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EFFICIENT REGRESSION PRIORS FOR REDUCING IMAGE COMPRESSION ARTIFACTS

Rasmus Rothe, Radu Timofte, and Luc Van Gool

Computer Vision Lab, D-ITET, ETH Zürich, Switzerland

ABSTRACT

Lossy image compression allows for large storage savings
but at the cost of reduced fidelity of the compressed images.
There is a fair amount of literature aiming at restoration by
suppressing the compression artifacts. Very recently a learned
semi-local Gaussian Processes-based solution (SLGP) has
been proposed with impressive results. However, when ap-
plied to top compression schemes such as JPEG 2000, the
improvement is less significant. In our paper we propose
an efficient novel artifact reduction algorithm based on the
adjusted anchored neighborhood regression (A+), a method
from image super-resolution literature. We double the rela-
tive gains in PSNR when compared with the state-of-the-art
methods such as SLGP, while being order(s) of magnitude
faster.

Index Terms— lossy image compression, artifact re-
moval, regression, image enhancement, super-resolution.

1. INTRODUCTION

For the sake of reducing storage, multimedia content often is
stored in compressed form. Furthermore, lossy image com-
pression is preferred to lossless compression because of its
significantly higher compression rates. This, however, results
in the loss of fidelity to the original content. With the broad
adoption of lossy image compression, in particular the com-
pression artifact suppression has become a focus for research.
This literature closely connects with important advances that
have been made in compression algorithms.

One of the most used coding techniques is block-based
discrete cosine transform (BDCT). It is used widely for com-
pression of both images and videos (e.g., JPEG/MPEG).
BDCT’s main drawback is the presence of discontinuities at
block boundaries, also known as block artifacts, especially for
low bit rates. JPEG 2000 uses the discrete wavelet transform
instead of the BDCT stage from JPEG. In this way, JPEG
2000 exhibits milder artifacts, mostly ringing artifacts. In [1]
a scale-space method for ringing estimation is proposed.

There are different research directions for artifact removal
seen as an image enhancement task. The main one, followed
in this paper, employs the use of prior knowledge. Projec-
tion onto convex sets (POCS) models represent prior knowl-
edge under the form of convex constraints (such as smooth-
ness or quantization constraints). POCS models perform well
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Fig. 1. Image compression artifact reduction result of our
method (image 6).

for JPEG [2] and JPEG 2000 [3] image enhancement. Roth
and Black [4] propose a field of experts (FoE) with learned
clique potentials under Markov Random Field framework for
image enhancement. The noise removal is targeted by La-
parra et al. [5] with a non-parametric suppor vector regres-
sion (SVR) method. Tschumperle and Deriche [6] propose a
single generic anisotropic diffusion equation as unifying ex-
pression for different enhancement applications.

Other works propose specific formulations for the com-
pression artifact removal. Qiu [7] proposes the use of a multi-
layer perceptron (MLP) model. Foi et al. [8] applies a shape-
adaptive DCT method (SADCT) pointwisely. Zhai et al. [9]
uses a block-shift filtering-based algorithm.

Nosratinia [10] observes that the re-application of JPEG
reduces the artifacts. He notices the same for JPEG 2000 [11].

Recently, Kwon et al. [12] proposed a common solution
to image super-resolution and compression artifact removal
by using Gaussian Processes (GP) under a semi-local approx-
imation (SLGP). By the approximation scheme the time com-
plexity of large-scale GPs decreases. Since their approach
achieves the best results to date for JPEG and JPEG 2000 ar-
tifact removal, it is our main comparing method.

We propose a novel post-processing method based on the
recent adjusted anchored neighborhood regression (A+) [13,
14], a state-of-the-art method in single image super-resolution.
In our method, for a certain lossy compression method we
learn offline linear regressors from compressed to raw train
images, and then apply them to reduce the compression ar-
tifacts in test images. Based on these priors extracted from
the training material we are able to reduce the artifacts and
achieve state-of-the-art performance, doubling the PSNR gain
of SLGP [12] while having order of magnitude lower running
time.



2. PROPOSED METHOD

2.1. Overview

Our method follows closely the adjusted anchored neighbor-
hood regression (A+) super-resolution method of Timofte et
al. [13]. The method works with small image patches of fixed
size (e.g. 7×7 pixels). The patches are extracted densely over
an image grid. The offline training starts with the extraction of
pairs of patches in the training compressed image (low resolu-
tion, LR) and the corresponding ones in the raw artifact-free
image (high resolution, HR). The patches are used to train
a sparse dictionary whose atoms/patches are taken as repre-
sentatives of the compressed image space. These are the an-
choring points of our method. For each we offline compute
a regressor from the compressed to the artifact-free image
patches (from LR to HR). At test time, we extract over a grid
patches and regress them to the artifact-free image by picking
the stored regressor at its nearest anchoring point. The re-
gressed patches are averaged in the overlapped areas to form
the output enhanced image.

2.2. Patches and features

The LR patches are represented by their features which are
concatenated responses to 1st and 2nd order gradients ap-
plied horizontally and vertically to the LR image. We use
the same features as in [13, 15, 16]. Through PCA we re-
duce the dimensionality of the features, while keeping 99.9%
of the energy. The HR patches are represented by the differ-
ence between the ground truth HR image and the LR image.
The training LR features are normalized by l2-norm and the
corresponding HR patches are scaled accordingly, as in [13].
At test time, the reconstructed image is added to the input LR
image for the final output.

2.3. Anchoring points

The relation between the patches from compressed images
(LR) and their corresponding artifact-free images (HR) is
heavily non-linear. Instead of training a single non-linear re-
gression function to model this complex relation, we partition
the LR space around anchoring points and train local linear
regressors to the HR space as in [13, 16], which results in a
very good approximation.

In order to obtain the anchoring points in LR space, a dic-
tionary Dl, we use the K-SVD [17] method, as in [13, 15].

Dl, {w(k)} = argminDl,{w(k)}
∑

k ‖p
(k)
l −Dlw

(k)‖2
s.t. ‖w(k)‖0 ≤ L ∀k,

(1)
where p

(k)
l are the training LR features, L is the imposed

sparsity, fixed to 3, and w(k) are the decomposition coeffi-
cients over Dl.

Fig. 2. Evaluation dataset with 16 images aka DB1 [12]. The
images are numbered 1-8 on 1st row and 9-16 on 2nd row.

2.4. Anchored regressors
We train a linear regressor locally for each anchoring point by
solving, as in [13]:

min
β
{‖y − Sl,dyβ‖2 + λ‖β‖2}, (2)

where y is a LR patch feature whose nearest anchoring point
is dy ∈ Dl, Sl,dy are the N nearest neighbors in the training
pool for dy, and λ is the regularization parameter, here fixed
to 0.1. The regressor Pdy corresponding to the anchoring
point dy is computed offline:

Pdy = Sh,dy(S
T
l,dy

Sl,dy + λI)−1ST
l,dy

, (3)

where Sh,dy contains the HR patches corresponding to the
LR vectors in Sl,dy .

2.5. Runtime
At test time, we first extract from the input compressed im-
age the patch features densely over a grid. For each input
LR feature y we retrieve the nearest neighboring anchoring
point dy ∈ Dl and obtain the output x by applying the stored
regressor Pl,dy at anchoring point dy:

x = Pl,dyy (4)

The regressed {x} patches are averaged in the overlapping
areas to obtain the correcting output image. Finally, the input
LR image is added to obtain the complete enhanced output
HR image.

3. EXPERIMENTS

In this section we evaluate the performance of our proposed
method. We show how its performance is influenced by the
design parameters and compare to state-of-the-art methods on
a standard dataset.

3.1. Benchmark
For a fair comparison with SLGP we use the same images for
testing as Kwon et al. [12]. The dataset (see Fig. 2) contains
16 images familiar to the community (512×512 or 256×256
pixels). While Kwon et al. [12] uses 500 training images from
a personal collection, we use the training set of 91 images pro-
posed by Yang et al. [18] and extract 5 million patches from
them by computing first image scale pyramids with downscal-
ing factor 0.98 and bicubic interpolation.
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Fig. 3. Number of regressors vs. performance and running
time.
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Fig. 4. PSNR gain comparison of the proposed method
against re-application of JPEG 2000, FoE, and SLGP image
enhancement algorithms. The x axis corresponds to the im-
age index as in Fig. 2. The average PSNR gains across the
dataset are marked with solid lines.

We compare our method with the re-application of JPEG
2000 method [11], Field of Experts (FoE) [4] and Semi-local
Gaussian Processes (SLGP) [12] (state-of-the-art).

Each image was degraded using the JPEG 2000 encoder
from the Kakadu software package 1 at 0.1 bits per pixel
(BPP) at test time, a compression at which the artifacts are
usually easily noticed. At training time the images are com-
pressed at only 0.3 BPP. At this lower compression rate the

1http://www.kakadusoftware.com

regressors can more easily pick up the patterns of the arti-
facts which leads to an improvement in performance. The
performance of the enhancement methods is measured by
evaluating the peak signal-to-noise ratio (PSNR) to the un-
compressed image. We report the PSNR gain relatively to the
degraded image. Note that for our method we use the YCbCr
color space for the color images (10 out of 16 images) and
perform the enhancement only on the Y channel.

Our choice to work directly with JPEG 2000 is due to
the increased difficulty in obtaining significant improvements
from most current artifact reduction methods (often less than
0.1dB for 0.1 BPP). With respect to JPEG, JPEG 2000 is a
superior compression algorithm, provides better quality for
the same BPP. Also JPEG exhibits stronger artifacts, partly
due to the BDCT stage (block artifacts), and it is easier to
enhance (often over 0.5dB for 0.1 BPP).

3.2. Parameters

The default main parameters of our method are: 5 million
training pairs of LR and HR patches, 7× 7 pixels patch size,
2048 anchoring points / regressors, and 2048 nearest neigh-
bors for the offline computation of each regressor.

For the A+ method [13] applied to super-resolution it was
shown that increasing the number of training patches leads to
increased in PSNR performance, and indeed our preliminary
experiments confirmed the same behaviour for our method on
the artifact reduction task.

For the patch size we considered 3× 3, 5× 5, 7× 7, and
9× 9 patch sizes. The performance improved up to 7× 7, but
slightly diminished for 9 × 9. Therefore, our choice of patch
size (7 × 7) matches the one from the SLGP method [12].
Note that at 3 × 3 patches and 1024 regressors our method
still gains 0.194dB, comparable to SLGP with 7× 7 patches.

The number of linear regressors / anchoring points (dic-
tionary size) is evaluated in Fig. 3 with respect to PSNR gain
and average running time per image. There is a linear rela-
tion between the number of regressors and the running time,
since a linear search is involved for picking up the nearest
anchoring point and stored regressor for each input patch.
The linearity holds above 512 regressors when the search-
ing time dominates. Our method is order(s) of magnitude
faster than the compared FoE and SLGP methods. With as
few as 16 regressors our method reaches the PSNR gain of the
FoE method and with 128 regressors clearly outperforms the
SLGP method. Our method peaks at 0.312dB for 8192 regres-
sors, but reaches a plateau at 1024 regressors (0.302dB). We
expect that by increasing the size of the training set of images
and its variance, as well as potentially the number of train-
ing patches, the performance of our method could be even
more improved. It might at this point also be noted that in the
current setting we only use 91 images, while SLGP uses 500
images. Our method is well behaved: more training data or
more regressors usually results in better performance.

http://www.kakadusoftware.com


Image JPEG 2000 (0.1BPP) FoE [4] SLGP [12] Our method Original

1
(31.82 dB) +0.03 dB +0.07 dB +0.33 dB

3
(26.27 dB) +0.09 dB +0.13 dB +0.21 dB

8
(27.77 dB) +0.12 dB +0.11 dB +0.18 dB

9
(29.86 dB) +0.33 dB +0.50 dB +0.66 dB

Fig. 5. Qualitative results for image 1, 3, 8, and 9 from the testing dataset (see Fig. 2). Best seen on screen.

3.3. Performance

In order to assess the performance of our method we build up
our benchmark following the settings from Kwon et al. [12]
as used for their SLGP state-of-the-art method. In Fig. 4 we
compare the proposed method against re-application of JPEG
2000 method, FoE, and SLGP in terms of PSNR gain. We
keep the same image indices from [12], as depicted in Fig. 2
and report also the average performance. Our method im-
proves over SLGP for all the images, except image 7. Also
in average performance we achieve a strong 0.312dB, signifi-
cantly better than SLGP with 0.192dB and FoE with 0.115dB.
The re-application of JPEG 2000 leads to negative gains.

The running time of our method compares favorable with
the other top methods such as SLGP or FoE (see Fig. 3). If
SLGP requires 180s and FoE ∼ 2600s per 512 × 512 pix-
els images, our method needs only 15s with 1024 regressors
(Matlab). Our codes are publicly available at:
http://www.vision.ee.ethz.ch/˜timofter/

For the qualitative performance assessment we compare
enhancement results for 4 images in Fig. 5. We notice a clear
improvement in quality between the JPEG 2000 input image
and the result of SLGP or of our method. FoE tends to over-

smooth the edges, while our method produces relatively sharp
edges and remains closer to the uncompressed original image.

Our method improves ∼ 0.12dB over the SLGP method.
While this might be a small improvement in absolute terms, it
is a very solid result given the difficult scenario (JPEG 2000
@ 0.1BPP) we dealt with. In fact, looking at relative terms,
our method with 0.31dB gain almost doubles the performance
of SLGP (0.19dB), and triples FoE (0.11dB). Moreover, our
method is orders of magnitude faster.

4. CONCLUSION

In this paper, we propose a novel and efficient artifact re-
duction algorithm based on A+. We embed prior informa-
tion from the training images and the compressed outputs
into a set of learned linear regressors. At test, after applying
these we improve the compressed images by reducing the ar-
tifacts. The experiments show large improvements doubling
the PSNR gain when compared to state-of-the-art methods
such as SLGP [12], while being an order of magnitude faster.
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