
ETH Library

Accelerating real-time embedded
scene labeling with convolutional
networks

Conference Paper

Author(s):
Cavigelli, Lukas; Magno, Michele; Benini, Luca

Publication date:
2015

Permanent link:
https://doi.org/10.3929/ethz-b-000105364

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1145/2744769.2744788

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-8068-3806
https://doi.org/10.3929/ethz-b-000105364
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1145/2744769.2744788
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Accelerating Real-Time Embedded Scene Labeling
with Convolutional Networks

Lukas Cavigelli*
cavigelli@iis.ee.ethz.ch

Michele Magno*†

magno@iis.ee.ethz.ch
Luca Benini*†

benini@iis.ee.ethz.ch
*Integrated Systems Laboratory, ETH Zurich †DEI, University of Bologna

Gloriastr. 35, 8092 Zurich, Switzerland Viale Risorgimento 2, 40136 Bologna, Italy

ABSTRACT
Today there is a clear trend towards deploying advanced
computer vision (CV) systems in a growing number of appli-
cation scenarios with strong real-time and power constraints.
Brain-inspired algorithms capable of achieving record-
breaking results combined with embedded vision systems are
the best candidate for the future of CV and video systems
due to their flexibility and high accuracy in the area of im-
age understanding. In this paper, we present an optimized
convolutional network implementation suitable for real-time
scene labeling on embedded platforms. We show that our al-
gorithm can achieve up to 96 GOp/s, running on the Nvidia
Tegra K1 embedded SoC. We present experimental results,
compare them to the state-of-the-art, and demonstrate that
for scene labeling our approach achieves a 1.5x improvement
in throughput when compared to a modern desktop CPU at
a power budget of only 11 W.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—object recognition; I.2.10 [Image Processing and
Computer Vision]: Vision and Scene Understanding

General Terms
Accelerator, Scene Labeling, Convolutional Networks

1. INTRODUCTION
Today vision technology is successfully used in a wide vari-
ety of real-world applications, such as surveillance, robotics,
industrial, medical, and entertainment systems [16]. A grow-
ing number of researchers are proposing to address the recog-
nition of actions and objects with brain-inspired algorithms
featuring multi-stage feature detectors and classifiers which
can be customized using machine learning [6, 7, 11]. These
techniques, collectively known as deep learning, have re-
cently achieved record-breaking results on highly challenging
datasets using automatic (supervised or partially unsuper-
vised) learning. Convolutional Networks (ConvNets) are a

Permission to make digital or hard copies of all or part of this work fpersonal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’15 June 07–11, 2015, San Francisco, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3520-1/15/06...$15.00
http://dx.doi.org/10.1145/2744769.2744788

well-known example of this remarkably versatile, yet concep-
tually simple paradigm, which can be applied to a wide spec-
trum of perceptual tasks and CV applications [20]. Lately,
Deep learning approaches have been proposed in many vari-
ations and several research programs have been launched by
major industrial players in the U.S. (e.g., Facebook, Google,
IBM), aiming at deploying brain-inspired visual processing
within a production environment [19, 20]. All these com-
panies are mainly interested in running these algorithms in
large data centers on clusters of very powerful computers.

The importance of digital signal processing (DSP) in imag-
ing continues to grow. The level of sensor computation is
increasing to thousands of operations-per-pixel, requiring
high-performance and low-power DSP solutions, possibly
co-integrated with the imaging circuitry to reduce system
cost. The emergence of very powerful, low-cost, and energy-
efficient integrated parallel processing engines (multi-core
CPUs, GPUs, platform FPGAs) is enabling this new genera-
tion of distributed CV systems. The term embedded vision is
used to refer to such embedded systems that extract mean-
ing from visual inputs at the sensor. It is clear that embed-
ded vision technology can bring huge value to a vast range of
applications, reducing data transmission by forwarding only
the desired information [13, 16].

There are many research and innovation opportunities lying
at the intersection of future situational awareness systems
and the evolution of advanced embedded video processing,
tightly coupled to the sensors themselves. In contrast to
conventional cameras (IP cameras, CCTVs, etc.) that send
data to a remote host to be stored or processed, embedded
video systems process the image data flow directly on board.
Recent studies show that on board processing and local in-
telligence can significantly reduce the amount of raw data
to be transmitted and the required human intervention [1].

Deep neural networks and scene labeling algorithms in gen-
eral require a lot of computations, making it challenging to
bring this computational load within an embedded vision
power envelope – in fact, most state-of-the-art algorithms
require workstations with powerful GPUs to achieve reason-
able performance.

In this paper we present a state-of-the-art scene labeling
ConvNet together with a highly optimized implementation
towards the ultimate goal of getting most performance out
of available accelerators on an embedded platform consum-
ing few Watts. The main contribution of this work focuses
on the algorithm, its optimized implementation and the per-
formance evaluation with a state-of-the-art comparison. To

evaluate the performance on a real platform, we chose the
Nvidia Tegra K1, a low-power embedded SoC targeted at
mobile computers and consuming only 11 W. It comprises
4 ARM Cortex A15 cores and a GPU consisting of one
streaming multiprocessor (SMX), providing a throughput
of up to 320 GFLOPS. In comparison, a modern desktop
GPU such as the GTX780 has 12 SMX running at a sim-
ilar frequency. The implementation presented here is the
best-performing demonstration of a real-time, state-of-the-
art accurate ConvNet running scene labeling on an embed-
ded platform.

Organization of the Paper: Section 2 presents the related
work. Details on the ConvNet and its optimized implemen-
tation are given in sections 3 and 4, respectively. Section 5
presents the experimental results for evaluating the proposed
solution. Finally, Section 6 concludes the paper.

2. RELATED WORK
Many of the networks which have recently been winning
visual object detection and recognition challenges require
GPU acceleration in order to be trained within reasonable
time [11]. When training a ConvNet the forward pass, i.e.,
the application of the ConvNet to the input data, takes up a
significant part of computation time and is thus already well-
optimized. We evaluate the performance of some of them for
comparison to our work. However, they all require a large
batch size, i.e., process many images in parallel, to achieve
their best performance [2, 9, 11] – an option we do not have
in our real-time setup. The most actively developed libraries
are:

cuda-convnet [11]: It has long been the fastest implemen-
tation around and is focused on using multiple GPUs in par-
allel. It has a very low memory footprint and is thus mostly
used to train very large networks with huge amounts of data.
However, it requires a batch size of at least 16 and is being
outperformed by more recent implementations. This makes
it unsuitable for our application. It also has restrictions on
the number of input and output channels.

Caffe/SpatialConvolutionMM: The Caffe framework [9]
was the first to implement the convolution as a matrix mul-
tiplication. It has almost no restrictions and is quite fast at
the expense of requiring much more memory. This can be
critical when running batches, but it is not an issue for single
images. Their approach has been ported to more frameworks
including Torch7 [3], where it is available as SpatialConvo-
lutionMM. Unfortunately, it does not run on the Tegra K1,
but we still evaluate its performance on the GTX780.

Nvidia cuDNN: This library has been released in 2014 [2].
Their concept is the same as in Caffe, also leveraging the
availability of extremely optimized GEMM (general matrix
multiplication) routine. To put away with the memory prob-
lem, the large matrix X is never really constructed, but some
more complicated indexing is being used. Bindings to this
library have been developed for many frameworks, including
Torch. We also evaluate this library’s performance on the
GTX780, but it is not available for the Tegra K1 as well.

FFT-based Approach: When requiring a large number
of convolutions, there is always the option to use a FFT-
based approach. Using the FFT for ConvNets has recently
been investigated in [14]. It can strongly outperform spatial-
domain convolution, but has several drawbacks – especially

for real-time applications. We discuss this in Section 4.

After all, we can say that no viable GPU-accelerated im-
plementation for embedded platforms exist and existing im-
plementations’ performance in a real-time setup is not even
demonstrated on desktop GPUs.

3. CONVOLUTIONAL NETWORK
CLASSIFICATION

In this section, we first present the basic building blocks
used in state-of-the-art ConvNets and then introduce our
own ConvNet used for the evaluation of the throughput of
our implementations. We then also show that this network
can be extended using a simple modification to push the
accuracy of ConvNet-based scene labeling beyond state-of-
the-art, thus proving that it is a representative choice for
performance evaluation.

ConvNets are built from several stages, where each stage is a
sequence of a convolution layer, a neural activation layer and
a pooling layer (cf. Fig. 1). Sometimes the pooling stage is
omitted. ConvNets are generally used as feature extractors,
transforming hard-to-understand data into a more meaning-
ful higher-dimensional representation, while preserving the
locality of information (i.e., the object class of some pixel
in the top-left corner of the image is not influenced by pix-
els in the bottom-right corner) [11, 19]. We call the various
images in such a representation channels. We start with
three channels (e.g., RGB) and quickly grow to 16, 64 and
256 channels. This more expressive representation is then
used for classification, which is accomplished with a two-
layer fully-connected neural network.

A stage of a ConvNet can be captured mathematically as

y(`) = conv(x(`),w(`)) + b(`), x(`+1) = pool(act(y(`))),

yo(j, i) = bo +
∑

c∈Cin

∑
(∆j,∆i)∈Sk

wo,c(∆j,∆i)xc(j −∆j, i−∆i),

where ` indexes the stages, o indexes the output channels
Cout and c indexes the input channels Cin. The pixel is
identified by the tuple (j, i) and Sk denotes the support of
the filters, typically square with size between 3×3 and 7×7.
We have w : Cout × Cin × Sk → R.

The most promising activation function in use today is the
rectified linear unit (ReLU) [11, 19], max(0, ·), which has
succeeded other activation functions which are closer mim-
icking the behavior of actual neurons. This function is ap-
plied point-wise to every pixel of every channel. These ac-
tivation functions are the essential part of neural networks,
since their non-linearity is exactly what makes neural net-
works more powerful than faster and better understood lin-
ear concepts.

The third layer type, pooling layers, takes image patches
of np × np pixels and computes, e.g., the maximum across
them. Most commonly we have np = 2 and a stride of 2×2,
thus reducing the number of pixels by a factor of 4. Pooling
is performed individually for all channels of an image and
is essential in order to keep the overall dimensionality from
increasing even more. It can also be interpreted as a means
to introduce stability and some translation invariance into
ConvNets [20].

convolution
pooling,

activation convolution
pooling,

activation
convolution,
activation

320

240

3 16

234

314

16
157

117

64
151

111
64

75

55 256

69

49

FEATURE EXTRACTION PIXEL-WISE CLASSIFICATION

256 64

fully-conn.
layer

64 8

activation

fully-conn.
layer

Stage 1 Stage 2 Stage 3

Figure 1: The ConvNet for scene labeling, as used for our performance evaluation. The convolution steps
are performed with 7× 7 filters, max-pooling is done over 2× 2 areas, for the activation we used ReLU.

The filters and biases are learned from labeled data (input
images and expected outputs) by numerical optimization.

3.1 State-of-the-Art Scene Labeling
Using the aforementioned building blocks, we have devel-
oped a ConvNet for scene labeling and trained it on the
Stanford backgrounds dataset [8] (715 images, 320 × 240
pixels, various outdoor scenes). Each image comes with a
corresponding label for every pixel into 8 classes: sky, tree,
road, grass, water, building, mountain and foreground ob-
ject. We split the dataset into 565 training images and 150
test images.

The structure of our feature extractor is shown in Figure 1.
After some basic preprocessing (13× 13 contrastive normal-
ization in YUV space, mean subtraction, variance standard-
ization; not shown in figure), we start the feature extraction
with a color image (3 channels) and approximately quadru-
ple the number of channels in every stage while decreas-
ing the number of pixels in spatial domain by a factor of
4 through 2 × 2 max-pooling. The convolutions were per-
formed with filter kernels of size 7 × 7 and we used ReLU
for activation.

We have used a multi-scale (MS) approach as in [5], apply-
ing this feature extraction to the image at original scale and
to scaled versions, downsampled by a factor of 2 and 4, and
sharing the learned parameters across the scales. We con-
catenate the output channels of the various scales’ feature
extraction results and perform the pixel-wise classification
with 3 ·256 input nodes. For this we use one fully-connected
layer with 64 output nodes, followed by one ReLU activa-
tion layer and another last fully-connected layer down to 8
output nodes – one for each class. We select the strongest
response as our result.

With this setup we achieve a per-pixel accuracy of 80.6%
on the test data and compare this to previous results in
Table 1. ConvNets achieve close to state-of-the-art accu-
racy and require orders of magnitude less computation time
than other approaches. Our network shows higher precision
than all other known ConvNets on the Stanford backgrounds
dataset without post-processing.

3.2 Throughput Measurement
Modifications to the Network: Many frameworks are
not capable of handling multi-scale ConvNets, making it
very hard to compare throughput measurement results. To
address this issue, we use a simplified network without the
multi-scale concept. Since the structure of the feature ex-
traction is preserved doing so, our network remains represen-

Figure 2: Sample output with reference ConvNet.

tative in terms of computations performed in state-of-the-
art scene labeling ConvNets. The pixel-wise classification is
then performed with 256 inputs, but otherwise remains the
same. The entire reference model is shown in Figure 1.

The network’s parameters (filters, biases) were trained using
stochastic gradient descent1 (SGD). Training took about 12
hours on the GTX780 for the reference ConvNet using the
Torch framework for training.

Complexity Metric: To compare the performance of var-
ious implementations, there is the need for a common mea-
sure. To perform a convolution, there is a minimum number
of multiply-add operations that need to be performed. For
a convolutional layer with nin input layers, nout output lay-
ers, an image size of hi × wi and a kernel size of hk × wk,
this number is noutninhkwk(hi − hk + 1)(wi − wk + 1). We
count the multiply-add as two operations (Op).

This definition is still ambiguous. Often there is some con-
stant overhead for initialization, and the performance is bet-
ter for very large images. We thus distinguish between the
performance obtained with a real network and measure-
ments obtained with a synthetic benchmark, optimized to
squeeze out the largest possible number. The later we name
Peak Throughput, the former we call Actual Throughput or

1learning rate 2 · 10−5 with decay of 10−4, momentum
4 · 10−6, weight decay 10−1, mini-batch size is one image.
We used a pixel-wise one-vs-one margin maximization loss
`(x, t) =

∑
d 6=t max(0, 1−xt+xd), where t indexes the target

class and x is a vector with the outputs for each class.

Table 1: Accuracy of Different Scene Labeling Meth-
ods on the Stanford Backgrounds Dataset.

Method Pixel Acc. Class Acc. CT [s]

Stacked Hierar. Labeling [15] 76.9% 66.2% 12
Superparsing [22] 77.5% ? 10
Selecting Regions [12] 79.4% ? 600
CHM w/ intra-cls. conn. [18] 82.85% 74.32% 65
Ren, et al. [17] 82.9% 74.5% ?

Farabet’s SS ConvNet [5] 66.0% 56.5% 0.35
Farabet’s MS ConvNet [5] 78.8% 72.4% 0.60
Farabet’s MS ConvNet

with superpixels [5]
80.4% 74.6% 0.70

Farabet’s MS ConvNet
with CRF on gPb [5]

81.4% 76.0% 60.5

Our SS (reference) ConvNet 74.8% 65.0% 0.22
Our multi-scale ConvNet 80.6% 71.1% 0.46

just Throughput. A further first impression of a device is
given by the number of multiplications and additions it can
perform per second as claimed by the vendor of the device.
We call this the Theoretical Throughput.

For our reference ConvNet with an input of 320 × 240, the
number of operations is 7.57 GOp for the feature extraction
and 0.1 GOp for the pixel-wise classification. For a full-HD
(1920 × 1080) frame, 259.5 GOp and 4.1 GOp are required.
For large images, the required number of Op/s can be esti-
mated at 127 kOp/pixel, e.g., for 4k UHD about 1050 GOp.

The network for state-of-the-art accuracy requires some more
operations. For the feature extraction for a 320 × 240 im-
age we need 10.30 GOp for scale 1, 4.24 GOp for scale 2 and
1.56 GOp for scale 4. This amounts to 16.10 GOp.

4. IMPLEMENTATION
In this section, we start by defining a measure for perfor-
mance metering. We continue by describing some previous
implementations and introduce a reference implementation
obtained using the Torch framework. We then present three
implementations we have developed, highlighting our opti-
mizations and disclosing the resulting performance.

We have discussed some related work in Section 2. Since
there are not many available performance figures, and those
that are available use some artificial network size, we have
evaluated Nvidia’s cuDNN and the SpatialConvolutionMM

on our own network (cf. Table 2). They both do not run on
the K1 – cuDNN is not available for ARM hosts and Spa-

tialConvolutionMM crashes due to a lack of memory even
for very small networks. The computation time split with
the latter is shown in Figure 3, clearly identifying the con-
volution layers as the most critical part.

We have also mentioned the FFT-based approach, for which
we give an upper bound on the throughput for our setup.
Using the FFT for ConvNets has recently been investigated
in [14]. For 7× 7 filters, 32× 32 images, 96 input layers and
256 output layers, they report a peak throughput of up to
6128 GOp/s with a GeForce GTX Titan GPU. While these
results are outstanding, they are based on a large batch size
of 128, denying real-time application due to the large delay.

To rule out that this approach can easily be adapted to

CPU

GPU

Conv Conv

Act. Pooling

Conv

ConvConvConv

Act. Pooling

0% 20% 40% 60% 80% 100%

Act.
pixel
class.

Figure 3: Computation time breakdown for torch-
based CPU and GPU forward pass through the
single-scale network.

smaller batch sizes, we bound its throughput when consid-
ering processing individual images. First we note, that this
approach requires significant amounts of memory. For the
third stage of our ConvNet, 256 · 64 · 75 · 55 · 4 = 270.3 MB
is needed to store the filters instead of 3.2 MB. While this
is acceptable for networks of limited size, the bigger issue
is that these filters have to be loaded for every frame for
the pixel-wise multiplication (when not creating batches).
The GTX780 comes with a bandwidth of 288 GB/s. The
loading the filter kernels at the theoretical limit of the de-
vice thus takes 0.94 ms. We have measured the time to per-
form the necessary transforms using cuFFT for this stage of
our network, obtaining a minimum of 1.235 ms. This means
that the 5.43 GOp/frame could at best be processed within
2.175 ms, amounting to 2497 GOp/s. For the Tegra K1 the
situation is disproportionately worse, as it has only 12 GB/s
memory bandwidth.

4.1 Proposed Optimizations
In this section, we present our own, fully-optimized imple-
mentations. We show a straight forward, direct approach
which implicitly minimizes the memory throughput, but has
to process the data less regularly. In a second implementa-
tion we map the convolutions to a matrix-matrix multiplica-
tion problem, making use of the highly optimized cuBLAS
GEMM routine. We then further optimize this by using
CUDA streams to get as much out of the device as possible.
The resulting performance of the various approaches can be
found in Table 2.

4.1.1 Direct Approach
There are many options to parallelize the operations of a
convolution. We choose that each output channel has its
own block, and each block consists of a 2D array of threads,
covering a patch of the output image. For this patch of
the output image, the required pixels from the input image
are loaded into shared memory. Each thread accumulates
the results for its output pixel, then the patch is moved to
the next position until the whole image has been covered.
Thereafter, the filter for the next input channel is loaded
into shared memory and the whole procedure repeats until
the entire filter response has been calculated.

In its inner-most loop, this implementation needs to fetch
one image pixel and one filter pixel from shared memory,
and then performs a multiply-add operation. This approach
is thus limited by the shared memory throughput and sim-
ilar to Krizhevsky’s cuda-convnet implementation [11], but
without the restriction to square images. However, this
bottleneck can be overcome by calculating multiple output
pixels per thread. The filter coefficient can then be reused
for all output pixels and thus there remains only one fetch

from shared memory and a multiply-add per pixel in the
inner-most loop. With this optimization, we were able to
achieve a peak throughput of 893 GOp/s on a GTX780 and
60.4 GOp/s on a Tegra K1 (cf. Table 2).

4.1.2 GEMM-based Approach
We do not see any option to incrementally improve further
on the direct implementation. Based on the time split in
Fig. 3 we can see that the convolution is the most crit-
ical part. To further improve, we investigate the use of
the matrix-multiplication in the highly optimized cuBLAS
library. We reformulated the convolution in the form of
a matrix-matrix multiplication by constructing something
similar to the Toeplitz matrix of the input image:

Y = KX, Y ∈ R|CO|×ho·wo ,

K ∈ R|CO|×|CI |·hk·wk , X ∈ R|CI |·hk·wk×ho·wo .

The image matrix X is given by X((khk + j)wk + i, yowo +
xo) = x(k, j + yo, i + xo) with k = 1, . . . , |CI |, j = 1, . . . , hk,
i = 1, . . . , wk and yo = 1, . . . , ho, xo = 1, . . . , wo. The filter
matrix K is given by K(o, (chk + j)wk + i) = w(o, c, j, i)
for o = 1, . . . , |CO|, c = 1, . . . , |CI |, j = 1, . . . , hk and i =
1, . . . , wk. The matrix containing the convolution results is
stored as Y (o, yowo + xo) = y(o, yo, xo).

With this approach we achieve a peak throughput of
2684 GOp/s on the GTX780 and 96 GOp/s on the K1 (cf. Ta-
ble 2). The obvious drawback of this solution is the increase
in the required amount of memory due to the need to create
the matrix X. For the last convolution layer of our feature
extractor, this amounts to a total of 64 · 7 · 7 · (75− 7 + 1) ·
(55− 7 + 1) · 4 = 42.4 MB instead of less than 1 MB.

4.1.3 GEMM-based Approach with Streams
Using two alternating CUDA streams to exploit this, we
were able to further boost the performance to 3059 GOp/s
on the GTX780 or 76% of the vendor-claimed theoretical
throughput. The GOp measure neglects the remaining op-
erations necessary in a ConvNet such as activation and pool-
ing, such that the actual load is even higher. On the K1 the
use of multiple CUDA streams does not have any effect,
since the memory bandwidth is limiting in all processing
steps. With this approach, applying our reference Conv-
Net to 320× 240 pixel frames on the GTX780 takes 4.25 ms
(1781 GOp/s).

5. RESULTS & DISCUSSION
We have compiled the throughput measurement results of
our own implementations in Table 2 along with some fig-
ures previously published for various platforms. The most
recent publication [4], which includes a GTX780, shows re-
sults close to those we have obtained with the direct ap-
proach, but far from our best performing implementations.
However, many new libraries have recently been published
and also development without publications has been very
active. This prompted us to benchmark these implementa-
tions through their bindings for the Torch framework. We
show the results in the center part of the table. They sig-
nificantly outperform previously published implementations.
Still, our highly optimized implementation based on the use
of GEMM and CUDA streams remains unrivaled on desk-
top GPUs, achieving more than 70% higher peak through-
put and a performance improvement of 55% when processing

Table 2: Performance Comparison

Implementation Device Throughput [GOp/s]
act. peaka theor.

Farabet, et al. [6] GTX480 294b 1350
Dundar, et al. [4] GTX650m 54b 182
Jin, et al. [10] GTX690 570b 5622
Dundar, et al. [4] GTX780 620b 3977
Teradeep, Inc.c Tegra K1 37b 326

torch CPUd 50 118
torch-MM GTX780 1145 1252 3977
torch-cuDNN GTX780 946 1770 3977
FFT-based, bounde GTX780 2497

ours direct GTX780 387 893 3977
ours GEMM GTX780 1545 2684 3977
ours GEMM, strm. GTX780 1781 3059 3977
ours direct Tegra K1 37 60 326
ours GEMM Tegra K1 76 96 326

a Peak performance with batch size 1.
b Measured for a favorable problem size (also batch size).
c Teradeep, Inc. claims a throughput per power of

3.4 GOp/s/W for the Tegra K1. Throughput based on
a platform power of 11 W. [21]

d Intel Xeon E5-1620v2
e Semi-theoretical upper bound for Stage 3 without acti-

vation, as described in Section 4.

data for our state-of-the-art scene labeling ConvNet. With
a peak throughput of 3059 GOp/s, which only takes into ac-
count the operations required for the convolutions and ne-
glects the operations actually performed during activation
and pooling, we come very close to the device’s theoretical
capabilities.

For a large scale deployment in smart cameras, an embed-
ded solution is required in terms of size as well as power effi-
ciency, yet providing decent performance. To the same end,
Teradeep has evaluated the performance of the Tegra K1
for ConvNets, providing the only comparison point for the
K1 [21]. Their performance is similar to our direct imple-
mentation’s (cf. Tbl. 2). However, with our GEMM-based
approach we have been able to provide a performance boost
of about 100%, assuming they were testing with a similar
ConvNet, or even close to 160% if they were measuring the
peak performance.

Implementations achieving a higher throughput have proven
to be also more power efficient, since there is no measurable
impact on power consumption for the desktop GPU. For the
Tegra K1 our direct implementation caused the platform to
draw significantly less power at 7 W instead of the 11 W re-
quired for the GEMM-based approach. In terms of power ef-
ficiency, the latter still performs slightly better. Our results
are shown and compared to other implementations in Fig. 4.

We have measured the system power and the differential
power. The efficiency of the Tegra K1 and the GTX780 is
very similar, which was to be expected given that the archi-
tecture of the Tegra K1’s GPU accelerator does not differ
from the GTX780 in its core, except that the K1 contains
only a single streaming multiprocessor instead of 12.

Our implementation running on the Tegra K1 or on the

0 5 10 15 20 250 5 10 15 20 25
nn-X, Xilinx Zynq 7

neuFlow, Xilinx Virtex 6
GTX780 (ours, MM, strm)

GTX780 (ours, MM)
GTX780 (ours, direct)

GTX780
Tegra K1 (ours, MM)

Tegra K1 (ours, direct)
Tegra K1 (Teradeep)

Qualcomm SD800
XilinxZynq ARM

Intel Core i7 3720QM
higher is
better

Figure 4: Comparison of performance per power
[GOp/s/W] for several implementations and plat-
forms. Reference values (blue) from [6, 7, 21]. Re-
sults for system (dark) and differential power (light).

GTX780 is efficient enough to compete with programmable
logic implementations, coming close to the efficiency of the
neuFlow accelerator for ConvNets on a Virtex 6 working
with 16bit fixed-point numbers, but with much higher flexi-
bility and lower implementation effort, as desirable for such
a rapidly evolving subject area.

6. CONCLUSION
We have presented a highly optimized implementation of
the main building blocks of ConvNets using GPU accelera-
tion and demonstrated its previously unmatched throughput
on a state-of-the-art ConvNet for scene labeling. It fulfills
all the requirements for usage in real-time embedded CV
systems and does not require batches of multiple images to
achieve good performance. The resulting performance comes
very close to the theoretical capabilities of current desktop
GPUs, such that only insignificant further improvement can
be expected without a change in the algorithmic approach.

Our implementation provides unmatched performance on
Tegra K1-based platforms, making it suitable for embed-
ded systems. We have been able to achieve 1.5 times the
throughput of a modern desktop CPU on a single Tegra K1
chip with only 11 W system power, running a state-of-the-
art scene labeling ConvNet on 320 × 240 at 10 frames per
second and with a latency of less than two frames.

To sum up, this work provides the fastest and most power ef-
ficient implementation of a ConvNet for both, the Tegra K1
as well as current desktop GPUs such as the GTX780.

7. ACKNOWLEDGMENTS
This work was funded by armasuisse Science & Technology.

8. REFERENCES
[1] C. Bobda and S. Velipasalar, editors. Distributed

Embedded Smart Cameras. Springer, 2014.

[2] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen,
J. Tran, B. Catanzaro, and E. Shelhamer. cuDNN:
Efficient Primitives for Deep Learning. In
arXiv:1410.0759, Oct. 2014.

[3] R. Collobert. Torch7: A matlab-like environment for
machine learning. Proc. NIPSW’11, 2011.

[4] A. Dundar, J. Jin, V. Gokhale, B. Krishnamurthy,
A. Canziani, B. Martini, and E. Culurciello.
Accelerating Deep Neural Networks on Mobile

Processor with Embedded Programmable Logic. In
Proc. NIPS’13, 2013.

[5] C. Farabet, C. Couprie, L. Najman, and Y. LeCun.
Learning hierarchical features for scene labeling. IEEE
Trans. on PAMI, 2013.

[6] C. Farabet, B. Martini, B. Corda, P. Akselrod,
E. Culurciello, and Y. LeCun. NeuFlow: A runtime
reconfigurable dataflow processor for vision. In Proc.
IEEE CVPRW’11, pages 109–116, June 2011.

[7] V. Gokhale, J. Jin, A. Dundar, B. Martini, and
E. Culurciello. A 240 G-ops/s Mobile Coprocessor for
Deep Neural Networks. In Proc. IEEE CVPR’14,
pages 682–687, 2014.

[8] S. Gould, R. Fulton, and D. Koller. Decomposing a
scene into geometric and semantically consistent
regions. In Proc. IEEE ICCV’09, 2009.

[9] Y. Jia. Caffe: An Open Source Convolutional
Architecture for Fast Feature Embedding, 2013.

[10] J. Jin, V. Gokhale, A. Dundar, B. Krishnamurthy,
B. Martini, and E. Culurciello. An efficient
implementation of deep convolutional neural networks
on a mobile coprocessor. In Proc. IEEE MWSCAS’14,
pages 133–136, Aug. 2014.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In Proc. NIPS’12, 2012.

[12] M. Kumar and D. Koller. Efficiently selecting regions
for scene understanding. In Proc. IEEE CVPR’10,
pages 3217–3224, June 2010.

[13] C. Labovitz, S. Iekel-Johnson, D. McPherson,
J. Oberheide, and F. Jahanian. Internet inter-domain
traffic, 2010.

[14] M. Mathieu, M. Henaff, and Y. LeCun. Fast Training
of Convolutional Networks through FFTs. In
arXiv:1312.5851, Dec. 2013.

[15] D. Munoz, J. Bagnell, and M. Hebert. Stacked
hierarchical labeling. In Proc. ECCV’10, 2010.

[16] F. Porikli, F. Bremond, S. L. Dockstader, J. Ferryman,
A. Hoogs, B. C. Lovell, S. Pankanti, B. Rinner, P. Tu,
and P. L. Venetianer. Video surveillance: past,
present, and now the future [DSP Forum]. IEEE
Signal Processing Magazine, 30:190–198, 2013.

[17] X. Ren, L. Bo, and D. Fox. Rgb-(d) scene labeling:
Features and algorithms. In Proc. IEEE CVPR’12,
pages 2759–2766, June 2012.

[18] M. Seyedhosseini and T. Tasdizen. Scene Labeling
with Contextual Hierarchical Models. In
arXiv:1402.0595, Feb. 2014.

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going Deeper with Convolutions. In
arXiv:1409.4842, Sept. 2014.

[20] Y. Taigman and M. Yang. Deepface: Closing the gap
to human-level performance in face verification. In
Proc. IEEE CVPR’13, 2013.

[21] Teradeep Inc. Teradeep Technology Website, 2014.

[22] J. Tighe and S. Lazebnik. Superparsing: scalable
nonparametric image parsing with superpixels. In
Proc. ECCV’10, 2010.

