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ABSTRACT  Historically, many mass spectrometry–based proteomic studies have aimed at 
compiling an inventory of protein compounds present in a biological sample, with the long-
term objective of creating a proteome map of a species. However, to answer fundamental 
questions about the behavior of biological systems at the protein level, accurate and unbi-
ased quantitative data are required in addition to a list of all protein components. Fueled by 
advances in mass spectrometry, the proteomics field has thus recently shifted focus toward 
the reproducible quantification of proteins across a large number of biological samples. This 
provides the foundation to move away from pure enumeration of identified proteins toward 
quantitative matrices of many proteins measured across multiple samples. It is argued here 
that data matrices consisting of highly reproducible, quantitative, and unbiased proteomic 
measurements across a high number of conditions, referred to here as quantitative proteo-
type maps, will become the fundamental currency in the field and provide the starting point 
for downstream biological analysis. Such proteotype data matrices, for example, are gener-
ated by the measurement of large patient cohorts, time series, or multiple experimental 
perturbations. They are expected to have a large effect on systems biology and personalized 
medicine approaches that investigate the dynamic behavior of biological systems across mul-
tiple perturbations, time points, and individuals.

INTRODUCTION
For quantitative systems biology, accurate and precise measure-
ments of analyte concentrations across multiple conditions consti-
tute a crucial requirement. This allows researchers to study human 
disease across large cohorts, compare multiple perturbations, or 
describe the dynamics of a transformation in a biological system. 
The data output of a typical systems biology experiment is generally 
a two-dimensional data matrix containing quantitative measure-
ment values of specific analytes (first dimension) across multiple 
samples (second dimension; Figure 1a). For proteomic measure-
ments, the analytes are typically peptides, modified peptides, or 

proteins inferred from peptide measurements. The comprehensive-
ness and accuracy of the data matrix mostly determine the success 
of the downstream data analysis, where both dimensions are of 
equal importance: the number of measured compounds, as well as 
the number of analyzed samples.

Measurements primarily focusing on the first dimension (many 
analytes, one or few samples or conditions) may provide a useful 
overview of the sample and can generate an inventory of analytes 
present in the sample. These enumeration-oriented approaches, 
however, often lack the statistical power, number of conditions, or 
temporal resolution to observe subtle and nontrivial biological ef-
fects. For example, multiple consistent and reproducible measure-
ments during a time-dependent system transformation are critical to 
understanding the time evolution of biological systems. To describe 
such a system’s response not only qualitatively but also quantita-
tively, dense sampling during the transition phase is important. Fur-
thermore, to estimate confounding sources of error and variation in 
quantitative measurements and model them appropriately, repeat 
measurements of high reproducibility are required. In clinical stud-
ies, for example, large patient cohorts are critical to uncovering 
biological signal against a background of individual variation, which 
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means that measurements need to be performed on dozens to hun-
dreds of patient samples with high reproducibility.

Conversely, measurements focusing on the second dimension 
alone (few analytes, many samples) may suffer from bias and poten-
tially miss important parts of the system’s behavior if they are not 
included in the data collection scheme. In proteomics, the proteins 
selected for measurement are often chosen based on the availability 
of measurement assays (frequently, assays based on affinity re-
agents) and the previous literature, leading to many experimental 
studies focusing on a few “popular” targets while leaving out a 
number of potentially crucial system components (Edwards et al., 
2011; Reker and Malmström, 2012). Therefore these types of experi-
ments are only suitable for later stages of a study, when the proteins 
that best describe a system and its behavior are well characterized. 
In practice, however, the optimal set of such target proteins can of-
ten be defined only by exactly the types of large-scale studies that 
generate a complete data matrix across conditions. This leads to a 
catch-22 situation in which, in order to perform large-scale pro-
teomics studies, the targets need to be known in advance, but they 
can only be identified by such large-scale studies. Historically, for 
lack of methods to generate large-scale data matrices by direct pro-
teomic measurement, target protein sets for systems studies were 
frequently extracted from the literature or inferred from surrogate 
measurements, for example, at the transcript level, with various 
levels of success.

For a truly comprehensive systems approach, both dimensions 
of the data matrix need to be given equal consideration. This would 
allow researchers to perform a single experiment to obtain informa-
tion about which proteins are involved and the manner in which they 
participate in specific biological processes and their quantitative 
behavior. Specifically, proteomics could be used to study protein–
protein interaction networks in their native and perturbed states and 
reveal how complex diseases such as cancer or diabetes rewire 
these networks (Lage et al., 2010; Collins et al., 2013). Furthermore, 
improved proteomic profiling could facilitate the search for new 
protein biomarkers in tissue and blood, since more samples and a 
larger number of proteins could be quantitatively compared across 
many patients (Liu et al., 2014, 2015). Applying proteomics tech-
niques to signaling networks would require dense temporal sam-
pling and accurate quantification of posttranslational modifications 
to capture fast-acting changes in, for example, phosphorylation 
states (Bodenmiller et al., 2010). This could improve our capacity to 
model the dynamics of these cellular signaling networks and lead to 

FIGURE 1:  The proteotype data matrix as often found in proteomics 
experiments. (a) The data matrix contains quantitative values for 
different analytes (peptides or proteins) measured across multiple 
samples. One major goal in proteomics is to achieve high throughput 
(high number of quantified analytes) consistently quantified across 
many samples (experimental conditions, perturbations, or patient 
samples). (b) Sample-centric workflows (such as discovery proteomics 
or shotgun proteomics) place heavy emphasis on a high number of 
identifications in a single sample, which is achieved by data-
dependent acquisition. However, the resulting data matrices often 
contain missing values due to undersampling issues, and in large 
studies, not all analytes can be quantified in every single sample. (c) In 
analyte-centric workflows (such as SRM and other low-throughput 
targeted proteomics techniques), the major focus is on achieving 
highly consistent quantification across many samples. The resulting 
data matrices are often devoid of missing values but only cover a few, 
carefully selected analytes.
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number of peptides by far exceeds the number of sequencing 
cycles provided by the mass spectrometer, leading to an undersam-
pling of the proteome (Figure 1b; Michalski et al., 2011; Bruderer 
et al., 2015).

These challenges are substantially influenced by different sample 
preparation and quantification strategies. The undersampling issue 
can be alleviated by sample fractionation before LC-MS/MS analy-
sis, albeit at the cost of sample throughput and increased complica-
tions in quantitative cross-run comparisons, because several repeat 
analyses are required per sample to achieve maximal coverage 
(Domon and Aebersold, 2010). Furthermore, each quantification 
strategy comes with its own challenges and provides different quan-
titative accuracy and throughput. Isotopic labeling approaches such 
as Isotope-coded affinity tag (ICAT), stable isotope labeling with 
amino acids in cell culture (SILAC), or dimethyl N-terminal labeling 
deliver high quantitative accuracy but increase sample complexity 
and further exacerbate the undersampling problem. On the other 
hand, isobaric labeling approaches like iTRAQ and TMT can in-
crease multiplexing and decrease cross-sample variability on the 
MS1 level but at the cost of coupling quantification to fragmentation 
and thus accepting missing values for cases for which no fragmenta-
tion was triggered. Even though isotopic and isobaric labeling 
methods support multiplexing, the capacity is limited to a few (two 
to 10) channels per MS run, which still poses a substantial challenge 
in large-scale analyses, in which hundreds of samples may be ana-
lyzed. Finally, label-free approaches do not increase sample com-
plexity but still suffer from undersampling, as well as from reduced 
quantitative accuracy due to the lack of an internal standard.

In the context of the systems biology data matrix, the data pro-
duced by shotgun proteomics thus pose significant challenges, 
since measurements are performed with high throughput and cov-
erage but generally low comprehensiveness. Often the resulting 
data matrices are only complete for the most intense peptides of 
high abundance proteins but contain missing values for proteins 
of lower abundance (Figure 1b; Sabidó et al., 2012). In addition, 
the more samples are analyzed and the more biologically diverse 
the samples are, the lower is the number of complete rows; due 
to the intensity dependence of the sampling and undersampling 
issues for complex samples, the missing values will generally not be 
missing completely at random (Bruderer et al., 2015). Specifically, 
proteins that are variable across the experimental conditions will 
likely contain more missing values (with those conditions not quanti-
fied where abundance is low), whereas highly abundant, invariant 
proteins are faithfully sampled by the approach. It is therefore the 
efficiency of shotgun proteomics that produces maximal informa-
tion on a single sample that is detrimental to the production of 
highly informative data matrices on multiple samples, since sam-
pling more often occurs at noninformative positions, whereas infor-
mation-rich processes with high variance are sparsely sampled.

Targeted proteomics
To address these problems, proteomic scientists have developed 
techniques that allow deterministic sampling across multiple condi-
tions (Sabidó et al., 2012). The most prominent ones are “targeted 
proteomics” approaches, specifically selective reaction monitoring 
(SRM) and, more recently, parallel reaction monitoring, both of 
which can target multiple proteins (which need to be selected be-
fore the measurement) consistently across multiple conditions 
(Lange et al., 2008; Domon and Aebersold, 2010). In SRM mode, 
the mass spectrometer is programmed to deterministically record 
the signal at fixed coordinates across the chromatographic retention 
time. These coordinates (the assay) are specific to a peptide analyte 

potential points for intervention to modulate these networks in 
disease states (Sabidó et  al., 2012). Furthermore, accurate data 
matrices would allow a multitude of tools from statistics and ma-
chine learning to draw inferences about causal interactions among 
different proteomic compounds (Swan et al., 2013; Libbrecht and 
Noble, 2015). Applying such data-driven methods to biological 
problems might uncover important regulatory mechanisms and im-
plicate novel proteins in well-studied biological processes, which 
could help researchers to better determine the behavior of the sys-
tem. Finally, such matrices could foster integration with high-
throughput data from other fields (such as genomics and other se-
quencing-based fields) in which comprehensive data matrices are 
already a standard experimental output. However, obtaining high-
quality data matrices from proteomics data has historically been 
highly challenging.

CURRENT APPROACHES IN PROTEOMICS
One of the primary objectives in the field of proteomics in recent 
decades has been the identification of peptide and protein species 
in complex biological samples (Sabidó et al., 2012). In contrast to 
nucleic acid sequencing–based approaches, particularly by next-
generation sequencing (NGS), in proteomics, the analyte cannot be 
amplified, the dynamic range of protein abundances is substantially 
larger than that of transcripts (Schwanhäusser et al., 2011), and the 
number of analytes (peptides) from a complex sample by far ex-
ceeds the available sequencing cycles of even the most advanced 
instruments. Therefore most proteomics approaches rely on exten-
sive biochemical fractionation methods that produce a (mostly) pure 
form of the analyte and then subsequently use highly sensitive anal-
ysis techniques to determine the nature of and quantify the analyte. 
Initially, fractionation was achieved on whole proteins using two-
dimensional biochemical separation (2D-PAGE) by isoelectric focus-
ing and apparent molecular mass separation, and subsequent iden-
tification of separated species was performed by Edman sequencing 
or mass spectrometry (MS). This approach was supplanted by a 
number of strategies based on online chromatographic peptide 
separation and subsequent gas-phase separation or isolation of se-
lected peptide ions (precursor ions) in the gas phase.

Shotgun proteomics
Most high-throughput proteomics studies use so-called “bottom-
up” liquid chromatography (LC) coupled to tandem mass spectrom-
etry (LC-MS/MS), in which proteins are enzymatically cleaved to pro-
duce a mixture of homogeneous peptides and then separated by 
online LC coupled to MS/MS. In an effort to subject as many pep-
tide precursors (molecular ions of a specific peptide entity) as pos-
sible to sequencing, the mass spectrometer selects the most intense 
peptide precursor for fragmentation at each time point, a process 
known as data-dependent acquisition or “shotgun proteomics.” 
This strategy is highly efficient in obtaining the fragment ion infor-
mation necessary to identify the amino acid sequence of the respec-
tive peptide, since it samples precursor ions at positions with high 
MS1 intensity and thus has increased likelihood of obtaining a high-
quality fragment ion spectrum (Aebersold and Mann, 2003; Domon 
and Aebersold, 2006). When applied to whole-cell lysates, shotgun 
proteomics provides fast enumeration of the most abundant protein 
species present in the sample, which enables exploratory data anal-
ysis and identification of previously unknown peptides. However, 
whereas shotgun proteomics allows discovery-driven research and 
offers high throughput, its sensitivity is strongly sample dependent, 
and it suffers from inconsistent identification reproducibility across 
samples. This is mainly due to the fact that for complex samples, the 
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the past, future efforts should turn toward the generation of fully 
quantitative, high-quality data matrices.

This challenge has been recognized by the field, and multiple 
efforts toward this aim have been presented recently or are under 
way. In particular, recent advances in acquiring and analyzing data-
independent acquisition mass-spectrometric data, such as SWATH-
MS data, constitute a promising advance toward this goal (Gillet 
et al., 2012; Röst et al., 2014). In SWATH-MS, the mass spectrometer 
performs deterministic acquisition of fragment ion spectra but does 
not aim to target specific peptides explicitly by their intensity (as 
shotgun does) or by prior hypothesis (as SRM does). Instead, 
SWATH-MS records the complete fragment ion signal in a single 
experiment, essentially creating a complete digital representation 
of all fragment ion signals in a biological sample. This digitized sam-
ple can then be used to extract quantitative information for individ-
ual peptides after data acquisition. SWATH-MS features the same 
characteristics as SRM regarding specificity, reproducibility, and sen-
sitivity but allows for high throughput and coverage of the analyzed 
proteome (Table 1; Gillet et al., 2012). Similar to SRM, in the sample 
dimension, SWATH-MS is able to reproducibly measure protein ana-
lytes across hundreds of samples. However, unlike SRM, SWATH-MS 
is capable of high throughput in the analyte dimension and achieves 
substantial proteomic coverage; in microbial samples, coverage 
reaches almost saturation even with single MS injections (Röst et al., 
2014; Schubert et al., 2015b). However, one of the main limitations 
of SWATH-MS is the complexity of the resulting data, which consists 
of highly multiplexed fragment ion spectra that require novel algo-
rithmic approaches for deconvolution. To assign signal to individual 
peptides and quantify analytes, multiple open-source tools using 
complementary algorithms are available, but further research is 
required to improve the underlying analysis approaches and fully 
exploit the potential of SWATH-MS.

Thus, SWATH-MS is a technology that addresses both dimen-
sions of the data matrix at the same time and allows true systems 
analysis on protein measurements. It provides a valuable addition to 
the set of tools available to proteomics researchers and strikes a bal-
ance between throughput and reproducibility, making it an interest-
ing option next to shotgun and targeted proteomics. Recent studies 
have shown the applicability of SWATH-MS to a multitude of prob-
lems in systems biology and medicine. These studies include inves-
tigations of the dynamics of microbial virulence with high proteomic 
coverage (Röst et al., 2014; Schubert et al., 2015b), the interroga-
tion of the dynamics of the human interactome (Collins et al., 2013; 

and will reliably detect the analyte signal if present, similarly to a clas-
sical biochemical assay such as an antibody-based method. The ac-
quisition of signal for multiple fragment ions (transitions) ensures 
high specificity (Sherman et al., 2009; Röst et al., 2012) and sensitiv-
ity. This deterministic acquisition strategy increases reproducibility 
and quantification consistency compared to shotgun approaches, 
where sampling is semistochastic and data acquisition for each sin-
gle peptide depends on a multitude of factors. However, SRM is 
limited by throughput and can only monitor dozens to hundreds of 
peptides per run, since the deterministic sampling strategy implies 
acquiring signal even at time points at which no analyte elutes in or-
der to collect complete chromatographic traces (Picotti et al., 2013).

Thus the data matrices obtained from SRM are much more com-
plete than those produced by shotgun proteomics but generally 
contain one to two orders of magnitude fewer proteins (Figure 1c). 
Because the proteins to be measured have to be preselected, the 
measurements tend to be biased by prior hypotheses and may not 
cover all biologically relevant cellular processes and pathways. 
Therefore SRM has mostly been used in studies in which large 
sample numbers are required and only few proteins are under 
investigation (such as clinical biomarker studies; Cima et al., 2011; 
Hüttenhain et al., 2012; Drabovich et al., 2013; Li, 2013; Surinova 
et al., 2015a,b), for protein quantitative trait analysis, in which sets 
of protein are quantified across genetic reference strain collections 
(Picotti et al., 2013; Wu et al., 2014), or for systems biology studies, 
in which the response of a biological system to perturbations is 
measured (Sabidó et al., 2013).

PROTEOMICS FOR SYSTEMS BIOLOGY
For systems biology investigations, neither SRM nor shotgun ap-
proaches are fully satisfactory to generate the desired complete 
data matrix. Whereas shotgun proteomics places heavy emphasis 
on the analyte dimensions and successfully identifies many protein 
species, it is often challenging to trace analytes across the sample 
dimension (Figure 1b). Conversely, SRM is well able to quantify ana-
lytes across many MS runs but suffers from low throughput in the 
analyte dimension (Figure 1c). To allow proteomics to become a 
true systems science, efforts should be directed toward improving 
proteomics measurement with regard to both dimensions of the 
data matrix, which means that future improvements in measurement 
technology and analysis strategy should be evaluated by the quality 
of the data matrices they are able to produce. Although the field 
was highly successful in compiling extensive protein inventories in 

Shotgun SRM
Data-independent acquisition 

(SWATH-MS)

Throughput High Low to medium Medium to high

Reproducibility Low High High

Identification specificity High Medium Medium

Sensitivity Low to medium High to very high Medium to high

Quantitative accuracy Medium to high High to very high High

Acquisition method Fragment spectra Fragment chromatograms Fragment spectra and chromatograms

Application Protein enumeration and discovery Reproducible quantification Reproducible quantification in high 
throughput

Analysis software Well established Visual (manual) Multiple tools available

This table compares three major techniques used in mass spectrometry–based proteomics according to different performance criteria: shotgun proteomics, targeted 
proteomics or SRM, and data-independent acquisition or SWATH-MS. All three techniques have unique benefits and disadvantages; therefore different techniques 
need to be applied for different tasks.

TABLE 1:  Comparison of MS-based proteomics methods.
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Lambert et al., 2013), and the quantification of >2000 proteins in 
human and mouse tissue across multiple patient samples and ex-
perimental conditions (Bruderer et al., 2015; Guo et al., 2015). In 
addition, SWATH-MS measurements allowed the investigation of 
protein abundance of 342 human plasma proteins across >200 indi-
viduals, uncovering considerable variation of blood plasma protein 
levels across genetically identical twins and quantifying the relative 
contributions of heredity and environmental factors to the overall 
observed variability (Liu et al., 2015). Analysis of SWATH-MS sam-
ples was further facilitated by the recent development of multiple 
software tools to analyze the generated data sets (MacLean et al., 
2010; Bernhardt et al., 2012; Röst et al., 2014, 2015a,b; Teleman 
et al., 2015; Tsou et al., 2015), the development of a step-by-step 
protocol to generate high-quality assay libraries (Schubert et  al., 
2015a), and the publication of SWATH-compatible assay libraries 
containing the measurement coordinates for >10,000 human pro-
teins (Rosenberger et  al., 2014). SWATH-MS is thus a promising 
technology that could help to provide the proteomics field with 
complete and accurate data matrices and may play a key role in in-
vestigating systems biology questions on the protein level.

CONCLUSION
When evaluating proteomics techniques from the viewpoint of the 
quantitative proteotype data matrix, we can obtain a much clearer 
picture of data utility for systems biology studies. It becomes appar-
ent that neither patchy matrices littered with missing values nor 
highly consistent measurements of a few proteins are sufficient for 
systems approaches to biology. Although shotgun and SRM are 
valuable for a multitude of purposes, new paradigms need to be 
developed in order to be able to apply unbiased, data-driven sys-
tems approaches in proteomics. The field should embrace this real-
ization and increase efforts to establish novel experimental and 
computational methods able to produce data matrices with exten-
sive proteome coverage and high comprehensiveness suitable for 
quantitative biology approaches.

Current technology and analysis software has matured enough 
by now to tackle the next major challenge in proteomics, namely the 
proteotype data matrix. Next-generation proteomics technologies, 
such as SWATH-MS, present promising solutions to address this 
challenge. They combine the strength of SRM (high reproducibility 
and quantitative accuracy) with the high throughput of shotgun pro-
teomics, thus focusing on both analyte and sample dimension of the 
data matrix at the same time. Using SWATH-MS, proteomics tech-
nology can produce quantitatively accurate and qualitatively com-
plete data matrices, allowing researchers to track protein quantities 
across many samples. These advances in the field will allow pro-
teomics researchers to ask novel questions about ensembles of pro-
teins and their behavior across many experimental conditions, time 
points, and individuals. Thus proteomics is expected to contribute 
significantly to the emerging fields of precision and personalized 
medicine, high-throughput screening, and analysis, as well as to sys-
tems biology and systems medicine.
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