition (2) will be checked again. 

Now the probability of deciding to park 𝛿𝑝𝑎𝑟𝑘𝑖𝑛𝑔 is defined as the probability such that condition (2) is fulfilled.  

 

P(0 ≤ 𝑝𝑖(𝑥𝑟) ≤ 𝐶𝑡𝑜𝑡
𝑖 ) = 𝛿𝑝𝑎𝑟𝑘𝑖𝑛𝑔 =

∑ 𝛾𝑟
𝑖𝐴𝑖

𝑟=1

𝐴𝑖
 (3) 

 

where: 

𝛾𝑟
𝑖 = {

1,   𝑖𝑓      0 ≤ 𝑝𝑖(𝑥𝑟) ≤ 𝐶𝑡𝑜𝑡
𝑖

0,   𝑖𝑓                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Eq. (3) returns the dynamic probability of deciding to park 𝛿𝑝𝑎𝑟𝑘𝑖𝑛𝑔, whereas we consider the computation of its 

elements in the following sections. We start with the computation of 𝑝𝑖(𝑥𝑟) in section 4.2 and keep on with 𝐶𝑡𝑜𝑡
𝑖  in 

section 4.3. 

To illustrate condition (2), we use a simple example of three uniformly distributed parking places on a ring road 

with vehicles driving in a single direction as seen in Fig. 3. 

 

   

     Fig. 3. Simple example of three uniformly distributed parking places to illustrate condition (2). 

 

The vehicles arrive at location 𝑥1 of Fig. 3, where the first decision is modelled. The drivers can now decide to 

pay the parking fee 𝑝𝑖(𝑥1) or to keep on driving until they find the next parking place 𝑥2. Please note that it is not 

possible to skip parking places. Having the underlying assumption of a ring road with vehicles driving in a single 

direction the mathematical condition is executed at every parking space on their way. In case the total costs of keep 

on searching 𝐶𝑡𝑜𝑡
𝑖  from parking location 𝑥1  to parking location 𝑥2  are less than the initial parking fee 𝑝𝑖(𝑥1) at 

location 𝑥1, the drivers will keep on driving to location 𝑥2 where the condition is executed again. Otherwise the 

drivers decide to park at location 𝑥1 and thus they enter the “parking“ state of the matrix. 

4.2. Cost of staying 

The cost of staying, i.e., the demand-responsive parking fee over time are now presented. In the transition event 

“Access parking”, we compute the demand-responsive parking pricing macroscopically. For this algorithm 𝐴𝑖 and 

𝑁𝑠
𝑖 at the beginning of each time slice are found based on the parking-state-based matrix over time. Assume the 

uniformly distributed parking spots are located at 𝑥𝑟  for all 𝑟 ∈ {1,2, … , 𝐴𝑖}, and the searching vehicles’ initial 

positions are 𝑥𝑐, for all 𝑐 ∈ {1,2, … , 𝑁𝑠
𝑖}. Then, we define our dynamic demand-responsive pricing model for all 
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parking spots in reach of a car, i.e., for all 𝑥𝑟 ∈ [𝑥𝑐 , 𝑥𝑐 + 𝑑
𝑖] for all 𝑟 ∈ {1,2, … , 𝐴𝑖}, where 𝑑𝑖  is defined as the 

maximum driven distance of a vehicle in time slice 𝑖. Recall, 𝑝0(𝑥𝑟) is the initial reference price, an input parameter 

to our parking pricing model (see Table 2).  

The ratio between the number of searchers 𝑁𝑠
𝑖 and the number of available parking spots 𝐴𝑖 changes from one 

time slice to the next. This change is formulated as written in Eq. (4). 

 

𝛥
𝑁𝑠
𝑖

𝐴𝑖
=
𝑁𝑠
𝑖

𝐴𝑖
−
𝑁𝑠
𝑖−1

𝐴𝑖−1
 (4) 

 

Depending on 𝛥
𝑁𝑠
𝑖

𝐴𝑖
, the parking pricing then increases or decreases. The parking pricing increases, if 𝛥

𝑁𝑠
𝑖

𝐴𝑖
> 0; it 

decreases if 𝛥
𝑁𝑠
𝑖

𝐴𝑖
< 0. 

The change of parking fee is formulated as Eq. (5). It describes the pricing difference for parking spot 𝑥𝑟  between 

consecutive time slices, because we model parking pricing here with dependency on demand-responsiveness and its 

initial start price. 

 

𝛥𝑝𝑖(𝑥𝑟) = 𝑝0(𝑥𝑟)⏟  
term 1

⋅ (|𝛥
𝑁𝑠
𝑖

𝐴𝑖
|)

1
𝑦

⏟      
term 2

 (5) 

 

In Eq. (5), term 1 is the initial parking price 𝑝0(𝑥𝑟) and term 2 represents the demand-responsive impact to 

𝛥𝑝𝑖(𝑥𝑟). Within term 2, 𝑦 is the influence factor of the demand-responsivity, it changes the level of influence of 

𝛥
𝑁𝑠
𝑖

𝐴𝑖
 to the delta pricing value 𝛥𝑝𝑖(𝑥𝑟). For further studies in this paper, we assume a square root dependency and 

set 𝑦 = 2.  

After computing 𝛥𝑝𝑖(𝑥𝑟), the updated parking fee can be found with Eq. (6). 

 

𝑝𝑖(𝑥𝑟) =

{
  
 

  
 𝑝𝑖−1(𝑥𝑟) + 𝑚𝑖𝑛{𝛥𝑝

𝑖(𝑥𝑟), 𝛥𝑚𝑎𝑥},       𝑖𝑓  𝛥
𝑁𝑠
𝑖

𝐴𝑖
> 0

𝑝𝑖−1(𝑥𝑟),                                                  𝑖𝑓  𝛥
𝑁𝑠
𝑖

𝐴𝑖
= 0

𝑝𝑖−1(𝑥𝑟) − 𝑚𝑖𝑛{𝛥𝑝
𝑖(𝑥𝑟), 𝛥𝑚𝑎𝑥},       𝑖𝑓  𝛥

𝑁𝑠
𝑖

𝐴𝑖
< 0

 (6) 

 

𝛥𝑚𝑎𝑥  is used to reduce the oscillations in the pricing model (i.e., avoid drastic price fluctuations). For 𝛥
𝑁𝑠
𝑖

𝐴𝑖
≷ 0, 

we only consider 𝛥𝑝𝑖(𝑥𝑟) to increase or decrease the parking fee 𝑝𝑖(𝑥𝑟), if it is smaller than the maximum pricing 

change input parameter 𝛥𝑚𝑎𝑥 . Otherwise this pricing change is performed by 𝛥𝑚𝑎𝑥 . For 𝛥
𝑁𝑠
𝑖

𝐴𝑖
= 0, no pricing change 

is made. In the next section, we have a more detailed investigation of how to compute the cost of keep on searching 

for another parking possibility. 

4.3. Cost of keep on searching 

In this section, we focus on the total costs 𝐶𝑡𝑜𝑡
𝑖  of keep on searching for a next parking space 𝑥𝑗 in condition (2). 

Due to the simplification of a one ring road, the next parking spot is defined as a modulo operation 

𝑥𝑗 = 𝑥(𝑟+1)𝑚𝑜𝑑(𝐴𝑖) . For every time slice, the searchers endeavor to minimize the total costs 𝐶𝑡𝑜𝑡
𝑖  as defined in  

Eq. (7), 

 

𝐶𝑡𝑜𝑡
𝑖 = 𝐶𝑝𝑎𝑦

𝑖 + 𝐶𝑑𝑖𝑠𝑡
𝑖 + 𝐶𝑝𝑒𝑛

𝑖 , (7) 
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including 

 the cost 𝐶𝑝𝑎𝑦
𝑖 ≈ 𝑝𝑖+1(𝑥𝑗) for the predicted parking fee at the next parking spot 𝑥𝑗 for the next future time slice 𝑖 +

1, predicted at the beginning of time slice 𝑖 (subsection 4.3.1),  

 the cost 𝐶𝑑𝑖𝑠𝑡
𝑖  of traveling from parking space 𝑥𝑟  to next parking location 𝑥𝑗 (subsection 4.3.2), 

 the penalty cost 𝐶𝑝𝑒𝑛
𝑖 , i.e., the driving cost associated with past iterations (subsection 4.3.3). 

 

In the following subsections, we derive these cost terms and show the details for their computation. 

4.3.1. Predicted future parking fee, 𝐶𝑝𝑎𝑦
𝑖  

The significant term 𝐶𝑝𝑎𝑦
𝑖  is the parking fee for the next parking location 𝑥𝑗 within reach of the car in the next 

future time slice 𝑖 + 1, considered as the predicted future parking pricing. We predict this future price by using 

existing values from past iterations, i.e., we need to have historical information available about the traffic and 

parking system. The approximation for this prediction differs in the amount of time slices to include to compute the 

predicted parking fee in time slice 𝑖 + 1. Based on the existing demand-responsive delta pricing in Eq. (5), we focus 

first on the approximation of the demand-responsive term 2 in Eq. (5) for the predicted time slice 𝑖 + 1. This term is 

estimated by the total average of increases/decreases over the last fixed 𝜂𝑝𝑟𝑒𝑑 time slices, whereas 1 ≤ 𝜂𝑝𝑟𝑒𝑑 ≤ 𝑖 −

1  is an input parameter to the model. Thus, we consider all ratios 𝛥
𝑁𝑠
𝑘

𝐴𝑘
≠ 0 for 𝑘 ∈ {𝑖 − 𝜂𝑝𝑟𝑒𝑑 + 1,… , 𝑖} to get the 

aggregated predictive estimate in Eq. (8). 

 

(|𝛥
𝑁𝑠
𝑖+1

𝐴𝑖+1
|)

1
𝑦

≈ (|𝛥
𝑁𝑠
𝑖

𝐴𝑖
|)

1
𝑦

⏟      
term 1

⋅ | ∑
𝛥
𝑁𝑠
𝑘

𝐴𝑘

𝛥
𝑁𝑠
𝑘−1

𝐴𝑘−1

𝑖

𝑘=𝑖−𝜂𝑝𝑟𝑒𝑑+1

|

⏟            
term 2

, 
(8) 

 

where 𝛥
𝑁𝑠
𝑘−1

𝐴𝑘−1
≠ 0 . Term 1  in Eq. (8) refers to the current demand-responsive term in Eq. (5). For the input 

parameters 𝜂𝑝𝑟𝑒𝑑 = 1, the approximation term 2 in Eq. (8) only considers the increase/decrease of the ratio 𝛥
𝑁𝑠
𝑘

𝐴𝑘
 

from the time slice 𝑖 − 1 to the current slice 𝑖, while for 𝜂𝑝𝑟𝑒𝑑 = 𝑖 − 1 this estimate covers the total average of 

increases/decreases of the ratio 𝛥
𝑁𝑠
𝑘

𝐴𝑘
 for all time slices 𝑘 ∈ {2, … , 𝑖}. Due to the input parameter 𝜂𝑝𝑟𝑒𝑑 in Eq. (8), the 

ratios 𝛥
𝑁𝑠
𝑘

𝐴𝑘
 for initial time slices 𝑘 have no impact on the predictive pricing for long simulations runs. By using the 

estimate in Eq. (8), we get the dynamic predicted demand-responsive delta pricing in Eq. (9) analog to Eq. (5). 

 

𝛥𝐶𝑝𝑎𝑦
𝑖 = 𝑝0(𝑥𝑟) ⋅ (|𝛥

𝑁𝑠
𝑖

𝐴𝑖
|)

1
𝑦

⋅ | ∑
𝛥
𝑁𝑠
𝑘

𝐴𝑘

𝛥
𝑁𝑠
𝑘−1

𝐴𝑘−1

𝑖

𝑘=𝑖−𝜂𝑝𝑟𝑒𝑑+1

|, (9) 

 

where 𝛥
𝑁𝑠
𝑘−1

𝐴𝑘−1
≠ 0. By using Eq. (9) we compute in Eq. (10) the actual predictive parking pricing 𝐶𝑝𝑎𝑦

𝑖  for parking 

spot 𝑥𝑗 in time slice 𝑖 + 1. 
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𝐶𝑝𝑎𝑦
𝑖 =

{
  
 

  
 𝐶𝑝𝑎𝑦

𝑖−1 +𝑚𝑖𝑛{𝛥𝐶𝑝𝑎𝑦
𝑖 , 𝛥𝑚𝑎𝑥},       𝑖𝑓  𝛥

𝑁𝑠
𝑖

𝐴𝑖
> 0

𝐶𝑝𝑎𝑦
𝑖−1 ,                                               𝑖𝑓  𝛥

𝑁𝑠
𝑖

𝐴𝑖
= 0

𝐶𝑝𝑎𝑦
𝑖−1 −𝑚𝑖𝑛{𝛥𝐶𝑝𝑎𝑦

𝑖 , 𝛥𝑚𝑎𝑥},       𝑖𝑓  𝛥
𝑁𝑠
𝑖

𝐴𝑖
< 0

 (10) 

 

Depending on the positive or negative sign of ratio 𝛥
𝑁𝑠
𝑖

𝐴𝑖
, Eq. (10) determines an increase or decrease of the 

dynamic predictive demand-responsive parking fee for future time slice 𝑖 + 1. 

4.3.2. Costs of traveling to next parking space, 𝐶𝑑𝑖𝑠𝑡
𝑖  

𝐶𝑑𝑖𝑠𝑡
𝑖  represents the cost of traveling from one parking space to the next parking possibility. This cost is 

associated with the driving distance from location 𝑥𝑟  to the next parking space 𝑥𝑗 and with the VOT of the drivers 

from origin 𝑘 ∈ 𝐾. 

Recall that 𝐿 is the length of the network and 𝑣𝑖  the average travel speed in time slice 𝑖. We define the travel 

distance 𝑑𝑥𝑟𝑥𝑗
𝑖  from parking space 𝑥𝑟  to 𝑥𝑗 in Eq. (11). 

 

𝑑𝑥𝑟𝑥𝑗
𝑖 =

𝐿

𝐴𝑖
 (11) 

 

With the aid of 𝑑𝑥𝑟𝑥𝑗
𝑖  we get the travel time 𝜏𝑥𝑟𝑥𝑗

𝑖  from parking location 𝑥𝑟  to 𝑥𝑗 in Eq. (12). 

 

𝜏𝑥𝑟𝑥𝑗
𝑖 =

𝑑𝑥𝑟𝑥𝑗
𝑖

𝑣𝑖
 (12) 

 

We introduce the input variable 𝑝𝑑𝑖𝑠𝑡 , the price per distance unit. Then, 𝑑𝑥𝑟𝑥𝑗
𝑖  and 𝜏𝑥𝑟𝑥𝑗

𝑖  are both used to model 

𝐶𝑑𝑖𝑠𝑡
𝑖  in Eq. (13),   

 

𝐶𝑑𝑖𝑠𝑡
𝑖  = 𝑝𝑑𝑖𝑠𝑡 ∙ 𝑑𝑥𝑟𝑥𝑗

𝑖
⏟      

term 1

+ 𝐸𝑉𝑂𝑇
𝑖 ∙ 𝜏𝑥𝑟𝑥𝑗

𝑖
⏟      

term 2

, 
(13) 

 

where term 1 is associated with the actual driving distance (i.e., external costs as petrol, wear and tear of vehicles) 

and term 2 refers to the drivers’ VOT. The variable 𝐸𝑉𝑂𝑇
𝑖  in term 2 shows the expectation value for all VOT costs 

for all origins in time slice 𝑖. Recall 𝑉𝑂𝑇𝑘  are the input parameters showing the VOT costs for all origins 𝑘 ∈ 𝐾. We 

assume the number of vehicles 𝑛
𝑘, 𝑛𝑠/𝑠
𝑖  starting to search for parking from origin 𝑘 in time slice 𝑖 being an indicator 

for 𝐸𝑉𝑂𝑇
𝑖  for all possible VOTs. 𝐸𝑉𝑂𝑇

𝑖  is dependent on both, the searching vehicles coming originally from origin 𝑘 

compared to the total number of currently searching vehicles, and the VOT costs 𝑉𝑂𝑇𝑘  for 𝑘 ∈ 𝐾. By averaging 

over all times 𝑖 and all 𝑘 ∈ 𝐾, we get Eq. (14) with 𝑛𝑛𝑠/𝑠
𝑡 = ∑ 𝑛

𝑘, 𝑛𝑠/𝑠
𝑡𝐾

𝑘=1 . 

 

𝐸𝑉𝑂𝑇
𝑖 =

1

𝑖
∑∑

𝑛
𝑘, 𝑛𝑠/𝑠
𝑡

𝑛𝑛𝑠/𝑠
𝑡

𝑖

𝑡=1

𝐾

𝑘=1

∙ 𝑉𝑂𝑇𝑘 (14) 

 

With Eq. (14) the travel time 𝜏𝑥𝑟𝑥𝑗
𝑖  from the actual to the next possible parking location is transferred to cost 

related to VOT. 
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4.3.3. Penalty cost, 𝐶𝑝𝑒𝑛
𝑖  

Now we need to consider as well the driving cost 𝐶𝑝𝑒𝑛
𝑖  in past iterations and take into consideration of how long 

the driver already travelled in total. We model this by using the average cruising time on the network that is the 

same for every car. This penalty cost term is defined as 

 

𝐶𝑝𝑒𝑛
𝑖 = 𝑝𝑑𝑖𝑠𝑡 ∙∑ 𝑑𝑘

𝑖

𝑘=𝑖−𝜂𝐴𝐶𝑇
𝑖 +1

, (15) 

 

where 𝑑𝑘 is the maximum driven distance of a vehicle in time slice 𝑘 and 𝜂𝐴𝐶𝑇
𝑖  shows the average number of time 

slices where the vehicles are in “searching” state. In other words, 𝜂𝐴𝐶𝑇
𝑖  in Eq. (15) denotes the average cruising time 

divided by the length of a time slice 𝑡. We focus now on the estimation of 𝜂𝐴𝐶𝑇
𝑖 . 

In Cao and Menendez (2015b) the probability of finding parking 𝛿(𝑑𝑖) is determined. This estimation describes 

the probability of finding parking assuming that the conditions remain the same over a period of time. In other 

words, the equation looks at a single time slice, where the period is comparatively short (e.g., smaller than 10 

minutes).  

Denote 𝑜𝑐𝑐𝑖  as the parking occupancy, hence the number of currently available parking spaces is (1 − 𝑜𝑐𝑐𝑖) ∙ 𝐴𝑖. 

Notice that when 𝑜𝑐𝑐𝑖 = 1, there is currently no available parking. Searchers have to drive while waiting for parking 

spaces to become available and thus, 𝛿(𝑑𝑖) = 0 . The cruising distance 𝑑𝑖  of vehicles depends on the future 

departure time of parked vehicles, i.e., before any parking space becomes available, the searchers are cruising for 

nothing. The relationship between 𝛿(𝑑𝑖) and 𝑑𝑖 is explained in Cao and Menendez (2015b). By integrating 𝛿(𝑑𝑖) 

with respect to 𝑑𝑖 we get the average cruising distance for a low occupancy rate 𝑜𝑐𝑐𝑖 ∈ [0,1 − 
𝑁𝑠
𝑖

𝐴𝑖
] and for a high 

occupancy rate 𝑜𝑐𝑐𝑖 ∈ [1 −
𝑁𝑠
𝑖

𝐴𝑖
, 1]. Here it is important to differ between (1 − 𝑜𝑐𝑐𝑖) ∙ 𝐴𝑖  searchers that will find 

parking, and 𝑁𝑠
𝑖 − (1 − 𝑜𝑐𝑐𝑖) ∙ 𝐴𝑖 searchers that will not find parking. The drivers that will not find parking search 

for an infinite distance and still never find parking. Thus, their average cruising distance is infinite and their 

corresponding average cruising time is defined as 𝜂∞
𝑖 . With the aid of the average cruising distance and 𝑑𝑖 = 𝑣𝑖 ∙ 𝑡 ⋅

𝜂𝐴𝐶𝑇
𝑖 , we estimate 𝜂𝐴𝐶𝑇

𝑖  in Eq. (16). 

 

𝜂𝐴𝐶𝑇
𝑖 =

{
 
 
 

 
 
 𝐿 − ∫ 𝛿(𝑑𝑖)𝒅𝑑𝑖

𝐿

0

𝑡 ⋅ 𝑣𝑖
                                                           , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟𝑠                              , 𝑖𝑓 𝑜𝑐𝑐𝑖 ∈ [0,1 −  

𝑁𝑠
𝑖

𝐴𝑖
]

{
 
 

 
 
𝐿 ⋅ (

𝐴𝑖 ⋅ (1 − 𝑜𝑐𝑐𝑖)
𝑁𝑠
𝑖 )

2

− ∫ 𝛿(𝑑𝑖)𝒅𝑑𝑖
𝐴𝑖⋅𝐿⋅(1−𝑜𝑐𝑐𝑖)

𝑁𝑠
𝑖

0

𝑡 ⋅ 𝑣𝑖
, 𝑓𝑜𝑟 (1 − 𝑜𝑐𝑐𝑖) ⋅ 𝐴𝑖  𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟𝑠          

  𝜂∞
𝑖                                                                               , 𝑓𝑜𝑟 𝑁𝑠

𝑖 − (1 − 𝑜𝑐𝑐𝑖) ⋅ 𝐴𝑖  𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟𝑠

 , 𝑖𝑓 𝑜𝑐𝑐𝑖 ∈ [1 −  
𝑁𝑠
𝑖

𝐴𝑖
, 1]

 (16) 

 

We determine the integrals in Eq. (16) by using analytical integration and a Taylor series approximation to its 

third polynomial term. 

 

∫ 𝛿(𝑑𝑖)𝒅𝑑𝑖
𝐿

0

= 𝐿 [1 −
1

(1 − 𝑜𝑐𝑐𝑖)𝐴𝑖 + 1
(1 − (1 −

1

𝑁𝑠
𝑖
)

(1−𝑜𝑐𝑐𝑖)𝐴𝑖+1

)

+
𝐴𝑖(1 − 𝑜𝑐𝑐𝑖)

𝑁𝑠
𝑖

𝑒

(𝑜𝑐𝑐𝑖−1)𝐴𝑖

𝑁𝑠
𝑖

[
1

𝐴𝑖(1 − 𝑜𝑐𝑐𝑖)
(1 − 𝑁𝑠

𝑖) +
13

36
−

1

4(𝑁𝑠
𝑖)
2 −

1

9(𝑁𝑠
𝑖)
3

+
𝐴𝑖(1 − 𝑜𝑐𝑐𝑖)

𝑁𝑠
𝑖

(
1

24(𝑁𝑠
𝑖)
3 −

1

24
)]] 
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∫ 𝛿(𝑑𝑖)𝒅𝑑𝑖

(1−𝑜𝑐𝑐𝑖)⋅𝐴𝑖⋅𝐿

𝑁𝑠
𝑖

0

= 𝐿 [
𝐴𝑖(1 − 𝑜𝑐𝑐𝑖)

𝑁𝑠
𝑖 −

1

(1 − 𝑜𝑐𝑐𝑖)𝐴𝑖 + 1
(1 − (1 −

1

𝑁𝑠
𝑖)

(1−𝑜𝑐𝑐𝑖)𝐴𝑖+1

)

+
𝐴𝑖(1 − 𝑜𝑐𝑐𝑖)

𝑁𝑠
𝑖 𝑒

(𝑜𝑐𝑐𝑖−1)𝐴𝑖

𝑁𝑠
𝑖

[
1

𝐴𝑖(1 − 𝑜𝑐𝑐𝑖)
− 1 −

1

4(𝑁𝑠
𝑖 )2
−

1

9(𝑁𝑠
𝑖 )3
+
𝐴𝑖(1 − 𝑜𝑐𝑐𝑖)

24(𝑁𝑠
𝑖 )4

+
(𝐴𝑖)

2
(1 − 𝑜𝑐𝑐𝑖)

2

4(𝑁𝑠
𝑖 )2

+
(𝐴𝑖)

3
(1 − 𝑜𝑐𝑐𝑖)

3

9(𝑁𝑠
𝑖 )3

−
(𝐴𝑖)

4
(1 − 𝑜𝑐𝑐𝑖)

4

24(𝑁𝑠
𝑖 )4

]] 

 

For implementation purposes, 𝜂∞
𝑖  is approximated in Eq. (17) by dividing the total cruising time until now 

(expressed in time slices) by the total number of vehicles that cruised and already found parking and the number of 

vehicles that are still cruising in the current time slice 𝑖. Note that 𝜂∞
𝑖  also includes the cruised time for vehicles that 

already found parking compared to the other cases described in Eq. (16). 

 

𝜂∞
𝑖 =

∑ 𝑁𝑠
𝑚𝑖

𝑚=1

∑ ∑ 𝑛
𝑘, 𝑛𝑠/𝑠
𝑚𝐾

𝑘=1
𝑖
𝑚=1

   (17) 

 

 

Eq. (16) shows an approximation for the average cruising time 𝜂𝐴𝐶𝑇
𝑖  expressed in time slices to determine 𝐶𝑝𝑒𝑛

𝑖  in 

Eq. (15). 

5. Applications 

In this section, a numerical example is provided to illustrate the influences of dynamic demand-responsive 

parking pricing on the traffic system. We present the results obtained from multiple simulation runs and discuss the 

findings regarding parking pricing, and the corresponding revenue with its impact on the average/total searching 

time/distance in the network. 

5.1. Numerical example 

The study is conducted with the aid of a simple numerical solver such as Matlab, and employs an abstraction of 

the network that considers a one ring road with cars driving in a single direction. We have three different origins to 

the network that are associated to different VOTs (𝑉𝑂𝑇1 = 14 CHF/h; 𝑉𝑂𝑇2 = 18 CHF/h; 𝑉𝑂𝑇3 = 16 CHF/h). The 

total travel demand contains 200 trips, whereas 40 trips start from origin 1, 60 trips from origin 2 and 100 trips 

from origin 3. The entry time of the vehicles to the area from these origins obeys a gamma distribution, where the 

average arrival time is 20 min after the observation period starts (more precisely, the shape parameter is 4 and the 

scale parameter is 5). Each time slice lasts for 1 min, i.e., 𝑡 = 1 min. For simplicity and due to space constraints, we 

assume there is no through traffic (i.e., 𝛽𝑖 = 0, ∀𝑖). The initial parking fee is set to 𝑝0(𝑥𝑟) = 2.50 CHF for all 

parking spots and the price per distance driven is 𝑝𝑑𝑖𝑠𝑡 = 0.3 CHF/km. The maximum pricing change per time slice 

is set to 𝛥𝑚𝑎𝑥 = 0.5 CHF/min and the predictive future parking fee is based on the past 𝜂𝑝𝑟𝑒𝑑 = 10 time slices. 

Other inputs include: 𝐿 = 1 km; 𝐴 = 23 parking spaces, and 𝑣 = 30  km/h. All further input parameters to the 

general macroscopic model can be found in the numerical example in Cao and Menendez (2015a). 

In the following section, we analyze the outputs with focus on the revenue that can be collected with the aid of 

demand-responsive parking fees with its influence on the average/total searching time in the area. 

5.2. Impacts of parking pricing 

The focus of this paper is to add parking pricing to the macroscopic traffic and parking model in Cao and 

Menendez (2015a) to provide a realistic parking pricing model with its influence on searching-for-parking traffic. 
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Pricing might increase the cruising time of vehicles, but in the long-term drivers might avoid high parking fees and 

quit their trips. This could change the demand, but this potential long-term effect is out-of-scope of this paper. 

Instead we concentrate on short-term effects as the financial benefits of parking fees that can lead to increasing 

revenue for the city. 

For this numerical example, we get the parking pricing output over time in Fig. 4. This plot is obtained by 

grouping the pricing fees over 4 consecutive time slices, i.e., the parking price is updated every 4 minutes. In 

addition, the parking fee is rounded to the next 0.5 CHF value to simplify the pricing structure. 

 

 

Fig. 4. Demand-responsive parking pricing fee over time. 

 

We realize that with the increasing cruising-for-parking traffic the parking fee increases from its initial value to 

11 CHF, where it stays as long as all parking spaces are occupied. In case a driver departs from the location, the 

parking spot is taken immediately by another cruising vehicle. After 60 minutes the ratio of the number of searching 

vehicles to the available parking spaces decreases. Thus, the parking fee decreases back to its initial value of 2.50 

CHF. Cumulating this parking fee for all vehicles that decide to park results in the cumulative revenue over time in 

Fig. 5. A total revenue of 1414 CHF is reached after 100 minutes. 
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Fig. 5. Cumulative revenue (in CHF) resulting from parking pricing over time. 

 

Besides this financial benefit, parking pricing leads to a short-term increase of the average/total searching time 

and thus, to more congestion in the network. Compared to the scenario without parking pricing the total searching 

time increases by 150 minutes to 5740 minutes in the pricing scenario (Table 4). The VOT expectation value for all 

origins is determined as 𝐸𝑉𝑂𝑇
𝑖 = 0.27 CHF/min. Hence, the total searching time in costs converted through VOT is 

1549.8 CHF for the parking pricing scenario. This is an increase by 40.5 CHF for all vehicles in the whole time 

period. We can also investigate an increase of the total non-searching time by 69 minutes that is equivalent to a rise 

of approx. 18.7 CHF. 

   Table 4. Average/Total time vehicles spent in (non-)searching states (with/without parking pricing). 

State 
Average time per  

vehicle (min/veh) 
Total time (min)  

Total costs (converted 

through VOT) 

Searching state (without parking pricing) 27.9 5590 1509.3 

Searching state (with parking pricing) 28.7 5740 1549.8 

Non-searching state (without parking pricing) 6.7 1339 361.5 

Non-searching state (with parking pricing) 7 1408 380.2 

 

Considering the average/total driven distance per vehicle in Table 5, we realize that the total driven distance 

decreases in the scenario with parking pricing for both, vehicles searching and vehicles non-searching. For the 

searching state we get a total decrease of 4.7 km and for the non-searching state a total decrease of 1.3 km. Hence, 

the average driven distance also decreases minimally per vehicle for both states. The increased searching and non-

searching time for all vehicles leads to deteriorated traffic conditions, hence lower network speeds and a decreasing 

driven distance. This, in turn, slightly improves environmental conditions for the pricing scenario. 
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            Table 5. Average/Total driven distance (with/without parking pricing). 

State 
Average driven  

distance (km/veh) 

Total driven  

distance (km)  

Searching state (without parking pricing) 6.123 1224.6 

Searching state (with parking pricing) 6.099 1219.9 

Non-searching state (without parking pricing) 1.111 222.2 

Non-searching state (with parking pricing) 1.104 220.9 

 

Adding of parking pricing not only provides a realistic model, it also leads to financial revenues that significantly 

exceed the decrease regarding the total searching time in the network. By comparing the total increase in time by 

59.2 CHF (i.e., 219 minutes) with the total revenue of 1414 CHF, the model leads to significant improvements for 

city councils or private agencies in the area. 

But now the usage of the model is not limited to these specific results and it allows you to optimize the parking 

pricing scheme for different object criteria (e.g., maximize revenues, minimize travel distance, and minimize 

cruising traffic) in the network. 

6. Conclusions 

In this study, we develop a dynamic macroscopic parking pricing model and analyze the interdependency 

between demand-responsive pricing and searching-for-parking traffic. A focus is set on the influence of parking 

pricing on cruising vehicles. The model is integrated to an existing urban traffic and parking methodology to 

replicate reality. Based on the study from Cao and Menendez (2015a), we use the parking-state based matrix of 

aggregated vehicles between different parking-related states within the urban area as an underlying model.  

The main contributions from this paper are summarized in the following. 

 In our demand-responsive pricing scheme the parking fee also changes in response to the number of searching 

vehicles, compared to previous studies that only focus on the current occupancy rate of parking spaces. This 

makes our methodology to an actual demand-responsive model that takes parking search phenomena into 

consideration. 

 The model investigates how parking pricing can affect cruising vehicles. The decision of searchers between 

paying the current parking cost or keep on searching for another parking possibility to obtain a lower cost is 

modelled. In other words, the model describes the trade-off of a user between a longer cruising time and a lower 

parking price. Thus, multiple user classes are considered with respect to their origin and VOT. The probability of 

deciding to park results from its influencing factors, the costs of staying at the current parking place and the costs 

of keep on searching for a next parking possibility. These cost variables include the predicted parking cost at 

future time at the next possible parking location, the costs of traveling from the actual parking spot to a next 

parking place associated with driving distance and VOT, and the penalty cost associated with the cruising time in 

past iterations. 

 The model also provides a preliminary idea for city councils regarding the impacts of parking fee policies on the 

searching-for-parking traffic (cruising), the congestion in the network (traffic performance), the total driven 

distance (environmental conditions) and the revenue created by parking fees for the city. By incorporating 

parking pricing to the macroscopic traffic and parking model, pricing might increase the cruising time of the 

vehicles in the network. But in long-term drivers might avoid high parking fees and quit their journeys. This 

could change the demand, but this potential long-term effect is out-of-scope of this paper. Instead we concentrate 

on short-term effects as the financial benefits of parking fees that can lead to increasing revenue for the city. 

 

The whole framework provides an easy to implement generalized methodology to macroscopically model 

dynamic parking pricing. The methodology is based on very limited data inputs, including travel demand, VOT, 

number of existing on-street parking places, the traffic network, and initial parking pricing specifications. All data 

requirements correspond to aggregated values at the network level over time, such that no pricing data for individual 
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parking spots is needed. Compared to existing models, this macroscopic pricing approach saves on data collection 

efforts and reduces the computation costs significantly. Moreover, the model can be easily solved with a simple 

numerical solver without the use of complex simulation software. 

Overall, the usage/application of the proposed model is far beyond what we have illustrated in the numerical 

example. The model can provide the relation between through traffic or vehicles that are not searching for parking, 

parking pricing and the traffic conditions. This is not included in the paper as the through traffic was assumed to be 

zero for simplification purposes. In addition, for simplicity we have assumed in the numerical example that all 

individual parking spaces have the same initial parking price for on-street parking. The influence of individual initial 

parking prices on the traffic system can be analyzed in future studies. Furthermore, the pricing of off-street parking 

facilities can be modeled explicitly, such as the pricing of not uniformly distributed parking spaces over the 

network. In reality, vehicles can focus on parking possibilities in a central street or area of the network. Future 

research can also include the parking pricing for a non-homogenous environment. Besides that, we can include a 

traffic demand split with a fixed (low subsidized) parking fee in all garages and/or on-street parking spaces. This can 

be motivated by, e.g., the subsidy by a company or the city for its residents. The remaining portion of the demand is 

treated demand-responsively, reflecting the external costs for parking. 

In summary, the proposed model, despite its simplicity, can be used to efficiently evaluate a dynamic demand 

responsive pricing scheme macroscopically. With the aid of scarce aggregated data, this model can be used to 

investigate, how parking pricing can affect searching-for-parking traffic and traffic performance (e.g., average time 

searching for parking, and average distance driven); and how different traffic conditions (e.g., number of vehicles 

cruising for parking, and available parking spaces in the network) can affect the demand-responsive parking pricing 

and the probability of deciding to park at the current parking space over time. Based on the model, the influence of 

demand-responsive parking pricing on traffic can be better understood. It is then hoped that the knowledge and 

methodology obtained here can be transferred and used in urban areas.  
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