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ZUSAMMENFASSUNG 

Zellen sind multiplen Umweltsignalen ausgesetzt, welche sich zeitlich oft ändern und nur von wenigen 

Kernsignalnetzwerken detektiert werden, die diese Umweltsignale in eine spezifische Genexpressionsantwort 

transformieren. NF-kappaB ist ein Genkontrollnetzwerk, welches in der Koordination von Prozessen wie 

zellulärem Stress und Entzündungen involviert ist. Das Signalnetzwerk hat zwei wichtige dynamische 

Eigenschaften: 1) digitale Aktivierung, was bedeutet, dass der Signalprozess homogen abläuft, wenn das 

Eingangssignal einen Schwellenwert überschreitet. Wird dieser Grenzwert nicht erreicht, findet kein 

Signalfluss statt. 2) Eine verzögerte negative Rückkopplung führt zu einer oszillierenden  NF-kappaB 

Lokalisierung im Zellkern. Diese Dissertation untersucht die Rolle dieser zwei dynamischen Eigenschaften des 

NF-kappaB Netzwerkes in biologischen Prozessen. 

Das erste Ziel dieser Arbeit war die Entwicklung und Implementierung eines mikrofluidischen 

Arbeitsprozesses, welcher das Messen und Analysieren von dynamischen Einzelzellexperiment mit hohem 

Durchsatz routinemässig ermöglicht. Dies war notwendig, da Durchsatz, Präzision und die Möglichkeit die 

zelluläre Mikroumwelt während der Datenakquisition mittels Videomikroskopie zu manipulieren, für aktuelle 

Methoden limitiert sind. Unser mikrofluidischer Ansatz erlaubt es uns eine Sukzession von Arbeitsschritten zu 

kombinieren. Wir können ein videomikroskopisches Experiment mit dynamischen Eingangssignalen und 

Genexpressionsmessungen verbinden und diese routinemässig analysieren.    

Als zweites haben wir die Funktion der digitalen NF-kappaB Aktivierung untersucht. Abhängig von ihrer 

räumlichen und biologischen Umgebung sind Zellen Stimuli von unterschiedlicher Stärke und Dauer 

ausgesetzt. Zellen in der Nähe einer Infektionsstelle sind zum Beispiel kurzen Entzündungssignalen hoher 

Intensität ausgesetzt, während weiterentfernte Zellen ein langes aber schwaches Signal empfangen. Durch eine 

Kombination von experimentellen und rechengestützten Ansätzen haben wir entdeckt, dass bestimmte 

Eigenschaften des Eingangssignals wie Fläche und Profil die Parameter der digitalen Aktivierung bestimmen 

(Aktivierungswahrscheinlichkeit und Populationsheterogenität).    

Als letzteres haben wir die Rolle von Oszillationen in der Genekontrolle untersucht. Dies haben wir durch die 

mikrofluidische Verabreichung periodischer Stimuli unterschiedlicher Frequenz erreicht, welche die NF-

kappaB Oszillationen entweder abschwächen oder verstärken. Durch den Vergleich der Genexpression dieser 

Konditionen konnten wir feststellen, dass ein verstärktes Oszillationssignal eine effiziente Transkription 

ermöglicht, welches auf die nichtlineare Natur der NF-kappaB-DNA Bindung zurückzuführen ist. 

Stochastische Modellierung weist darauf hin, dass Signalrauschen (Noise) vorteilhaft für die Realisierung von 

Entrainment (synchronisierte und verstärkte Oszillationen) unter fluktuierenden Eingangssignalen ist. 

Zusammengefasst lernen wir von dieser Arbeit, dass die dynamischen Eigenschaften von Signalnetzwerken 

nicht willkürlich sind, sondern eine verhaltensspezifische Funktion haben. Während die digitale Aktivierung 

eine orthogonale Kontrolle über die Anzahl aktivierter Zellen und deren Heterogenität ermöglicht, erlaubt eine 

oszillierende Kontrolle der Transkription die Wahrnehmung der Frequenz von Umweltfluktuationen. Die 

genaue Bedeutung dieser Erkenntnisse für spezifische biologische Bedingungen werden in zukünftigen 

Experimenten noch gezeigt werden müssen. Nichtsdestotrotz konnten wir grundlegende Prinzipien der 

dynamischen Informationsprozession in der Genregulation und Gewebefunktionen zeigen. 
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ABSTRACT 

Cells face a multitude of environmental cues that change with time and rely on just a few core signaling 

networks to sense and convert this information to gene expression responses. NF-κB is a gene regulatory 

network involved in a host of biological processes around cellular stress and inflammation. The pathway 

has two important dynamic features: 1) Digital activation, meaning that is a threshold level of input is 

required to trigger all-or-none pathway activation, and 2) Delayed negative feedback leading to 

oscillations in NF-κB nuclear localization. This thesis uncovers roles of these two dynamic features of the 

NF-κB network.  

First, we establish a microfluidic pipeline for high-throughput analysis of single-cell dynamic signaling. 

Current methods for studying signaling dynamics at the single-cell level are limited in throughput, 

precision, and ability to manipulate the cellular microenvironment during live imaging.  By investing in a 

microfluidic approach we solve these issues and enable streamlined collection and analysis of imaging 

and gene expression data under temporally modulated input. 

Second, we explore the function of the switch-like or digital NF-κB response. Cells receive different 

intensities and durations of input depending on their spatial and biological context. For example, cells 

close to an infection site may receive a short duration, high intensity inflammatory signal while cells 

distant to the site experience a sustained but low intensity signal. Combining computation and 

experimental screening of intensity and duration inputs, we discover that specific features of the input 

profile (area and shape) determine distinct parameters of the NF-κB switch response (activation 

probability and population heterogeneity).  

Third, we investigate the function of oscillation in gene regulation. To do this we either perturb or 

enhance NF-κB oscillations by delivering periodic input at different frequencies to the pathway using 

microfluidics. By comparing gene expression when the NF-κB oscillation is either disrupted or enhanced 

we discover that an oscillatory mode of gene regulation enables efficient transcription due to the 

nonlinear nature of NF-κB—DNA binding. Stochastic modeling indicated that noise is beneficial for 

enabling the NF-κB to entrain (synchronize and enhance oscillation) under fluctuating input.  

The message emerging from this work is that dynamic properties of signaling networks are not arbitrary 

but rather perform specific functions. While digital activation enables orthogonal control over fraction of 

activating cells and population heterogeneity, oscillatory control of transcription enables sensing 

frequency of environmental fluctuation to control gene expression. Although implications of these 

findings in specific biological scenarios will bear out in future work, these initial insights shed light on 

how the dynamic machine of the cell computes fluctuation in surroundings to coordinate gene regulation 

and tissue functions.  
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1. INTRODUCTION 

1.1 Cellular information processing 

Cells are the basic unit of life and must process signals in their environment and convert these to gene 

expression responses that implement biological functions.  The information processing capacity of cells is 

huge: environmental signals span a vast space of metabolite, lipid, carbohydrate, and protein molecules 

that present by diffusion or physical interactions between cells. The combination and intensity of 

environmental signals fluctuates in time and the basic questions of how cells perform parallel and 

temporal processing of complex signaling inputs are largely unanswered.  

Traditionally information processing in cells is described as follows: a signal activates a specific receptor, 

initiating a cascade of protein-protein interactions that culminates in the binding of transcription factors to 

DNA in the nucleus, leading to expression of certain genes. This gene expression leads to the production 

of proteins that mediate the cellular response to the signal, such as causing differentiation into a more 

specialized cell type in the case of a morphogen signal or generating an immune response in the case of 

an infection signal.   

However, problems are immediate apparent with the traditional model: There are simply not enough 

signaling pathways and transcription factors to process all the possible signal types that cells encounter. 

Cells appeared to rely on just a few core gene regulators, and the traditional model is not sufficient to 

explain how cells process signals that change in time.  

Two features of cellular systems are increasingly appreciated that hint at how cells may solve these 

problems: 1) the single cells comprising tissues and organisms are inherently dynamic, and while 

different signals may activate the same signaling pathway, the dynamics of transcription factor activation 

differ in timescale and temporal pattern; and 2) this gene regulator activation is affected by biochemical 

noise, leading different cells in a population to show heterogeneity in dynamics.  

The current model of cell information processing focuses squarely on the dynamic, stochastic nature of 

signal transduction, with the core concept that cells “encode” a particular input signal into a specific 

pattern of dynamic activation, and cells subsequently “decode” these dynamics to regulate expression of a 

particular set of genes (Werner et al., 2005).  

1.2 Encoding: oscillation and stochastic pulsing in signaling systems 

Oscillation plays a fundamental role in biological systems across the tree of life, in especially two aspects: 

for example, circadian rhythms that link organism physiology to time of day, and cells cycle and divide at 

regular intervals. It is now recognized that oscillation is also ubiquitous in cell signaling. Cell signaling 

oscillations generally happen at a faster timescale than circadian and cell cycle oscillations and were thus 

termed ultradian oscillations. Hormones such as cortisol, insulin, and leptin oscillate in the regulation of 

stress and appetite (Sinha et al., 1996; Walker et al., 2010). Ultradian oscillations were observed to occur 

in signaling pathways including Stat, Smad, and Hes1 (Kobayashi et al., 2009). Fascinatingly, these 
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oscillations often occur at harmonic frequencies of the circadian cycle with periods such as 12, 6, and 3 

hours. It is therefore tempting to speculate that oscillation is linked across timescales in biological 

systems.  

It has emerged in recent years that dynamic mechanisms of gene regulation play a central role in enabling 

cells to process complex spatiotemporal signals. As one example, the motif of oscillation and stochastic 

pulsing of transcription factors appears to be a common mode of genetic control that is conserved across 

species (Levine et al., 2013a). Specific functions of oscillation, pulsing, and dynamic regulation of gene 

expression include:  

Encoding input intensity using frequency modulation. Multiple signaling systems – including ERK, 

calcium, NFAT4 and Crz1 in yeast – exhibit frequency modulation, wherein the level of an input controls 

the frequency of stochastic pulses or oscillations of a transcription factor (TF) into and out of the nucleus 

(Albeck et al., 2013; Cai et al., 2008; Dolmetsch et al., 1997; Yissachar et al., 2013) . The effect is similar 

to an analog to digital converter: the analog input signal is converted to discretized pulses of TF activation 

at a particular frequency. The phenomenon is also seen in neurons, where communication strength 

between neurons is encoded in the rapidity of action potential firing . However, in this case the frequency 

modulated signal is used to transmit information between cells rather than transmit a signal to the nucleus 

and regulate gene expression.  

Encoding input type by stimulus-specific dynamic profiles. Different stimulus types that activate the same 

signaling network may achieve specific gene expression and phenotypic outcomes though distinct 

temporal dynamics of transcription factor activation. This phenomenon has been demonstrated 

convincingly in the p53 tumor suppressor system (Liu et al., 2014; Purvis and Lahav, 2013; Wee et al., 

2012a). Depending on the mode of DNA damage, whether induced by UV or gamma radiation, p53 

exhibits differential dynamics and conversion between either oscillating or steady activation (Purvis et al., 

2012). Similarly in the Notch system, a transition from oscillation in Hes1 TF activity to either sustained 

high or low expression mediates a transition from stem cell self-renewal to differentiation (Imayoshi et 

al., 2013).  

1.3 Decoding: dynamic regulation of gene expression  

After a signal is encoded in a dynamic pattern of transcription factor activation, it is then decoded in the 

nucleus to regulate the induction or suppression of specific genes. Dynamic gene regulation (i.e. 

oscillation or stochastic pulsing of transcription factors) potentially serves several functional roles for the 

cells.  

Functions of frequency modulation: Conversion of an analog input signal into discrete transcription factor 

pulses at a frequency depending on the level of input could play several functions for the cell. Different 

frequencies of oscillation can direct distinct gene expression programs depending on promoter and 

mRNA stability characteristics (Ashall et al., 2009; Wee et al., 2012b). In calcium signaling, input level 

changes the frequency of calcium oscillations and this alters the specificity and efficiency of gene 

expression (Ca, 1998). In ERK signaling, EGF dose determines the frequency of ERK pulses into the 
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nucleus leading to coordination of proliferation phenotype (Albeck et al., 2013). In the yeast Crz1 

network, frequency of stochastic pulsing also depends on input level, and the authors showed that this 

mechanism of gene regulation allows the system to achieve proportional expression control across 

multiple genes even when promoters have different activation characteristics (Cai et al., 2008). 

Functions of stimulus-specific dynamics. Cells rely on relatively few core signaling pathways to transmit 

information about a huge diversity of signals, and in general it is not clear how input-output specificity is 

achieved in gene regulation. In the NF-κB and p53 systems, dynamics of transcription factor activation 

depend on the type of input (Purvis et al., 2012; Werner et al., 2005). In these systems it was shown that 

different activation dynamics are sufficient to produce specific responses to a stimulus. Therefore, a 

single pathway can increase the number of possible outputs though different dynamics of pathway 

activation.  

In general, how different transcription factor dynamics achieve specific gene regulatory actions is not yet 

fully understood. Modeling studies show that due to the cooperative nature of transcription factor binding 

to DNA, an oscillatory compared to nonoscillatory regulatory mode can produce either higher or lower 

gene expression output (Wee et al., 2012b). NF-κB and p53 both regulate hundreds of target genes, and 

further, oscillatory transcription factor activity can generate distinct patterns of gene activation across 

multiple transgenes (Wee et al., 2012b).  

Overall, while initial findings support that these features enable stimulus specific coordination of distinct 

programs of gene control across target genes, the mechanisms and functions of oscillation and stochastic 

pulsing in transcription are still emerging. In this work we focus on the hypothesis that dynamic features 

of gene regulatory networks also function to transmit information about temporal information in the input 

signal. For this we focus on the NF-κB system, which is central to inflammatory responses and implicated 

in many diseases.  

1.4 NF-κB: a core signal processing circuit in immunity and disease 

NF-κB was discovered serendipitously by Ranjan Sen and David Baltimore in 1986 when looking for 

transcription factors that regulate B cell antibody maturation (Baltimore, 2009; Sen and Baltimore, 1986). 

NF-κB was named as it was because it was a nuclear factor that was bound to the κ light chain antibody 

enhancer in B cells. They found that NF-κB could be induced without requiring transcription, leading to 

the finding that NF-κB is held in a ready state in the cytoplasm but bound to an inhibitor protein. This 

inhibitor protein was named IκB (Baeuerle and Baltimore, 1988).  

After an NF-κB ligand such as TNF binds its receptor, IκB is phosphorylated and tagged for proteosomal 

degradation by IKK (IκB Kinase). IKK has since turned out to be a major signaling “hub”, and it is 

activated by a wide range of ligands including cytokines (such as Tumor Necrosis Factor or TNF), 

pathogen molecules (such as lipopolysaccharide or LPS), antibodies, and other stimuli associated with 

cell stress including reactive oxygen species, DNA damage, and mechanical sheer (Figure 1). Although 

NF-κB turned out to be important in B cell antibody maturation, it is expressed in nearly all cell types and 

acts as broadly as a critical mediator of the innate immune response (Gerondakis et al., 2014; Hayden and 
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Ghosh, 2008). Further, NF-κB is involved in lymphocyte activation, neurobiology, and centrally 

implicated in diseases such as cancer and autoimmunity (Baker et al., 2011; Hayden and Ghosh, 2008; 

Meffert and Baltimore, 2005; Oh and Ghosh, 2013).  

Following IKK activation, IκB degradation exposes a nuclear localization sequence on NF-κB leading to 

its translocation to the nucleus where NF-κB orchestrates the regulation of hundreds of genes. NF-κB 

dependent genes are typically grouped depending on timescale of regulation with “early” genes 

upregulated in 15-60 minutes, “middle” genes activated within 2-4 hours, and “late” reaching maximal 

activation in 8-12 hours (Hao and Baltimore, 2013; Tay et al., 2010).  

Following the initial discovery, the complete network of proteins that interact with and regulate the 

activity of NF-κB has been systematically worked out (Hoffmann et al., 2002). The network of interacting 

proteins that determine NF-κB activation is analogous to an electronic circuit (Figure 1). We now discuss 

two dynamic elements of the NF-κB network that similarly appear in electronic circuits: 1) a switch, and 

2) an oscillator.  

Figure 1. Modules of the NF-κB circuit. NF-κB can be divided in two parts: an “upstream” part 

encompassing signaling from the input and receptor level to activation to IKK, and a “downstream” part 

that includes the NF-κB/IκB feedback module. The upstream part functions as a switch, such that a 

threshold must be exceeded for pathway activation to occur. The downstream part includes activation of 

NF-κB and gene regulation and functions as an oscillator, due to delayed negative feedback of IκB on NF-

κB.  
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1.4.1 NF-κB circuit elements: switch-like (digital) activation 

After receptor binding of an NF-κB inducing molecule such as LPS or TNF, adaptor proteins are recruited 

to the cell membrane. These adaptor proteins assemble into a higher-order molecular complex that 

subsequently mediates IKK activation (Lin et al., 2010; Wu, 2013). The formation of higher-order 

molecular complexes is inherently cooperative, meaning that assembly initiation facilitates further growth 

of the complex (Wu, 2013).  This coopertivity leads to nonlinear, switch-like kinetics of IKK activation 

and effectively a threshold in the amount of receptor signal needed to trigger IKK (Shinohara et al., 

2014).  

As a consequence, the NF-κB pathways activates in a digital, switch-like fashion such that cells either 

fully activate NF-κB or not at all (Tay et al., 2010). Importantly, the threshold for pathway activation 

varies between cells due to different levels of receptor expression. As a consequence, increasing dose of 

stimulation to the pathway leads to an increasing fraction of cells in the population that respond, without 

significantly impacting the amplitude of the response (Tay et al., 2010).  

The mode of “digital” pathway activation (as opposed to “analog” activation where increasing input dose 

leads to a proportional increase in response amplitude) is also observed in signaling pathways such as 

ERK/MAPK (von Kriegsheim et al., 2009a; Malleshaiah et al., 2010; Petty et al., 1998). Interestingly, 

whether pathway activation is digital or analog can depend on cell type, suggesting that switch-like 

activation is a tunable parameters to impact how cell populations respond to stimuli (Aoki et al., 2011). 

1.4.2 NF-κB circuit elements: oscillation and noise 

Among the genes most rapidly induced by NF-κB is in fact IκB, forming a negative feedback loop 

(Hoffmann et al., 2002). So although the intial IκB pool was degraded to allow activation of NF-κB, the 

supply is quickly refilled. This newly synthesized IκB rebinds NF-κB in the nucleus leading to export 

from the nucleus back to the cytoplasm.  If active IKK is still present in the cytoplasm, IκB bound to NF-

κB is again degraded and the cycle repeats, leading to oscillations in NF-κB between the cytoplasm and 

nucleus.  

Although IκB negative feedback was realized soon after discovery of NF-κB, for many years oscillations 

in the pathway were not identified due to use of bulk cell assays in measuring transcriptional activity 

(Hoffmann et al., 2002). Importantly, dynamics and oscillations are highly variable or heterogeneous 

between cells in the population, and therefore the appearance of oscillation is generally lost in population 

assays when the cell responses are averaged. It was only in 2004 when live fluorescence imaging first 

revealed the extent of NF-κB oscillation in single cells (Nelson 2004).  

1.5 Biological noise 

Heterogeneity in NF-κB dynamics arises from biological noise. Noise is fundamental to the natural 

stochastic nature of biochemical molecular interactions (Hornung and Barkai, 2008). When reactions 

involve low number of molecules, molecular collision resulting in a reaction may occur variably and 

infrequently, and this variability in collision timing propagates in subsequent reactions. For example, in 



 

- 14 - 

processes such as transcription, NF-κB molecules interaction with only two gene loci on DNA, and 

transcription tends to occur in bursts of mRNA production. Because the timing of these bursts is 

infrequent this leads to variability in level of IκB protein which causes variability in oscillation dynamics 

of NF-κB. The noise arising from biochemical interactions is referred to as intrinsic noise (Elowitz et al., 

2002; Levine et al., 2013b). Over a long timescale spanning multiple cell divisions, intrinsic noise 

propagates to effects on differences in the level of key signaling species between cells such as differences 

in receptor number, leading to cell-cell variability in aspects such as signaling pathway sensitivity and 

also properties such as oscillation frequency (Elowitz et al., 2002; Hornung and Barkai, 2008). This long-

standing difference in protein species or organelles between cells is referred to as extrinsic noise (Elowitz 

et al., 2002).    

Noise intuitively seems that it would be detrimental in biological systems due to causing uncertainty in 

how cells will behave in response to a signal.  However, evolution occurs in the context of noise, and a 

number of positive functions for noise have been identified in diverse processes including cell 

differentiation and neurobiology (Eldar and Elowitz, 2010; McDonnell and Ward, 2011). 

1.6 Hypothesis: how cells process temporal information  

Although most in vitro studies of cell signaling are conducted under non-changing input conditions, in 

real biological contexts cells see highly dynamic and fluctuating levels of environmental signals, due to 

signals from neighbor cells or from circulation. It is well established that concentration level of a signal 

influences cell behavior and fate with examples in development, inflammatory response, etc. However it 

is not clear how cells make use of information contained in the dynamics of fluctuations of concentration 

of an input, which could provide information for example about spatial context (Warmflash et al., 2012). 

The hypothesis underlying this work is that dynamic network motifs such as oscillation and digital 

activation facilitate processing of temporal (i.e. frequency, duration) information in signaling inputs.  

1.7 Tools for dynamic cell signaling analysis at single-cell resolution 

Addressing fundamental questions in how cells process information requires A) measuring responses 

real-time in living cells, B) at the resolution of single cells, and with C) precise spatiotemporal control of 

the cellular signaling environment.  

1.7.1 Live cell fluorescence imaging 

Live cell imaging of fluorescent reporter constructs was a revolutionary advance that enabled observation 

of signaling dynamics in single cells, revealing for the first time the extent of noise and heterogeneity in 

dynamics between cells in their response and also phenomena such as oscillations and digital activation 

(Spiller et al., 2010). 

At the time of the discovery of NF-κB the state of the art of the art was to use electrophoretic mobility 

shift assays (EMSA) to measure transcription factor translocation into the nucleus (Hoffmann and 

Baltimore, 2006). Because this was a population average measurement, it was not possible to see 
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oscillations in NF-κB dynamics. The use of live cell fluorescence microscopy was required to see 

dynamics of single cells and observe complex pathway dynamics.  

Live fluorescent imaging works by genetically fusing a fluorescent protein to cellular protein of interest 

on the 5 or 3’ end of the protein. The protein fusion then emits fluorescence revealing the localization and 

concentration of the protein in the cell. For the case of NF-κB, expression of NF-κB is essentially 

unchanging in time, activity of the protein depends rather on amount of NF-κB localized in the nucleus. 

By observing the movement of NF-κB in and out of the nucleus, researchers discovered oscillatory 

dynamics in the pathway that is highly heterogeneous between cells (Nelson 2004). Oscillation and 

dynamic heterogeneity is now observed in many signaling pathways (Purvis and Lahav, 2013).  

One issue with engineering fluorescent protein tagging constructs is how they are delivered and expressed 

in cells. Transient transfection allows different expression levels of the construct in different cells to see 

how expression level impacts signaling. Stable genomic integration of a construct helps to reduce 

variability in construct expression between cells. Interestingly, this variability can still develop through 

differences in epigenetic modifications that develop between cells (Spiller et al., 2010).  

Until recently it has been difficult to avoid expression the tagged version of the protein at levels 

exceeding the natural expression level of the protein, leading to possible artifacts (Nelson et al., 2004). 

This was addressed only through using recombinant mouse technology and design of a fluorescent fusion 

knock-in mouse line (Zambrano et al., 2014). However, development of such mice is expensive and time 

consuming. The discovery of CRISPR has now made it much easier to introduce florescent proteins 

knocked-in to the endogeneous gene locus, enabling control of fluorescent protein fusion expression 

under the endogenous transcriptional control for the protein and avoiding artifacts related to use of 

synthetic promoters and overexpression (Mali et al., 2013).  

1.7.2 Microfluidic cell culture 

Asking how cells process signals that change in time requires the ability to deliver time-evolving inputs. 

Moreover, since the space of inputs that change in time is large, it is necessary to develop high-

throughput ways to test this. Since stimulated cells can subsequently release proteins and soluble signals 

that communicate with neighbor cells, it is necessary to avoid convective mixing that could disturb the 

diffusion field between cells. All of these issues are addressed through the use of microfluidics, which 

engineers fluidic structures on the size scale of single cells and allows high-throughput testing of arbitrary 

input conditions with temporal input patterns (Tay et al., 2010; Whitesides, 2006) 

Microfluidic functionality is achieved using two microfluidic layers, a flow and control layer. The flow 

layer contains fluids and cells in the experiment. The control layer creates microfluidic valves in the flow 

layer by pushing on the flow and pinching off flow at precise locations on the chip. With this design 

insight it has been possible to engineer chips with features similar to those of an integrated electronic 

circuit, with increasing complexity and develop specialized functions such as pumping, gradients, etc 

(Scha et al., 2002).  
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Microfluidic chips are fabricated using standard photolithography techniques to pattern positive and 

negative photoresists on silicon wafers. These photoresist patterns are then used to mold chip layers from 

polydimethylsiloxane (PDMS). Layers are bonded and holes punched so that on-chip channels are 

accessible by external tubing, and the chip bonded to a glass slide for imaging on the microscope (Iliescu 

et al., 2012). Chips are externally actuated using electronic solenoid valves connected to pressure sources 

that actuate specific valves on the chip through electronic control via a Matlab or Labview interface. 

Microfluidics has advanced cell culture from simple cell monolayers to complex cell organization 

mimicking tissues and organs (Bhatia and Ingber, 2014) 

1.7.3 High-throughput gene expression analysis  

Beyond improved capabilities around cell culture control and stimulation, microfluidics provides 

revolutionary advances in sensitivity and throughput of biochemical assays including measurement of 

nucleic acids. Real-time PCR amplifies and simultaneously detects and quantifies a gene product. 

Microfluidics enables reducing the reaction volume for these assays by orders of magnitude and thereby 

improving sensitivity in mRNA detection (Hong et al., 2004). This increased sensitivity enables detection 

of mRNA molecules from single mammalian and bacterial cells (Marcus et al., 2006; Sanchez-Freire et 

al., 2012). Moreover, microfluidic approaches can perform combinatorial tests of a panel of gene primers 

against a series of biological samples in reaction arrays – for example, in a 48×48 or 96×96, enabling 

2304 and 9216 PCR reactions respectively without increased pipette steps – for vastly increased 

throughput (Knutson et al., 2013).  

One limitation of real-time PCR is that it is estimates the abundance of a nucleic acid based on the rate of 

amplification and is therefore a relative measurement subject to amplification bias. An ideal measurement 

method would quantify absolute number of mRNA species. This is achieved using microfluidics to divide 

an uncertain number of mRNA molecules into a large number of reaction chambers such that each 

chamber contains either zero or one molecule. An amplification reaction in each chamber then is then 

positive or negative for the presence of the target molecule allowing counting and absolute quantification 

of molecule number. This method has become known as “digital PCR” and has been successfully 

implemented in both valve and droplet based microfluidic systems (Beer et al., 2008; Leman et al., 2014; 

Warren et al., 2006).   
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1.8 Aims of the thesis 

This thesis investigates how dynamic features of the NF-κB pathway function to process temporal 

information in signaling inputs. First, we establish a microfluidic pipeline to address limitations in current 

technology for studying single-cell dynamic signaling under temporally modulated input. Next, we apply 

this pipeline to understand functions for digital activation and oscillation in the NF-κB response.  

1.8.1 Establish a robust microfluidics pipeline for single-cell analysis  

The first goal is to establish a microfluidic pipeline in the lab for single-cell analysis that enables live 

imaging and gene expression measurements under concurrent modulation of the cellular 

microenvironment. Critical issues to address are how to achieve robust long-term culture of a variety of 

Figure 2. Identifying functions of the NF-κB switch and oscillator. A) By screening different 

combinations of input dose and duration – leading to comparison of weak-sustained and intense-brief 

input profiles – we explore how the NF-κB switch regulates both the probability and heterogeneity of 

responses in the population. B) Using periodic input to NF-κB enables examining how the system 

processes frequency content in the input. Though analysis of mRNA output we measure importance of 

oscillation in the transcription regulatory function of NF-κB. 
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cell types, how to extract cells or lysate from the chip for downstream high-throughput gene expression 

analysis, and how to achieve automated and fast analysis of imaging and gene expression data.  

1.8.2 Dissect dynamics and function of the NF-κB switch  

Although the NF-κB response is well understood to be switch-like or digital, it is not understood how 

dose and duration of the input are integrated to determine switch activation. Moreover, the larger question 

of why switch-like response is beneficial is also not addressed. In this part we aim to address these 

questions through experiment and modeling to screen the dose-duration input space to characterize NF-

κB switch dynamics and better understand how the switch functions to determine the collective NF-κB 

responses in a cell population.  

1.8.3 Determine role of noise and oscillation in gene regulation  

Although signaling is typically studied in unchanging conditions, in vivo biological signals are in general 

not static but rather dynamic and fluctuating. NF-κB oscillation controls transcription, but it is not clear 

how or why. We use a microfluidic approach to stimulate NF-κB using periodic input, which either 

disturbs or enhances the NF-κB oscillation depending on the input frequency. By studying gene 

expression under these two cases we dissect how oscillation in NF-κB nuclear localization controls 

transcription. Noise is a critical aspect of oscillation and it is not understood to what extent noise impacts 

oscillation and NF-κB transcriptional output. Using modeling together with experimental data we address 

how synergy between oscillation and noise mediates the NF-κB response under periodic input.  
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Abstract 

Time-dependent analysis of dynamic processes in single live cells is a revolutionary technique for 

the quantitative studies of signaling networks. Here, we describe an experimental pipeline and associated 

protocol that incorporate microfluidic cell culture, precise stimulation of cells with signaling molecules or 

drugs, live cell microscopy, computerized cell tracking, on-chip staining of key proteins, and subsequent 

retrieval of cells for high-throughput gene expression analysis using microfluidic qPCR. Compared to 

traditional culture dish approaches, this pipeline improves experimental precision and throughput by 

orders of magnitude and introduces much desired new capabilities in cell and fluid handling, representing 

a major step forward in dynamic single-cell analysis. Combination of microfluidic membrane valves, 

automation, and a streamlined protocol now enables a single researcher to generate 1 million data points 

on single-cell protein localization within a week, under 48 predesigned experimental conditions selected 

from different signaling molecules or drugs, their doses, timings and combinations, and on various cell 

types and densities. 

 

INTRODUCTION 

Increasing spatial and temporal resolution of the imaging of dynamic cellular processes
1
, such as 

protein translocation,
2, 3

 interaction
4
, post-translational modification

4
, diffusion

5
 and local concentration

6
, 

and the transcription of single mRNA molecules
7-9

 and organelle function
10, 11

, has opened the door to 

many new biological questions.
12

 Single-cell longitudinal imaging is the gold standard in cell and systems 

biology, due to the ability of this technique to capture dynamics and variability of individual cells. Live 

cell imaging and single-cell analysis of dynamic signal processing have greatly enhanced our 

mailto:savas.tay@bsse.ethz.ch
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understanding of basic immune responses
13

, development
14

, biological noise
15

, and drug responses
16

. 

However, experiments to measure single-cell dynamics using manual pipetting and conventional (dish or 

flask-based) cell culture methods have limited throughput, reproducibility, and confer researchers only a 

partial ability to manipulate the cellular environment precisely in real-time. Furthermore, the large media 

volumes around the cells contribute to background fluorescence, inhomogeneity in concentration due to 

convective mixing, and weakened cell-to-cell paracrine signaling due to dilution of secreted molecules.  

Microfluidics overcomes difficulties in traditional live imaging by miniaturizing fluid control to 

size scales matching those of single cells
17

. Microfluidic cell culture enables precise and automated 

specimen manipulation during live cell experiments in nanoliter volume chambers that allow 

physiological diffusive signaling between cells. Multiple patterns of complex temporal stimuli can be 

delivered in parallel to culture microchambers in a single experiment, resulting in dramatic increases in 

throughput, particularly when combined with automated image analysis routines. Transient, increasing or 

decreasing stimuli, as well as rapid pulse trains of chemicals, can be seamlessly delivered to cells when 

membrane-valve-based microfluidic systems are used. Moreover, precise spatial manipulation is possible 

through pairing with technologies such as optogenetics18, 19 or optical tweezers20. Finally, use of 

microfluidics facilitates closed-loop control with continuous experimental manipulation based on real-

time imaging feedback
21

. When combined with a robust image analysis pipeline, a single researcher can 

generate and analyze rich multiparameter datasets on the timescale of weeks rather than years.  

Previously, we developed an automated microfluidic cell culture system
22

 and used it to study 

immune signaling dynamics
2
, cell migration

23
 and stem cell differentiation

22
, all the while accounting for 

natural variability between individual cells. Precision fluidic control and high-throughput achieved by this 

system enabled us to discover digital, all-or-none activation of the NF-κB immune pathway following 

inflammatory signaling inputs
2
, and made possible the development of a widely applicable computational 

model of this pathway
2
 and of coordinated cell migration in a population context.

23
 Here, we describe an 

accessible end-to-end pipeline for microfluidics-based single-cell analysis, spanning production of 

microfluidics chips, hardware and software setup for controlling and automating chip operation, 

parallelized single-cell dynamic imaging experiments, automated image and data analysis, and cell 

retrieval from the chip for gene expression analysis using the Fluidigm® BioMarkTM microfluidics-based 

qPCR system
17,18 

(FIG 1).  

 

APPLICATIONS OF THE PROTOCOL 

 

Although this protocol focuses on cell signaling applications, the method described herein is useful for 

many applications involving dynamic monitoring of cells under variable stimulation type and timing, and 

is equally well suited to labeling studies in fixed cells across many experimental conditions or time 

points. In the field of stem cell biology, questions concerning how cell fate depends on the combination, 

concentration, and duration of soluble input signals are widely interesting and are among those that the 

present approach was designed to answer .
22

 Stem cells have been maintained in the chip described herein 

for 2 weeks without signs of differentiation or loss of renewal potential
22

 Due to the ability to program 

arbitrary stimulation procedures, complex and otherwise labor-intensive protocols for protein or RNA 

labeling can be programmed and performed unattended, for up to 96 experimental conditions. Moreover, 
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compared to widefield imaging in a 96-well plate, imaging in a microfluidic system with ~35-μm 

chamber height leads to vastly improved image signal-to-noise due to reduction in medium volume and 

background fluorescence.  

 

COMPARISON WITH OTHER APPROACHES 

 

A number of microfluidic technologies have been described for cell culture applications, including 

automated antibody labeling for measuring signal transduction across multiple time points in fixed cells
24-

26
, study of single-cell dynamics under microfluidic gradients

27
, microfluidic perfusion of cell culture 

arrays
28

, single-cell trap arrays
29, 30

, and single- or few-cell isolation in microwells
31

.  Overall, these 

methods lack the throughput capacity of the present protocol in terms of number of parallel experimental 

conditions that can be set up. The method described herein involves use of a chamber whose geometry 

allows natural diffusive signaling and physical contact between cells. Depending on the biological 

question being addressed, it may be suitable to choose an alternative chip design that, for example, traps 

and isolates single cells. The present protocol, including chip fabrication and computer control, surface 

treatment, cell loading and maintaining long-term viability, along with retrieval from chip for downstream 

analysis, is applicable to mammalian cell culture in other multilayer polydimethylsiloxane (PDMS) chip 

designs.  

 

 
FIG 1. Single-cell live imaging and gene expression analysis pipeline. A) PDMS-based microfluidic 

chips are produced from silicon molds. The chip described (called the Cell Culture Chip22) contains 

96 independent ~1 mm x 1 mm x 35 μm (35 nl) chambers. Computer-controlled hardware for 

actuating on-chip elastomeric valves is set up. B) Chips are mounted to the stage of a live imaging 

microscope and chambers surfaces are treated with cell adhesion molecules (typically fibronectin) 

to facilitate cell attachment. Cells prepared in suspension are loaded into each chamber and 

allowed to grow to desired confluency. Typically, 30% of chamber volume is exchanged with fresh 

medium at 2-h intervals to prompt rapid cell growth. C) Programmable chip control enables to 

deliver unique stimulation patterns for each chamber in parallel with live cell imaging. Imaging 

cells with fluorescent reporters facilitates readout of dynamic cell signaling events, such as 

translocation from the cytoplasm to the nucleus. D) After in-chip stimulation, cells are trypsinized, 

and they readily detach from chamber surface (typically in <1 min), and flowed through microbore 

tubing off-chip to a 96 well plate to be subjected to immediate lysis and one-step reverse 

transcription and specific-target amplification for gene expression analysis. Use of the Fluidigm 

microfluidic qPCR system enables to perform up to (96x96=) 9216 simultaneous qPCR 
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measurements. E) For live microscopy, image analysis automatically tracks cells and quantifies 

responses to produce single-cell trajectories of signaling dynamics. For images generated during 

microfluidic qPCR, fluorescence for each reaction over time is quantified to determine relative 

abundance of each gene template sequence. Images in (A) and (B) adapted with permission from 

REF [22]. Copyright 2013 American Chemical Society.  

 

 

EXPERIMENTAL DESIGN 

 

Microfluidic chip design. Multilayer soft lithography
32

 enables the fabrication of microfluidic 

devices with integrated membrane valves that allow highly complex, parallelized fluid manipulation that 

have led to paradigm shifts in single-cell genomic
33, 34

 and transcriptomic
35, 36

 analysis. Chip fabrication 

begins with the design and preparation of molding masters on silicon wafers. The chip is typically 

designed using CAD software, and this design is printed to produce photomasks, which are, in turn, used 

to produce molds using standard UV photolithography in a cleanroom facility.
37, 38

 In multilayer 

microfluidics, a positive photoresist is typically used to generate channels with rounded cross-section, and 

a negative photoresist is used to generate channels with rectangular cross-section.
39

 For mold-making 

protocol steps see Gómez-Sjöberg et al.
22

 The transparent, biocompatible, and gas-permeable PDMS is 

cured on the molds to create microscale features in the molds. By carefully aligning and bonding multiple 

PDMS layers on top of each other, it is possible to generate on-chip valves, and these valves can create a 

dense fluidic functionality that is analogous to the electronic functionality on a computer chip.
32

  

The microfluidic cell culture chip
22

 provides a broadly applicable platform that overcomes 

limitations of traditional live cell experiments around automation, precision, and throughput.  The chip 

contains 96 individually controllable chambers of approximately 1x1 mm
2
 surface area and 35 μm height, 

for a 35 nl volume. Each chamber can support the culture of between 1 and ~1000 mammalian cells 

depending on the cell size. Vials containing cell media and other reagents are connected to the chip 

through thin tubing. Up to 16 input reagent vials can be connected to the chip at a time. Flows from one 

or multiple inputs (which are combined by an on-chip mixer) are directed to selected chambers. An on-

chip peristaltic pump enables highly precise delivery of predetermined volumes of reagents into 

chambers. The chip is constructed from two PDMS layers: the ‘flow’ layer, which contains cells and 

reagents, is positioned above a ‘control’ layer that creates microfluidic valves.
40

 Overall, the chip 

functions as a miniaturized 96-well plate, where manipulation of nanoliter volumes for each chamber is 

independently controlled and fully automated.  

 

Controlling and imaging the chip. Manufacture of on-chip valves that control chip functions 

requires hardware to deliver pressure to specified valves and software to implement different sequences of 

valve opening and closing. An air pressure source is connected to computer-controlled solenoid arrays 

that direct pressure to specified valves on the chip. Scripting in Matlab
®
 or LabVIEW

TM
 enables 

automation of chip functions, including chamber surface treatment, cell loading, cell feeding and 

stimulation, cell staining, cell retrieval from the chip, and chip cleaning.  Input reagents, such as cell 

media, are pressurized with 5% CO2 in air gas mixture to equilibrate the vial contents with the appropriate 

gas composition. The chip is mounted securely on the stage of an inverted automated fluorescence 
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microscope with environmental control to maintain temperature (37 °C), gas composition (5% CO2 in 

air), and humidity (>95%) around the chip. Manufacturer-provided or open-source microscope control 

software such as μManager (www.micro-manager.org) is used to carry out timelapse imaging of cells in 

chambers on the chip. The chip can be used with either widefield or confocal microscopes. Although 

confocal compared to widefield systems may provide improved image quality, widefield systems have 

advantages in imaging speed and lower phototoxicity, which becomes important when studying signaling 

dynamics and fine time resolution needs to be maintained while acquiring images across many chip 

locations.   

 

Maintaining cell viability in microfluidic chips. PDMS provides excellent permeability to 

oxygen and CO2, which facilitates cell culture in closed PDMS devices.
41

 As with any live imaging 

experiment, cell health is negatively affected by phototoxicity, and, therefore, illumination time and 

intensity should be minimized. Toxicity from uncrosslinked PDMS can be eliminated by fully curing 

PDMS chips, autoclaving them or using chemical extraction methods.
42

 The small volume of microfluidic 

chambers means that cells rapidly consume nutrients and require feeding at frequent intervals. Cell 

feeding in the cell culture chip can be performed using the on-chip pump to gently exchange a portion of 

the chamber solution with fresh medium. A default 2-hour feeding interval with 30% medium 

replacement is suitable for cultures of 3T3 fibroblasts, RAW264.7 macrophages, and probably other cell 

types. As a consequence of the small chamber volume, the concentration of ligands introduced into the 

chambers decays exponentially as the ligands degrade and as cells process and internalize them. This 

concentration variation may be used to generate periodic input signals to cells. To achieve constant ligand 

concentration, the medium containing the ligand can be continually perfused using pressure-driven flow 

or the on-chip peristaltic pump. Please note that a no-ligand feeding condition should be included in 

stimulation experiments as a control to determine the possible influence of the feeding method on cell 

response.  

 

Cell tracking and data analysis. Due to the volume of image data generated by the present 

protocol, automated processing and quantification is essential. Incorporating fluorescent reporters that 

label cellular compartments, such as the nucleus, can greatly aid computerized cell tracking and data 

extraction. Such labels may be genetically encoded in the cells’ DNA or small molecule fluorophores 

may be added to cells before imaging. A number of software tools are available for image quantification. 

The Matlab Image Processing Toolbox provides a full set of functions for customized implementation of 

essentially any image analysis task. We use Matlab routines for analysis of dynamic NF-κB nuclear 

translocation and oscillation in cells.
2
 Open source packages such as CellProfiler provide a broad range of 

image analysis functions that can be customized without programming. For large or complex image 

processing sets, it may be necessary to parallelize the tasks and carry out the analysis on a high-

performance computer cluster. After cell tracking and image quantification, individual cell trajectories are 

assessed (typically in Matlab or Excel) to draw conclusions about single-cell and population responses to 

each input condition.  

 

LIMITATIONS  

http://www.micro-manager.org/
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Microfluidic cell culture experiments are inherently more complex and require longer setup times 

than experiments conducted with traditional methods, though the labor and time investment is recovered 

many fold by gains in throughput, automation, reproducibility, and image quality. However, the biggest 

payoff is in experiments that deliver very high information density (large number of data points per 

chamber or per cell, collected over the course of the culture). Simple experiments with a single end-point 

readout might not be suited to the microfluidic platform. The chip design described here is such that the 

chip has limited ability to generate chemical gradients, and it also requires for media to flow over cells to 

deliver new stimuli, a process that disturbs the paracrine signaling field in the chamber. Other chip 

designs enable gradient formation and diffusive feeding, which preserves the paracrine field
27, 43

. The chip 

design described in the present protocol is not optimized for generating smoothly varying (i.e. sinusoidal) 

inputs to cells. Gene expression analysis is currently limited to analysis of all cells within a chamber 

rather than single cells, though isolation and analysis of a cell of interest may be achieved in the current 

chip design using optical trapping methods.
44
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FIG 2. Photos of microfluidic cell culture system setup. (A) System overview. Solenoid valves that 

pressurize on-chip valves are controlled by a USB controller box operated by a laptop computer. 

An air pressure source is connected to solenoid valves (required pressure ~20–30 psi).  The valve 

control system and computer are portable for use on different microscopes. A separate computer 

controls a fully motorized inverted fluorescence microscope (pictured: Nikon Ti-Eclipse). The 

microscope contains an incubation system to control temperature, humidity, and CO2.  (B) The 

chip is secured tightly to the microscope stage using a stage plate with a viewing area sufficiently 

large to see chambers and surrounding fluidic circuitry on chip. Slots in stage cover allow tubing 

connections to the chip, and tubing is secured using plastic stage clips. (C) Cell retrieval from chip. 

A ~10-cm length section of PEEK tubing is connected to either the upper or lower waste outlet on 
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the chip. Trypsin is delivered to chambers and cells are washed out serially through the tubing. 

Between each chamber, a PBS wash step prevents cross-contamination between chambers. The 

cells are deposited into a 96-well plate containing 5 µl of lysis buffer for qPCR processing. Each 

well should be sealed to prevent evaporation during cell retrieval. D) A syringe can be used to fill 

control lines with water. E) Control lines connect the chip to a computer-controlled pneumatic 

valve manifold supplied with air at typically 20–30 psi. Tygon tubing of sufficient length to reach 

the chip on the microscope then connects to the corresponding valve on the chip. F) To connect 

pressurized reagent inputs to the chip, Tygon tube connects a port on a manual manifold to a vial 

containing the desired reagent or medium. The connection from the vial to the chip is made using 

PTFE tubing. (G) Process for making vials to be pressurized for flowing reagents or cells into chip. 

While for media and reagents PTFE tube is used, for loading cells PEEK tube is used. A 20-gauge 

needle is inserted through a rubber membrane screw cap and 0.02” PEEK tubing is inserted 

through the needle. The needle is then removed. 

 

 

MATERIALS 

 

REAGENTS  

 Polydimethylsiloxane (PDMS) and curing agent (Momentive RTV-615A and RTV-615B) 

 Trimethylchlorosilane (TMCS) (Sigma 92360) !CAUTION TMCS is highly toxic and should be 

handled only in a fume hood, with proper personal protective equipment.  

 Pluronic F-127 (Sigma P6867) 

 Fibronectin from human plasma (Millipore
®
 341635-1MG)  

 Cells and media. Cells should be adherent or semi-adherent on fibronectin or other ECM protein. 

Cells used here are NIH3T3 mouse fibroblasts and RAW264.7 mouse macrophages genetically 

modified to express NF-κB (p65) fluorescent fusion proteins.
2, 45

  

 Signaling molecules for cell stimulation. Our lab has used TNF (Life Technologies PMC3014) 

and LPS (Sigma L4525).  

 Hydrogen peroxide (H2O2) 30% (vol/vol) (Sigma 95313-1L) !CAUTION H2O2 is corrosive; wear 

proper personal protective equipment. 

 CellsDirect one-step qRT-PCR kit containing Resupension Buffer, Lysis Enhancer, and 

SuperScript III/Platinum Taq mix (Life Technologies 11753-100) 

 Assay loading reagent (Fluidigm 85000736) 

 Sample loading reagent (Fluidigm 85000735) 

 TaqMan
®
 gene expression assays (Applied Biosystems

®
 4331182) 

 TaqMan universal PCR master mix (Applied Biosystems 4304437) 

 TE buffer (Ambion
®
 AM9849) 

 TaqMan primers (Applied Biosystems) 

 Double-distilled water (ddH2O) 

 Delbucco’s Phosphate Buffered Saline (PBS, Life Technologies 14190250) 

 Delbucco’s Modified Eagle Medium (DMEM, Life Technologies 32430-027) 

 Fetal Bovine Serum (FBS, Sigma F2442-500ML) 
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 0.05% Trypsin-EDTA (1X) (Trypsin, Life Technologies 25300-054) 

 

Reagent setup 

 

 6% H2O2 solution (0.5 L): add 100ml 30% H2O2 into 400 ml ddH2O. Store at 4 °C. Stable for 1 

month.  

 Medium for 3T3 fibroblasts and RAW264.7 macrophages (DMEM + 10% FBS): add 50 ml FBS 

to 450 ml DMEM. Store at 4 °C. Stable for 1 month. 

 100 μg/ml fibronection solution (1ml): add 100μl fibronectin (1mg/ml) into 900 μl PBS. Use 

immediately.  

 0.2% pluronic solution: Add 0.1g pluronic powder into 50 ml PBS. Store at at 4 °C. Stable for 6 

months.  

 Lysis Buffer solution (300 μl): Thaw Resuspension Buffer on ice. Combine 250 μl Resuspension 

Buffer and 25 μl Lysis Enhancer. Store on ice until ready to use.  

 

 

EQUIPMENT 

 Automated fluorescence inverted microscope with environmental control chamber. We have 

implemented this protocol on Leica DMI6000B and Nikon Ti-E microscopes. 

 Pneumatic solenoid valves and controller boxes. Parts and assembly instructions are available at 

http://www.microfluidics.ethz.ch/chip_culture_protocol   

 Silicon master molds. The silicon cell culture chip molds were obtained from the Stanford 

Microfluidics Foundry, http://www.stanford.edu/group/foundry/  

 BioMark
TM

 HD system with IFC Controller MX (Fluidigm) 

 48.48 Dynamic Array
TM

 IFC (Fluidigm) 

 Sonicator (SonoSwiss, SW 6H) 

 Plasma machine (Diener, FEMTO Version A) 

 Spin coater (SPS-Europe, SPIN150-NPP) 

 Vacuum pump (Varian, SH-110) and desiccator (Thermo Scientific Nalgene, EW-06520-05) 

 Punching press and 20-gauge round hole punch (Syneo, Accu-Punch MP) 

 Laboratory oven (Thermo, Heratherm OSM60) 

 Laminar flow hood (Thermo, Herasafe KS) 

 Orbital mixer and 100ml disposable cups  (Thinky Corp, ARE-310 and 250-100DSP) 

 Pre-cleaned glass slides 75 x 50 mm (Fisher, #W56948) 

 Stainless steel microbore tubes 0.025” OD x 0.013” ID x 0.75” long (New England Small Tube) 

 Luer manifolds 5-port (Cole Palmer, #EW-30600-43) 

 Disposable stainless steel dispensing needles (23 gauge, 0.5" long, type 304, ID 0.017", OD 

0.025”, McMaster-Carr) 

 Pressure regulator 0-30psi (Airtrol R-800-30-W/K) 

http://www.microfluidics.ethz.ch/chip_culture_protocol
http://www.stanford.edu/group/foundry/
https://www.google.ch/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDEQFjAA&url=http%3A%2F%2Fwww.ultraschallreinigen.ch%2Fshop-ultraschallbaeder%2Fsonoswiss%2F5-7-liter-geraet-sw-6h%2F&ei=ql3ZUrHWKailyQPsn4CgBA&usg=AFQjCNFMtCcKweF9RRYkiXe1gNsDCikwcA&sig2=CmekwcJ0Hl1uf6lpUN2Ilw&bvm=bv.59568121,d.bGQ
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 PEEK
TM

 tubing (510 μm OD x 65 μm ID, IDEX 1543) 

 PTFE tubing (0.022" ID x 0.042" OD, Cole Parmer EW-06417-21) 

 Tygon
®
 microbore tubing (0.02" x OD 0.06", VWR S-54-HL)  

 Microtubes 2ml (Sarstedt 72.694.006) 

 Membrane Screw Caps (Sarstedt AG 65.3716) 

 10 ml syringe (BD Medical 14-826-13) 

 0.2-μm syringe filter (Thermo Fisher Nalgene 191-2020) 

 Scotch tape 

 5% CO2 pressure source  

 Compressed air source 

 ‘Valve control computer’ with Windows (Microsoft) and MATLAB (Mathworks, version 2006 or 

later) installation. A laptop computer allows the valve control system to be portable between 

different microscopes.  

 ‘Analysis computer’ with Windows (Microsoft) and the following software: CellProfiler open 

source package (www.cellprofiler.org) for image analysis, and MATLAB (Mathworks, version 

2006 or later) and Fluidigm Real-Time PCR Analysis software (Fluidigm) for qPCR data 

analysis. 

 

 

Equipment setup  

 

Obtain flow and control layer cell culture chip molds based on the AutoCad DXF chip design file 

(Supplementary Data) using one of several organization that provide microfluidic fabrication services, 

such as: Trianja (http://www.trianja.com), SIMTech Microfluidics Foundry (http://www.simtech.a-

star.edu.sg/smf), , or FlowJEM (http://www.flowjem.com). Additionally, the Stanford Microfluidics 

Foundry provides a summer school for microfabrication techniques (http://stanford.edu/group/foundry). 

 

The cell culture chip contains on-chip elastomeric valves that are actuated by an external pressure source. 

Gómez-Sjöberg, et al.22
 developed a setup that uses 3-way solenoid valves that are computer-controlled 

by a custom USB interface. This control system can be used generally for multilayer PDMS chips. 

Detailed instructions for constructing the control system and the related software and drivers are available 

at http://www.microfluidics.ethz.ch/chip_culture_protocol. 

 

Prepare ‘valve control computer’ and ‘analysis computer’ with software listed in the Equipment list.  

 

PROCEDURE 

 

Chip fabrication from existing molds TIMING 36 h  

http://www.trianja.com/
http://www.simtech.a-star.edu.sg/smf
http://www.simtech.a-star.edu.sg/smf
http://www.flowjem.com/
http://stanford.edu/group/foundry
http://www.microfluidics.ethz.ch/chip_culture_protocol
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1|  Place flow and control mold wafers inside a closed wafer carrier box with a small beaker 

containing a few drops of TMCS. Incubate for 60 min and use wafers within 1 h following the 

incubation.  

2|  Make an aluminum foil container by molding foil around a 110-mm diameter Petri dish. To make 

the flow layer, weigh 38 g of PDMS in a 100ml disposable cup and add curing agent at a 1:10 

weight-to-weight ratio (curing agent:PDMS, 3.8 g) for each mold.  Mix in an orbital mixer for 

3 min at 2000 RPM and de-foam for 5 min at 2200 RPM. Pour 40 g of the resulting PDMS over 

wafer.  

3|  De-gas the PDMS flow layer by placing the aluminum foil container in a larger Petri dish in a 

vacuum desiccator. Make sure that the PDMS does not overflow and that inrushing air does not 

tip the wafer when refilling the desiccator with air.  

4|  To cure the PDMS flow layer, cover and bake for 1 h at 80 °C. Make sure the substrate is leveled.  

5|  To make the control layer, in a 100ml disposable cup first weigh 22 g PDMS and add curing 

agent at 1:10 ratio (2.2g) for each mold. Mix in an orbital mixer for 3 min at 2000 RPM and de-

foam for 5 min at 2200 RPM. Place the cup containing mixed PDMS in a vacuum desiccator until 

all air bubbles have been removed (~20min). Pour PDMS over a wafer covering three quarters of 

substrate and, using a spin coater, spin the control mold wafer for 12 s at 500RPM, then for 1 min 

at 2500 RPM to achieve a control layer thickness of approximately 30 μm. To cure the control 

layer, cover and bake on a level surface for 1 h at 80 °C.  

6|  To coat glass slides with a thin PDMS layer, first clean 50x75-mm glass slides by 45 min 

sonication in ddH2O. After sonication, dry the slides at 80 °C for ~45min. Weigh and mix 1:10 

PDMS (38g PDMS, 3.8g curing agent) as in step 2. Using spin coater, spin 1:10 PDMS onto 

50x75 mm slides for 15 s at 500 RPM then 60 s at 2500 RPM. Bake at 80 °C for 1.5 h to cure the 

PDMS.   

7|  Remove PDMS from the flow layer by cutting out around channels and peel PDMS carefully off 

the wafer. Align and punch the indicated holes using a 20-gauge round hole punch.  Capture all 

punched plugs on tape. Clean the flow layer after punching by coating with tape and pressing tape 

into the mold.  

8|  Plasma treat the control wafer and cut-out PDMS flow layer for 15 s at 45 W using the plasma 

machine. Position flow layer cut-outs above control layer (still on mold) under low magnification. 

Make alignment marks on the two layers coincident, and bring the layers together.  Irreversibly 

bond flow to control layer by baking for 2 h at 80 °C. 

9|  Cut out chip from around the channels and carefully peel them off the control wafer. Punch the 

remaining control layer holes. Clean and plasma treat (15 s at 45 W) surfaces of the PDMS-

coated slide and control-flow assembly. Position the chip on a PDMS-coated slide and bake at 

80 °C for minimum 36 h before use. This final bake is essential to minimize the amount of un-

crosslinked polymers remaining in the PDMS. After the chip making procedure is mastered, rate 

of chip failure due to manufacturing defect is <10%.  
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FIG 3. Cell culture chip layout. The chip contains 96 individually addressable chambers and can be 

connected to up to 16 input reagent vessels . Cells, media, and reagents are contained in the red 

“flow” layer, whereas membrane valves are created by the blue “control” layer. The multiplexer 

(mux) valves control which chamber or chambers are selected. Cells can be loaded into chambers 

using the CellsIn port. Cell and reagent input vials are pressurized with 5% CO2 to 3–10 psi (200–

700 mbar) and delivered to the chip through microbore tubing by pressure-driven flow. Input lines 

converge and pass through a herringbone mixer, enabling the researcher to select reagents one at a 

time or to mix multiple reagents before they enter chambers. PBS connected to the InPurge line 

clears the input manifold and mixer when selecting a new input, and the waste flows out through 

the mixer flush outlet. Inset 1 shows an on-chip peristaltic pump that can generate precisely 

metered flow to chambers, which enables replacement of a specific fraction of the chamber volume. 

Pumping precision (1 pump cycle) is ~0.35 nl. Inset 2 shows an enlarged view of the microfluidic 

chambers, which are ~1 mm2 in area and 35 μm in height for a ~35 nl volume. Typically 100–200 

large (i.e. 3T3 fibroblast) or 200–300 small (i.e. RAW264.7 macrophages) cells are grown in a 

chamber.  Sieve valves at the entrance and exit of each chamber enable to trap large cells and 

particles (>20 μm diameter). A chamber flush line enables to clear the flow path before directing 

new reagent to chambers.  

 

Setting up the chip control system TIMING 1 day 

10|  Assemble a 48-valve control system (six manifolds with eight pneumatic solenoid valves each, 

operated by two-valve controller boxes) connected to a pressurized air source, and install USB 

driver software (see Equipment setup).  

11|  Mount pneumatic solenoid valve assembly and control boxes near the microscope. Please note 

that use of a portable mounting frame is convenient for transporting the control system between 

multiple microscopes (see FIG 3A for example mounting frame). Make sure that water-filled 

Tygon microbore tubing from each pneumatic valve connect to the chip on the microscope stage 

and actuate control lines on the chip (FIG 3E). 

12|  On the mounting frame, additionally attach four 5-port Luer manifolds end-to-end connected to a 

pressurized 5% CO2 source through a 0–30-psi pressure regulator. Attach Tygon microbore 

tubing to each manifold port of sufficient length to reach vials containing reagents for input into 

the chip. This tubing is used to pressurize the reagents for injection into the chip (FIG 2F). 
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13|  Set up cell culture chip graphical user interface (GUI) software (available at web link reported in 

the Equipment setup).  

14|  (OPTIONAL) It is good practice to clean the control line tubing for every new chip. For this 

purpose, use a syringe or pressurized reservoir to fill each control line with 6% H2O2. Elevate 

tube ends to prevent them from being drained by gravity. Incubate H2O2 in the control lines for 

1 h.  

15|  Place tube ends in a container and elevate pressure within the system to expel H2O2. Rinse each 

tube with ddH2O.  

 

Chip preparation on a microscope TIMING 1–2 h 

 

16|  Clean residual PDMS from the bottom of the microscope slide using a razor blade. Apply scotch 

tape to the glass surface to remove residual PDMS and dust particles. Inspect the chip under low 

magnification periodically until the bottom surface is visually free of dust or PDMS. 

17|  Position chip on microscope stage so that all chambers of chip are visible. Tighten stage screws to 

secure position (FIG 2B).  

18|  Using a syringe or a pressurized reservoir, fill each control line tube with ddH2O (FIG 3D).  

19|  Connect control line tubes to the chip (FIG 2E and FIG 3).  

20|  Turn control line pressure to 0. Push “Close All” button on GUI (FIG 4). Gradually increase 

control line pressure to 25 psi (1.72 bar). Inspect the chip to ensure there is no delamination 

leading to leakage outside chip or between control and flow layers.  

?TROUBLESHOOTING 

21|  Test that control lines are connected correctly by closing valves in the GUI software and ensuring 

that the appropriate valve is closed on the chip by inspection under low magnification.  

22|  Connect waste vials to Waste1Up and Waste1Dn flow outlets on the chip (FIG 3). 

23|  Secure tubes so that stage movement does not apply force on the chip (FIG 2B). 

 

Chip surface treatments TIMING 6 h–overnight  

 

24|  To promote cell adhesion, chamber surfaces can be treated with proteins including fibronectin, 

collagen, and gelatin. In our tests with mouse 3T3 fibroblast and RAW macrophage cell lines, 

fibronectin provides rapid and reliable cell attachment.  

25|  Prepare four input vials (FIG 2G) containing 1 ml of pluronic (0.2% wt/vol in PBS), 1 ml of 

fibronectin (100 μ g/ml), 1 ml of medium, and 1 ml of PBS, respectively. Set inlet pressure to 7 psi 

(480 mBar).  

26|  Connect pluronic and fibronectin vials to input #1 and #2 on chip, medium to input #3, and PBS 

to InPurge flow inlets (FIG 3).  

27|  Flush air from tubes by opening inlet valves for pluronic, fibronectin, medium, and PBS, one at a 

time and directing flow through Input Flush (FIG 3) until air has been eliminated from flow path 

for each input.   
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28|  Remove air from the chip: First, close all chip outlets (Waste1Up, Waste2Up, Waste1Dn, and 

Waste2Dn). Second, open multiplexer and chamber valves.  

29|  Remove any stray air bubbles by applying flow pressure to a closed channel to force air out 

through the PDMS matrix.  

30|  To block non-chamber surfaces with pluronic to prevent cell attachment in these areas: first, close 

all valves that allow flow to chambers by selecting “All Chambers” in the chamber dropdown box 

and activating “Flush” and “Ch In Closed” checkboxes in the software GUI (FIG 3). Second, 

close all flow outlets on chip by ensuring Waste1Up, Waste2Up, Waste1Dn, and Waste2Dn are 

all closed. Finally, open input #1 (pluronic), MixerOut, and Pump to allow pluronic flow into the 

non-chamber areas of the chip. As pluronic flows in, air in the non-chamber areas of the chip is 

pushed out through the PDMS. After all air has been removed from the chip (~15 min), continue 

incubation with pluronic for 1 h.  

31|  Wash away pluronic from chip using PBS: first, close input #1 (pluronic) and open InPurge 

(PBS). Open Waste1Up and Waste1Dn to allow PBS to flow through the chip. Continue to allow 

PBS flow across all non-chamber surfaces for 30 min. CRITICAL STEP: Pluronic must be 

completely washed from chip. Residual pluronic may enter chambers and prevent cell adhesion. 

32|  Treat chamber surfaces with fibronectin: close InPurge (PBS) inlet and open Input #2 

(fibronectin). Allow fibronectin to flow through the non-chamber areas of the chip, displacing the 

PBS, for 10 min. Finally, open valves to allow flow to chambers by using GUI to open ChIn, 

ChOut, and de-selecting “Flush” and “Ch In Closed” in the Multiplexer panel. Again close exits 

from chip (Waste1Up and Waste1Dn). Now fibronectin will flow into chambers, displacing the 

air in the chambers. Incubate fibronectin in the chambers for between 2 h and overnight. 

 

Preparing cell suspension and loading cells into chip TIMING 2–4 h 

 

33|  Prepare a single-cell suspension of cells with concentration 5x10
5
–2x10

6 
cells/ml. The typical 

volume consumed during cell loading into 96 chambers is 25–50 µl. Preparing suspensions 

toward the high end of the concentration range specified above enables faster loading due to 

fewer seeding rounds . Use of microbore PEEK tubing helps to prevent clumping of cells during 

loading. Connect the vial to the cell input channel on the chip and pressurize with 5% CO2 at 3 to 

5 psi.  

?TROUBLESHOOTING  

 

34|  Load cells into chambers automatically (option A) or manually (option B). Please note that either 

option is essentially equivalent. 

A. Automated cell loading using scripting  

i. Using a cell suspension at 5x10
5
 cells/ml, force cells to flow into each 

chamber and immediately acquire a 10x phase image of the chamber. Cells 

will appear as circular bright spots in the image, which can be detected by 

applying an intensity threshold to the image.  
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ii. Count and record the number of detected cells loaded in each chamber. Cells 

begin adhering to the fibronectin surface within minutes.  

iii. After completing one round of seeding, wait 5 min, and repeat steps Ai and 

Aii above. Cells from the previous seeding round remain attached as 

additional cells are loaded. Acquire a second image and update the cell count 

for each chamber.  

iv. Repeat steps Ai and Aii automated seeding until the cell count for each 

chamber reaches a specified target (such as 150 fibroblasts or 200 

macrophages). The target number of cells per chamber is chosen based on the 

cell size and growth rate to achieve ~80% confluence during the 

experiment.?TROUBLESHOOTING  

B. Manual cell loading  

i. Perform a similar procedure as for option A above but using visual 

estimation of cell count in each chamber.  

ii. Manually force cells to flow to each chamber in turn.  

iii. After one seeding round, evaluate which chambers require additional cells 

and seed additional cells in the chamber after a few minutes have elapsed to 

allow cell adherence.  

?TROUBLESHOOTING 

 

Imaging and feeding cells TIMING 4Set up time-lapse imaging in the microscope control software: 

store stage positions for each imaging location and/or chamber of interest. Specify a desired time 

lapse between images to be acquired in sequence. For imaging cell growth, typically a 30-min 

interval between image acquisitions is sufficient. 10x magnification phase imaging is sufficient to 

monitor cell growth in the chip.  

36|  Feed cells in the chip at predefined intervals as detailed below. Please note that the following 

numbers have been satisfactory for a variety of cell types, but it might be necessary to perform 

experiments to determine the optimal feeding volume and frequency required by different cell 

types. For one feeding round, use on-chip pump to exchange 30% of the volume in each chamber 

containing cells. One pump cycle replaces approximately 1% of chamber volume. Therefore, to 

replace 30% of chamber volume, operate the pump for 30 cycles. The pump is composed of three 

microfluidic valves in series. The following valve control sequence performs one pump cycle: [0 

0 1] – [1 0 1] – [1 0 0] – [1 1 0] – [1 1 1], where 0 indicates the valve is open (depressurized) and 

1 indicates the valve is closed (pressurized). The time delay between each valve operation 

determines the flow rate. Maximum pump speed is limited by the response time of the pneumatic 

solenoid valves and driving electronics. We typically operate in the range of 0.1–0.05-s delay 

between pump valve operations, for flow rates 30–60 nl/min. 

37|  Repeat the feeding procedure detailed in step 36 every 2 h. The feeding interval can be adjusted 

to 1 h for dense cultures or every 3 h for sparse cultures. In our experience with 3T3 fibroblasts 

and RAW264.7 macrophages, 2-h feeding intervals with 30% chamber replacement generates 
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optimal cell growth. Occasionally (perhaps 5% of experiments), debris may enter the chip, which 

block the flow.  

?TROUBLESHOOTING 

38|  Acquire phase contrast images at the previously specified locations during feeding to monitor cell 

health. Hardware focus technologies (such as Perfect Focus System, Nikon) help to maintain 

focus at many locations across the large chip surface.   

?TROUBLESHOOTING 

 

 

 

FIG. 4. Cell culture chip control graphical user interface. The software enables the researcher to 

perform the manual actuation of on-chip valves and confers the ability to run automated scripts to 

carry out sequential valve operations that implement cell culture and stimulation functions. 
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Conducting a cell stimulation experiment TIMING variable 2 h to 2 weeks 

39|  Prepare in vials solutions of the experimental input reagents at desired concentrations, such as 

cytokines at different dilutions in media. For example, TNF dilutions may span from 0.01 to 

100ng/ml to test the NF-κB dose response. To test the role of stimulus timing, researchers may 

deliver pulses having varied duration or frequency. Inputs may be combined using the on-chip 

mixer. Use PTFE tubing to connect input vials to the chip.  

40|  Connect inputs to chip, pressurize with 5% CO2 at 7 psi, and prime each input directing flow 

through flush output on the chip until air in the tubing and channel is replaced by fluid from the 

vial.  

41|  Program cell stimulation for each chamber: for each input time, record the chambers receiving the 

input, the mode of input (pumping to replace a fraction of chamber volume or pressure-driven 

flow to fully replace volume), and which inputs to select.  For example, for 10-min tumor 

necrosis factor (TNF) input pulses spaced at 1-h intervals, at times 0 min and 60 min chambers 

would receive TNF, whereas at 10 min and 70 min the would receive the cell medium.  

CRITICAL STEP: Log the timing of each stimulus delivery, as well as times of image acquisitions, so 

that image data can be properly aligned with stimulation timing.  

42|  Fine tune imaging positions and focus using microscope software before starting experiment. 

Specify imaging settings for fluorescence acquisition: for imaging nuclear-cytoplasm shuttling 

dynamics, we acquire GFP and dsRed channels using a 20x long-distance objective. Perform at 

least one round of imaging before starting the experiment, then start stimulation script to begin 

experiment. Perform imaging and chip operations as independent processes. Continue imaging as 

in-chip stimulation experiment proceeds.  

43|  Wait for completion of the experiment.  

44|  After the stimulation experiment is complete, cells may be fixed and stained for  to relate 

dynamic signaling response to additional protein endpoint measurements. Alternatively, live cells 

may be harvested from chip for gene expression analyses.  

 

Retrieving cells from chip for gene expression analysis TIMING 1 h 

45|  Prepare a 96-well plate in which 5 µl of lysis buffer solution (Reagent setup) is added to one well 

for each chamber of cells to be retrieved from the chip. For example, an experiment to measure 

gene expression at 30-min intervals over 24 h uses half the plate (48 chambers, one per time 

point).  

46|  Connect a vial containing 1 ml trypsin to chip input.  

47|  Use a length of 10 cm of 0.02” OD PEEK tubing to connect the chip output to the waste (FIG 

3C). 

48|  Deliver trypsin to each chamber containing cells. Allow 1–3 min for cell detachment. Please note 

that efficiency of cell retrieval by this method is typically ~90%.  

49|  For each chamber containing detached cells for collection: Position unconnected end of PEEK 

tubing into a well containing lysis buffer on 96-well plate; force 1–3 μl of cell medium to flow 
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through each chamber containing detached cells and collect the outflow through PEEK tubing 

into 96-well plate containing 5 μl of lysis buffer (FIG 3C); flush 3 μl of PBS through the tubing to 

clear them for the contents of the next chamber (collect outflow on Kimwipe).   

?TROUBLESHOOTING 
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FIG 5. Anticipated results. (A) Live fluorescence imaging of 3T3 fibroblast cells under TNF 

stimulation expressing p65-dsRed and H2B-GFP fusion proteins and automated image analysis. 

The left grayscale image is composed of two stitched vertical adjacent images in the chamber and 

shows p65-dsRed fluorescence. The four dark spots arranged in a rectangular pattern are PDMS 

pillars included in the chip design to prevent chamber collapse. In the right panel of four images, 

red fluorescence is due to p65-dsRed, nuclear outline (yellow) is determined from H2B-GFP image 
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(not shown), and cytoplasmic outline (blue) is determined from the p65-dsRed image. To quantify 

NF-κB activation over time, nuclear p65-dsRed fluorescence intensity is measured relative to 

cytoplasmic p65-dsRed fluorescence intensity. Images corresponding to four consecutive time 

points are shown (T1–T4). (B) Single-cell responses to step changes in lipopolysaccharides (LPS) 

concentration in RAW264.7 macrophages. Panels correspond to cells in different chambers on the 

chip given the indicated LPS dose at time T=0. The Y axis shows mean nuclear intensity of NF-κB 

(p65) fluorescence. Colored lines indicate different cells. (C) Expression of eight genes at 30 min 

time points after on-chip stimulation of a population of a few hundred cells with TNF. Two 

chambers comprised each of the 24 time points, using a total of 48 chambers on the chip. Values 

are relative expression (2Ct_gapdh – Ct_gene) are normalized to a value from 0 to 1 to facilitate heatmap 

display to compare the temporal expression patterns of the different genes.  

 

High-throughput qPCR using Fluidigm BioMark™ System TIMING 4 h 

50|  Thaw 2x CellsDirect reaction mix on ice as well as the 20x TaqMan
TM

 gene expression assays 

(18 µM TaqMan
TM

 primer pairs) of interest. For studies of inflammatory signaling, relevant 

assays might include NF-κB regulated genes  

CRITICAL STEP: Make sure that thawing of the 2x CellsDirect reaction mix is complete and 

mix thoroughly this reagent before use. 

51|  Prepare in a 1.5-ml tube a primer pool containing each TaqMan
TM

 assay (initial concentration 

20x) diluted 100 times in TE buffer to a final concentration of 0.2x. In this example, if the final 

volume of the assay mix is 150 μl and there are 48 TaqMan
TM

 genes, add 1.5 μl of each 

TaqMan
TM

 assay and complete with 78 μl of TE buffer. 

52|  Prepare in a 1.5-ml rube a reaction mix having the following components:  

 

Component Volume to add per reaction 

(μl) 

Final 

concentration 

2× CellsDirect reaction mix 5 1× 

TE buffer 1.5   

 Primer pool (0.2x or 180 nM) 2.5 45 nM 

SuperScript III/Platinum Taq mix (from 

CellsDirect kit) 

1  

 

53|  Distribute the 10 µl of the reaction mix in 48 wells of a 96 well plate.  

PAUSE POINT: The plate can be stored at –20 °C for 3 months.  

54|  Load 1 μl of cell lysate prepared in step 49 into each well 

55|  Perform one-step reverse transcription (RT) and specific target amplification (STA) reaction 

using the thermal cycling protocol below: 

 

Cycle 

number RT Taq Activation 

STA – 14 cycles 

Denaturation Annealing/Extension 
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1 15 min  

at 50 C 

   

2  2 min at 95 C 

 

   

3-16   15 sec at 95 C 4 min at 60 C 

Hold    4 C  

 

56|  Dilute the RT-STA product from step 55 by one third by adding 22 µl TE buffer to each reaction 

mixture. Please note that dilutions between one half and one fifth are also possible at this stage.  

57|  Split a 96-well plate in two halves. To each of the left-hand half 48 wells of the plate, add 3 μl of 

Fluidigm 2x assay loading reagent and 3 μl of each individual TaqMan™ assay (20X). 

58|  To the right-hand 48 wells, add 3.4 µl of the diluted cDNA solution obtained in step 53, 3.75 μl 

of the TaqMan
TM

 master mix, and 0.4 μl of 20x gene sample loading reagent. 

59|  Follow instructions in the Fluidigm Real-Time PCR User Guide 

(http://www.fluidigm.com/home/fluidigm/Support/UG/Real-Time-

PCR_Analysis_ug_68000088.pdf) to first prime the microfluidic qPCR chip (48.48 Dynamic 

Array
TM

 IFC) with assays and samples, perform the qPCR, and use the Fluidigm Real-Time PCR 

Analysis software to calculate cycle threshold (Ct) values for each qPCR reaction. 

60|  Export the Ct values calculated in step 59 from Fluidigm software using the File → Export menu 

command and under “Save as type” selecting “Heat Map Results (*.csv)”. This selection 

generates a comma-separated value (csv) file containing Ct values in table format with genes 

(assays) in columns and conditions (samples) in rows.  

61|  Import the Ct data from the file generated in step 60 into Matlab using the csvread function. In 

Matlab, Ct and relative expression can be readily explored and plotted. Relative gene expression 

can be calculated as 2^(Ct_reference – Ct_gene).  

 

Automated analysis of microscopy images TIMING variable 

62|  Transfer images from the microscope computer to the analysis computer, in which CellProfiler 

will have been installed (see Equipment setup).  

63|  Using CellProfiler, use the “IdentifyPrimaryObjects” module to segment nuclei in images with a 

nuclear label (i.e. H2B-GFP fluorescent fusion protein), which automatically calculates and 

applies a threshold to the image so that only bright objects (nuclei) remain.. 

64|  In CellProfiler, use the “IdentifySecondaryObjects” module to segment cytoplasm in images with 

cytoplasmic fluorescence (such as p65-dsRed) using the nuclei segmented in step 63 as a seed for 

each cytoplasm segmentation. 

65|  Use the “MeasureObjectIntensity” module in CellProfiler to quantify total and mean fluorescence 

for nucleus and cytoplasm in each image.  

66|  Use the “ExportToSpreadsheet” module in CellProfiler to save cell locations and fluorescence 

measurements in an Excel document.  
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67|  Use the “TrackObject” module in CellProfiler to connect objects between images and produce 

single-cell trajectories of nuclear and cytoplasmic fluorescence over time. Alternatively, use a 

tracking algorithm implemented in Matlab to extract trajectories (such as 

http://physics.georgetown.edu/matlab/code.html) 

 

 

TROUBLESHOOTING 

Troubleshooting advice is detailed in Table 1. 

 

Table 1. Troubleshooting Table 

 

Step  Problem Possible reason Solution  

20 Chip delamination Poor bonding 

between layers 

Use plasma treatment to increase bond 

strength 

33 Cell clumping 

during loading 

Cells left in 

suspension for too 

long  

Agitate cell vial by gentle vortexing or 

tapping  

 

Trim ends of tubing 

34Aiv 

and 

34Biii 

Poor cell attachment Poor surface 

treatment 

Ensure pluronic is washed away thoroughly 

before fibronectin treatment  

34Aiv 

and 

34Biii 

Poor cell health in 

chip  

Incomplete PDMS 

curing  

Bake chip for an additional 24–48 h  

Cell medium 

evaporation from vial 

Ensure that the cell medium input vials are 

tightly sealed to prevent evaporation  

Cell medium 

evaporation from 

chip 

Ensure 95% humidity around chip and seal 

tubing slots on stage cover with tape 

37 Debris are causing 

the chip to clog  

Dust particles are 

present in the tubing 

Flush inlet tubing briefly with cell medium or 

PBS before connecting to chip 

Cellular aggregates Ensure cells fully dissociated by trituration 

before loading 

Particulates in media 

and/or serum  

Pass cell medium and/or serum and reagents 

through a 0.2-μm syringe filter prior to 

preparing input vials 

38 Microscope losing 

focus over time  

Chip moving on stage 

during experiment 

Secure tubing tightly to the stage using tape 

or stage clips to ensure that there is no force 

on chip during stage movement 

49 Inconsistent volume 

in 96-well plate after 

cell retrieval  

Evaporation from 

wells during retrieval 

procedure 

Cover each well individually with tape 

immediately following cell retrieval  

 

Timing  

http://physics.georgetown.edu/matlab/code.html
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 Chip fabrication from existing molds, steps 1–9 (36 h) 

 Setting up chip control system, steps 10–15  (1 day) 

 Chip preparation on microscope, steps 16–23  (1–2 h) 

 Applying chip surface treatments, steps 24–32  (6 h–overnight) 

 Preparation of cell suspension and loading cells into chip, steps 33–34 (2–4 h) 

 Imaging and feeding cells, steps 35–38 (4 h–overnight) 

 Conduct cell stimulation experiment, steps 39–44 (variable, 2 h to 2 weeks) 

 Retrieve cells from chip for gene expression analysis, steps 45–49 (1 h) 

 High-throughput qPCR using Fluidigm BioMark System, steps 50–61 (4 h) 

 Automated analysis of microscopy images, steps 62–67 (variable) 

 

Anticipated Results 

 

This protocol enables researchers to perform multiplexed stimulation and imaging of cells in high-

throughput fashion. The correct application of the protocol enables to generate image data that convey 

information about single-cell dynamics under parallel input conditions extracted using automated 

methods (FIG 4A and B). When combined with high-throughput gene expression technologies, such as 

the BioMark
TM

 system, using the cell culture chip enables the analysis of up to 96 genes in cells under 

complex stimulation patterns sampled finely in time (30 min between gene expression time points over a 

12-h total duration in the example detailed here) (FIG 4C). Overall, this microfluidic single-cell analysis 

pipeline provides a new paradigm for live-cell studies, which overcomes problems with cell manipulation, 

precision, and automation to unravel complex questions around dynamic responses and their 

heterogeneity at the single cell level.  
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Abstract 

Digital signaling enhances robustness of cellular decisions in noisy environments, but it is unclear how 

digital systems transmit temporal information about a stimulus. To understand how temporal input 

information is encoded and decoded by the NF-κB system, we studied transcription factor dynamics and 

gene regulation under dose- and duration-modulated inflammatory inputs. Mathematical modeling 

predicted and microfluidic single-cell experiments confirmed that stimulus area (concentration × 

duration) controls the fraction of cells that activate NF-κB in the population. However, stimulus shape 

determined NF-κB dynamics, cell-to-cell variability and gene expression phenotype. A sustained, weak 

stimulation lead to heterogeneous activation and delayed timing that is transmitted to gene expression. In 

contrast, a transient, strong stimulus with the same area caused rapid and uniform dynamics. These results 

show that digital NF-κB signaling enables multidimensional control of cellular phenotype via input 

profile, allowing parallel and independent control of single-cell activation probability and population 

heterogeneity.  

Introduction   

Cells must make decisions in noisy environments and have to decrease the chance of an errant response. 

One way cells can reduce sensitivity to noise is through digital or switch-like activation, such that only 

sufficiently strong signal exceeds an internal threshold and initiates a response. Switch-like activation 

occurs through diverse mechanisms (Shah and Sarkar, 2011). For example, observations in Xenopus 

oocytes showed that the MAPK pathway converted graded progesterone input to digital output in p42 
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MAPK that determined oocyte maturation (Petty et al., 1998). Subsequently, similar observations were 

seen for the JNK pathway (Bagowski and Ferrell, 2001). The scaffolding protein Spe5 was found to 

mediate digital MAPK activation of mating in yeast (Malleshaiah et al., 2010). More recently it was 

found that inflammasome signaling leads to all-or-none caspase1 activation that mediates apoptosis (Liu 

et al., 2013). Both amplitude (dose) and duration of input signals provide information that regulates 

cellular decisions. The duration of EGF stimulation modulates ERK dynamics and controls differentiation 

(Ahmed et al., 2014; von Kriegsheim et al., 2009b; Santos et al., 2007). Glucose sensing in plants showed 

that cells have gene regulatory network mechanisms to allow similar responses to a short, intense or 

sustained, moderate stimulus (Fu et al., 2014). Lymphocytes must precisely measure both antigen affinity 

and frequency to decide differentiation and proliferation (Gottschalk et al., 2012; Iezzi et al., 1998; 

Miskov-Zivanov et al., 2013). Although digital pathway activation allows robust cellular decision across 

a wide range of systems, it is not clear how digital signaling impacts processing of dose and duration 

information.  

NF-κB is a critical regulator of phenotype in immunity and disease (Hayden and Ghosh, 2008), and 

responds digitally to TNF stimulation (Tay et al., 2010). NF-κB activation occurs for a multitude of cell 

stress and inflammatory signals that converge on the IKK (IκB Kinase) signaling hub, which induces 

degradation of the cytoplasmic inhibitor IκB and liberates NF-κB to enter the nucleus and regulate gene 

expression (Hayden and Ghosh, 2008). Multi-layered negative and positive feedback lead to complex 

pathway dynamics including oscillations (Hoffmann et al., 2002; Kellogg and Tay, 2015; Nelson et al., 

2004; Tay et al., 2010). Although it is not fully resolved how NF-κB coordinates gene and phenotype 

regulation, it is known that the dynamics of NF-κB activation is involved in input-output specificity and 

information transmission (Ashall et al., 2009; Behar and Hoffmann, 2013; Selimkhanov et al., 2014; 

Werner et al., 2005). The core IκB-NF-κB regulatory module is well-studied and appears largely 

consistent across multiple stimulation contexts (Hoffmann et al., 2002; Hughey et al., 2014; Nelson et al., 

2004; Tay et al., 2010), however the role of module upstream of IKK activation including receptor-ligand 

binding and adaptor protein assembly in input-encoding remains unclear. 

To probe how diverse IKK-upstream signaling architectures impact NF-κB processing of pathogen- and 

host-associated inflammatory inputs, we used microfluidic cell culture to precisely modulate dose and 

duration of LPS and TNF stimuli and measured NF-κB dynamics using live-cell imaging (Figure 1) 

(Junkin and Tay, 2014; Kellogg et al., 2014). We found that LPS induces NF-κB activation in a digital 

way where cells respond in an all-or-none fashion, but in a distinct manner from TNF, with greater 

ultrasensitivity and pronounced input-dependent activation delay. Computational modeling predicted and 

experiments confirmed that LPS stimulus “area” (concentration × duration) controls the percentage of 

cells that activate in the population. Importantly, dynamics of NF-κB activation depend on input shape, so 

that a Long-duration, Low-dose (LL) signal induces delayed, heterogeneous activation timing in the 

population while a Short-duration, Strong-amplitude (SS) signal with the same area causes rapid 

activation without cell-to-cell timing variability (Figure 1). These results reveal a function for digital 

signaling beyond simple noise filtering: digital activation controls fate along a two dimensional space by 

allowing an input signal to independently control the population response (percentage of responding cells) 

and single-cell response (transcription factor dynamics and gene expression phenotype) though 

modulation of signal area and shape.  
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Figure 1. How does input profile determine digital signaling response? Since the amplitude and 

time profile of input signals depends on biological context, such as distance to an infection site or 

pathogen loading, we use microfluidics to manipulate dose (A) and duration (B) of LPS and TNF 

input signals, which induces digital activation of NF-κB. C) Switch-like digital NF-κB responses are 

analyzed in terms of fraction of cells that activate in the population and heterogeneity in the 

dynamic responses in activating cells.  

 

Results 

NF-κB switch dynamics distinguish pathogen (LPS) and host (TNF) signals  

To initially evaluate the behavior of the LPS/NF-κB pathway, we stimulated 3T3 NF-κB reporter cells 

(Lee et al., 2009; Tay et al., 2010) with different concentrations of LPS in a microfluidic system (Gómez-

Sjöberg et al., 2007; Kellogg et al., 2014), and performed time-lapse live microscopy to record NF-κB 

nucleus-cytoplasm translocation over time (Figure 2A). We found that LPS-exposed cells activated NF-

κB in an ultrasensitive, all-or-none (digital) fashion. The population consisted of cells either fully 

responding or completely ignoring the LPS input, with the percentage of responding cells in the 

population scaling with LPS concentration, from 5% at 0.25ng/ml to 100% at 500ng/ml (Figure 2B, 2D). 

NF-κB dynamics in activating cells showed small oscillations beyond the first peak. When ligand is 

flowed continuously through the chamber to replace ligand loss due to cellular internalization, oscillations 

sustain for the duration of the stimulus (Figure 2—figure supplement 1A). Under low intensity LPS 

stimulation most cells did not respond (Figure 2C, 2D). This was a similar effect as previously observed 

under TNF (Tay et al., 2010).  While both LPS and TNF are digital in preserving first peak area, the TNF-

induced NF-κB initial peak becomes flatter and wider with increasing response time but unchanging onset 

time for decreasing input dose, while LPS experiences greater dose-dependent onset delay and timing 

variability and maintains a consistent peak shape (Figure 2C and Figure 2—figure supplement 1B).  The 

dose-response curve for LPS was steeper than that for TNF (fitted to Hill dynamics reveals Hill 

coefficients of 2 and 1.5, respectively) (Figure 2C, Figure 2—figure supplement 1C, Figure 5—figure 

supplement 1B). These results indicate that the LPS pathway activates in a switch-like manner, with 
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increasing fraction of cells in the population responding as dose is increased, but with distinct activation 

dynamics compared to TNF input.  

 

Figure 2. Digital, time-delayed NF-κB activation under varied LPS dose stimulation. (A) Cells 

process pathogen signal dose and duration to dynamically activate NF-κB, which induces gene 
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expression and coordinates the innate immune response. We test the role of pathogen load by 

varying LPS concentration from 0.25 ng/ml to 500 ng/ml using microfluidic cell culture. (B) Time 

series images of NF-κB activation following LPS treatment. Top row: high LPS dose causes nearly 

100% of cells to respond synchronously. Bottom row: at low LPS concentration, less than 5% of 

cells respond and initiate NF-κB activation with variable, delayed timing. The cells respond 

digitally, with nearly all cytoplasmic NF-κB moving into the nucleus. The response amplitude 

(indicated by peak intensity of nuclear p65-dsRed fluorescence) depends on the initial NF-κB 

abundance in the nucleus and exhibits high variability across doses. (C) Trajectories of NF-κB 

activation (intensity of nuclear p65-dsRed) tracked in single cells over time for LPS doses ranging 

from 500 to 0.25 ng/ml. As the LPS dose decreases, response timing becomes delayed and variable, 

and the percent of responding cells in the population drops. Black line: mean dynamic profile over 

active cells. (D) Across the eight LPS doses tested: top panel - dose response curve of the fraction of 

active cells, middle panel – the intensity of nuclear NF-κB at the peak of the response, and lower 

panel – the delay time until initiation of the response. Peak nuclear NF-κB amplitude does not 

change in a significant way across 1000-fold change in LPS dose. The dose response shows a sharp 

drop in fraction of active cells between 1 and 5ng/ml concentration, indicating that the activation 

threshold is within this range for most cells. With lower dose, the delay time increases in both 

median duration and variability. (E) NF-κB dependent gene expression dynamics under varied 

LPS concentrations (blue – 500ng/ml, green – 100ng/ml, red – 50ng/ml). With lower LPS 

concentration, several genes show delayed induction.  
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Figure 2–figure supplement 1. (A) Sustained NF-κB oscillations for continuously perfused LPS 

achieving constant LPS concentration. Bolded blue line: example cell. (B) Analysis of the LPS 

induced NF-κB nuclear localization peak. Lower LPS doses induce a pronounced onset delay, but 

the peak shape is mostly conserved across different doses. (C) Fraction of active cells for LPS vs 

TNF. (D) First peak time profile for LPS vs TNF. LPS leads to greater dose-dependent delay than 

TNF and a more conserved peak shape.  (E) Area under the NF-κB localization curve show little 

change across all doses tested. Error bars show variability between individual cells (standard 

deviation) and dots show the mean values.  

 

Response timing and single-cell heterogeneity depends on stimulus intensity  

We next analyzed dynamics of the NF-κB response in those cells that activate. Notably, there were 

differences in the timing of the response for high versus low dose. High dose long duration input caused a 
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rapid response with the response peak occurring at approximately 35 minutes after stimulation.  In 

contrast, low dose long duration (LL) input delayed the response significantly. At lowest doses the 

median delay until the peak of the response exceeded 80 minutes. The response at sustained, weak 

stimulation also exhibited large heterogeneity in the timing dynamics of the response (Figure 2C, 2D).  

We next asked whether this delayed response impacted LPS and NF-κB mediated gene expression. We 

explored how the increase in delay for 500ng/ml LPS versus 50ng/ml LPS impacted gene regulation. 

Notably, gene expression of early and intermediate genes exhibited a dose-dependent delay (Figure 2E). 

The extent and magnitude of the dose-dependent delay and heterogeneity differs from TNF stimulation of 

the same cell type (Tay et al., 2010). While decreasing TNF dose altered the response slope, LPS 

response maintained a stereotypical peak shape that shifts later in time with lower dose (Figure 2E). 

Delayed gene expression observed under LPS stimulation contrasts with the TNF-α case in which we do 

not observe gene expression delay, with fixed gene activation peaks while the activation timing shifts for 

LPS (Tay et al, 2010) (Figure 2E). For early genes IκBα and A20, gene expression peak is shifted from 30 

min to 1 hr after stimulation. IκBϵ expression shifts from maximum expression at 1 hr to 2 hr, and from 

30 min to 2 hours for TNF mRNA under LPS input. Intermediate genes Ccl2 and Icam shift expression 

peaks from 1hr to 2hr and from 1 hr to 3 hr (Figure 2E), respectively. Late genes Ccl5 and Casp4 do not 

reflect the delayed NF-κB activation due to slower induction kinetics. Overall, these results indicate that 

LPS induces digital NF-κB activation with an input dose-dependent delay that carries through to gene 

expression dynamics.  
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Figure 3. Model scheme and simulation of LPS dose modulation. (A) The scheme of the model. LPS 

binds TLR4 leading to TRAF6 activation which cooperatively activates IKK. Active IKK induces 

IκB degradation which allows NF-κB to enter the nucleus and upregulate expression of IκB and 

A20. New IκB sequesters NF-κB in the cytoplasm and A20 inhibits upstream pathway activation by 

IKK and TRAF6. (B) Simulated versus experimental LPS dose response. (C) NF-κB peak 

intensities (expressed as proportion of total NF-κB molecules in the nucleus). Although the model 

reproduces experimentally observed change in peak amplitude with dose, the extent of amplitude 

dose dependence is greater in the model. (D) NF-κB response time as function of LPS dose. (E) 

Sample simulated curves of nuclear NF-κB fractions under LPS treatment. Model parameters for 

the core NF-κB – IκB module are unchanged from the TNF model (Tay et al., 2010). Parameters for 

the LPS-specific portion of the model (Listed in Table 5 of Supplementary Mathematical Methods) 

are fit by minimizing L2-norm error between the model-estimated fraction of active cells and the 

experimentally measured fractions through a combination of automated and manual fitting 

(Supplementary Mathematical Methods).  
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Figure 3–figure supplement 1.  Simulated NF-κB trajectories for various doses of LPS treatment. 

LPS concentration decreases over time due to cellular internalization in sealed microfluidic 

chambers, leading to damped oscillations.  
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Figure 3—figure supplement 2. (A) Extrinsic noise is generated by selecting the number of TLR4 

molecule for each cell from a lognormal distribution. Fraction of active cells was analyzed for 

increased TLR4 variability (parameter Sigma). With higher TLR4 number variability, the change 

in fraction of active cells becomes more gradual with changing LPS concentration. (B) Simulation 

response delay under varied LPS dose with and without clustering. Clustering mediating 

cooperative IKK activation is required to reproduce the experimentally observed response delay 

with decreasing LPS dose.  

 

Cooperative IKK activation underlies dose-dependent response delay  

To study how various pathway components upstream of IKK influence input information transfer to NF-

κB, we developed a model of LPS-induced NF-κB switch activation. LPS activates NF-κB by TLR4 

engagement via CD14, leading to TLR4 dimerization. TLR4 dimers recruit MyD88, IRAK2/4, and other 

adaptor proteins leading to higher-order assembly of Myddosome and TRAF6 lattice structures, which 

cooperatively activates IKK (Lin et al., 2010; Yin et al., 2009; Zanoni et al., 2011). Following IKK 

activation, nuclear NF-κB induces expression of IκBα, which negatively regulates NF-κB and IKK, 

respectively. Experimental IκBα expression kinetics were similar for LPS and TNF, despite induction 

delay under LPS (Figure 2E). Multiple efforts have modeled NF-κB pathway dynamics under TNF 

stimulation (Ashall et al., 2009; Hoffmann et al., 2002; Lipniacki et al., 2007; Paszek et al., 2010; 

Pȩkalski et al., 2013; Tay et al., 2010). We based our mathematical model on the core IKK-NF-κB 

regulatory module (Tay et al., 2010), which has been extensively validated experimentally.   

To extend the NF-κB core model for LPS, we added species for LPS, TLR4, and TRAF6 (Supplementary 

Mathematical Methods) (Figure 3A). To introduce variability in the model we allowed fluctuation in the 

number of TLR4 receptor molecules between cells. TLR4 is expressed at relatively low level compared to 

CD14 and furthermore varies significantly between cells in the population (Zanoni et al., 2011). To 

account for cooperative activation due to Myddosome assembly and TRAF6 lattice formation, we model 

IKK phosphorylation by TRAF6 using Hill kinetics. The model reproduced the observed LPS induced 

NF-κB dynamics in single cells for different LPS doses (Figure 3B-D and Figure 3—figure supplement 

1). The distinct feature of the proposed LPS model is the Myddosome formation leading to cooperative 

activation of IKK (Hill coefficient = 4), which simultaneously assures delay in activation observed 

experimentally for low doses, and steeper response curve than in the case of TNF stimulation (Figure 3 

and Figure 2—figure supplement 1). Although the model reproduces experimentally observed change in 

peak amplitude with dose, the extent of amplitude dose dependence is greater in the model due to the 
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conservative Hill coefficient of 4. Model parameters for the core NF-κB – IκB module are unchanged 

from the TNF model (Tay et al., 2010). Parameters for the LPS-specific portion of the model (Listed in 

Table 5 of Supplementary Mathematical Methods) are fit by minimizing L2-norm error between the 

model-estimated fraction of active cells and the experimentally measured fractions through a combination 

of automated and manual fitting (Supplementary Mathematical Methods). 

 

 

Figure 4. Model simulation predicts that stimulus duration controls fraction of activating cells and 

response timing variability. (A) Simulated fractions of activated cells under increasing duration of 

500 ng/ml LPS pulse. (B) Sample simulated curves of NF-κB under 5 – 40 s duration LPS 

(500ng/ml) pulse. (C) Distributions of nuclear NF-κB amplitude and (D) response times of 

activating cells under various durations of LPS treatment.  
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Figure 4–figure supplement 1. (A-F) Simulated NF-κB single-cell trajectories with randomly 

sampled numbers of TLR4 and NF-κB for 1 to 60 s durations of LPS exposure. The concentration 

of LPS is 500 ng/mL. Color: activated cells. Gray: inactivated cells.  

 

Input duration controls activation probability independent of response heterogeneity  

Cellular environments like infected tissue encode information in both amplitude and duration of input 

signals (Fu et al., 2014; Gottschalk et al., 2012). To understand how pathogen input signal duration and 

input area (concentration × duration) impact digital NF-κB signaling, we performed a simulated screen 

across a large range of LPS concentration and duration combinations using our model. We first observed 

that just as LPS concentration modulates fraction of active cells so does duration. Simulations keeping 

concentration high and changing input duration on a short, sub-minute timescale altered the percent of 

activating cells (Figure 4).  Nearly all cells respond for durations exceeding one minute at 500ng/ml. 
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Notably, in contrast to changing concentration under constant long duration, which introduces timing 

delay and heterogeneity (Figure 2C, 3D), simulating sub-minute duration of a high amplitude signal 

controlled fraction of active cells while maintaining uniformly timed, rapid NF-κB responses (Figure 4B, 

4D and Figure 4—figure supplement 1).  

We experimentally provided pulsed LPS at 500ng/ml for sub-minute durations using microfluidic cell 

culture (Figure 5A). In agreement with simulation predictions, we found that precisely controlled stimulus 

duration regulated the activation of cells in the population in a strongly all-or-none manner, with 1 to 40 

second duration LPS exposure (500 ng/ml) activating ~3-88% of the population (Figure 5B and 

Supplementary Videos 1-2). Short duration (i.e. 1s) stimulation, mimicking very brief exposure to 

bacteria, activated a small percentage of cells in the population. Moreover, under short duration, strong 

amplitude (SS) input, responses were fast and uniform in contrast to low, long (LL) stimulation that led to 

delayed, variable responses (Figure 5B, top row). For example, 3-5% activation occurred for both a 1s 

short pulse at 500ng/ml LPS (SS signal) and a 0.25 ng/ml constant input signal (LL signal) (Figure 5B, 

Figure 2D). However, modulating duration of the SS signal from 1 second to 40 seconds (activating 3.3% 

and 87.5% the population, respectively) changes median response timing by less than 2 minutes (Figure 

5B). In contrast, modulating concentration of the LL signal from 0.25 to 500 ng/ml (activating 4.9% and 

98% of the population, respectively) changes the response time more than 35 minutes (reduced from 80 to 

43 minutes).  Moreover, while the variability in the response time scales with dose under LL stimulation, 

timing variability remains low under duration-modulated SS stimulation (Figure 4D, 5C). From an 

immunological perspective, this experiment indicates that brief but high pathogen load leads to uniform 

and strong NF-κB response in the population, while chronic low-grade pathogen exposure leads to 

population variability and delay. 

We next changed the stimulus type to TNF instead of LPS. In vivo, TNF is secreted from immune cells 

that come in contact with pathogenic signals like LPS. Again, we observed the phenomena that the 

fraction of active cells changed while the response timing did not (Figure 5—figure supplement 1). 

Together, these results indicated that SS input achieves control over the fraction of cells activating 

without affecting the dynamics in the response. Therefore duration sensing allows control of percentage 

of cells that produce a response without affecting response timing or heterogeneity. This contrasts to 

amplitude (concentration) sensing, where response dynamics in activating cells differs for high versus low 

amplitude. Since NF-κB dynamics influence gene expression, duration modulation to control percent 

population activation is therefore a strategy to achieve more homogeneous gene expression and 

phenotype outcomes between cells.  
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Figure 5. Short duration LPS pulse stimulation modulates responding cell fraction and fast, 

uniformly timed response. (A) LPS duration is manipulated using microfluidic cell culture in the 

range of 1-40 seconds. Dose is held constant at 500 ng/ml. (B) Single cell NF-κB trajectories for 1-

40s duration LPS pulse stimulation. Short pulse LPS reduces variation in timing in the start of NF-

κB activation. (C) Top panel: Fraction of active cells as a function of LPS pulse duration. Middle 

panel: NF-κB nuclear response intensity as a function of LPS pulse duration. Lower panel: Time of 

the NF-κB response peak as a function of LPS pulse duration.  Error bars indicate standard 

deviation from the mean. Timing variability is dramatically reduced under short-pulsed 

stimulation (see Fig 2D for comparison to constant stimulation. 
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Figure 5—figure supplement 1. NF-κB dynamics under pulsed stimulation with TNF at 10ng/ml 

concentration. (A) Single cell NF-κB trajectories for TNF pulse durations of 1, 5, 10, 20, 40, and 60 

seconds. The number and percent of activated cells is indicated in the plot. (B) Comparison of 

active NF-κB cell fraction (top), response amplitude (middle), and response time (bottom) under 

LPS vs TNF pulses. The fraction-active curve is less steep under TNF than LPS.  

 

Stimulus area determines fraction of active cells in the population  

We sought to fully characterize the relationship between signal amplitude and duration in NF-κB switch 

activation. Since modulating either amplitude or duration was able to change the percentage of activating 

cells, we hypothesized that the fraction of activation may depend on the area of the input (concentration × 

duration). Indeed, mathematical analytical analysis suggested that percent activating cells should scale 

with the input area (Supplementary Mathematical Methods). 

To validate our mathematical analysis and clarify how digital activation integrates stimulus dose and 

duration, we performed simulations. Each simulation series fixed the LPS stimulus dose and varied 

duration from 1 to 500 seconds. The output of these simulations as a function of stimulus duration shows 

multiple dose-response curves that do not coincide, indicating that duration is not the only predictor of 

switching probability or fraction of active cells (Figure 6A). However, when instead plotted as a function 
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of stimulus area (concentration × duration), all simulation series closely coincide, indicating that stimulus 

area clearly determines the percentage of cells that activate in the population (Figure 6A).  

To illustrate further the relationship between stimulus area and percentage of active cells, we plotted for 

each simulation dose the minimum duration needed to achieve 10%, 50%, and 90% activation (Figure 

6B). This analysis revealed a reciprocal relationship between dose and duration in NF-κB switch 

activation (high dose requires less duration to achieve activation and vice versa). Simulations therefore 

supported analytical derivation of an “Area Rule”, in which concentration × duration determines the 

percentage of cells that activate in the population for a given stimulus.   

Importantly, for concentrations which achieve less that 100% activation, increasing the duration infinitely 

will not further increase the active fraction (Figure 6B).  Once duration is sufficiently long to activate the 

maximal potential cell fraction for a given dose, further increases in area by lengthening duration do not 

further increase percentage of active cells, indicating a limitation in the Area Rule.   

We next simulated whether the Area Rule holds for fluctuating signals. When we compared a constant 

input signal to square wave input signals, with one square wave that “starts high” and another that “starts 

low”, simulation revealed an equal percentage of activating cells when the two opposing square waves 

have equal area (i.e., the duration is a multiple of the square wave period) (Figure 6C). Further, the 

fraction of active cells matched that for a constant input signal with the same area (Figure 6C). 

Performing identical simulations using a model of TNF induced NF-κB activation (Tay et al., 2010), we 

found that the Area Rule held also for the TNF network (Figure 6—figure supplement 1).  

We found that in both the LPS amplitude-modulated and duration-modulated microfluidic experiments, 

stimulus area is an accurate predictor of fraction of active cells in the population (Figure 7A), as predicted 

by the model simulations. A majority of cells activate when LPS stimulation exceeds 3×10
3
 ng-s/ml area. 

Together, experimental findings, simulations, and mathematical analysis demonstrate how cells integrate 

amplitude and duration of input signals in switch-like pathway activation. Stimulus area determines the 

effective “probability” that a given cell activates NF-κB (based on the percentage that activate in the 

population). These results indicate that the pathogen load (i.e. LPS dose) and duration of exposure (i.e. 

LPS pulse duration) are integrated by NF-κB system, and together determine the population response. 
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Figure 6. Simulations demonstrating an “Area Rule”, i.e. the relationship between LPS stimulus 

area and fraction of active cells. (A) The simulated fractions of activated cells for pulsed inputs of 

LPS with various doses and durations. Each fraction is estimated by 500 independent simulations. 

When the points are plotted as a function of stimulus area (rather than duration), all points fall on 

the same curve, indicating that stimulus area tightly controls the fraction of active cells. (B) The 

minimal duration for certain fractions of activation as a function of dose. The minimal duration is 

determined by searching for the first tested time point where the estimated fractions of activation 

are above the threshold. The doses for which the threshold level cannot be achieved are not shown 

in the figure. Blue: 10% activation; Green: 50% activation; Red: 90% activation. (C) Further 

verification of the relationship between stimulus area and active cell fraction using square wave 

input profiles. Equal-area input was generated using either a single pulse (top left), square wave 

with 10 s period (lower left), or square wave with 20 s period (top right). Regardless of input shape, 

all simulated points fall on the same curve when plotted as a function of stimulus area. For square 

wave inputs, one input begins high (blue) while another input (green) begins low. Note that the 
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curves intersect for durations 10 s, 20 s, 30 s (or 20 s, 40 s, 60 s, … for the input with 20 s period) 

when area under the two signals is the same.  

 

 

 

Figure 6—figure supplement 1. Stimulus area simulation using a TNF model (Tay et al., 2010) 

revealed that the “Area Rule” holds also for TNF.  

 

 

Amplitude and duration information transfer via digital NF-κB activation  

We showed that modulating stimulus amplitude altered response dynamics by changing the amount of 

activation delay. In contrast, modulating stimulus duration did not affect activation delay but changed the 

population variability. These findings indicate tradeoffs in dose versus duration sensing. Duration sensing 

allows for controlling only the population response while not affecting the single-cell response, so that it 
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is possible to achieve homogeneous dynamics and uniform phenotype in a desired proportion of cells. In 

contrast it may be useful to transmit information that can instruct different dynamics and phenotype, 

which is achieved by modulating dose. While dose information is transmitted through the NF-κB digital 

response, duration information is lost at the single cell level. 

However, transmitting information using only dose modulation necessarily changes the percentage of 

cells in the population that respond. In physiological settings it may be desirable to transmit information 

without affecting population response, i.e. for a signal to affect response dynamics in activating cells 

without impacting the proportion that activate. To achieve this requires modulating both dose and 

duration to maintain input area, leading to a shift in input shape from a SS to a LL signal. Cells 

distinguish an SS versus LL signal profile based on NF-κB and gene expression dynamics. We show that 

an intense, brief (SS) signal induces distinct dynamics than a weak, sustained (LL) signal but the 

percentage of cells responding is the same in both cases (Figure 2C, Figure 5B). Response timing and 

intensity are dynamic features that provide information for discriminating input shape. Indeed, potting 

response delay as a function of stimulus area shows that SS and LL signals can be distinguished on the 

basis of response delay (Figure 7B). Cells can discern the category of the signal (whether SS or LL) for a 

given input area based on whether the response time falls above or below a separation line (Figure 7B). 

Modulating input amplitude associated with higher timing variability than input duration modulation for 

controlling the fraction of active cells (Figure 7—figure supplement 1A). Because response amplitude 

exhibits high variability between cells, amplitude alone does not provide sufficient information to 

discriminate an SS versus LL signal (Figure 7—figure supplement 1B). Physiological cues are in fact 

commonly transmitted by changing from an SS to an LL input profile (Fu et al., 2014; Iezzi et al., 1998). 

Biological systems therefore appear to take advantage of the unique ability of digital signaling to separate 

control of population and single-cell dynamics, by modulating input area to determine the proportion of 

cells that activate in the population and input shape to instruct to determine phenotype outcomes in the 

activating subset of cells (Figure 7).  
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Figure 7. Stimulus area determines NF-κB population response. (A) Stimulus area determines 

fraction of active cells. The experimentally tested dose and duration inputs fall on the same hill-like 

activation curve when plotted as a function of stimulus area, as predicted by model simulations, 

indicating that total integrated ligand concentration (stimulus area) controls the probability of cell 

activation. These results show that pathogen load (i.e. LPS dose) and duration of exposure (i.e. LPS 

pulse duration) are integrated by NF-κB system, and together determine the population response.  

(B) Response time discriminates between sustained, low intensity (blue) and transient, high 

intensity (red) stimulus. (C) Input profile controls digital responses along two axes: Area controls 

the fraction of activated cells in the population. Shape controls dynamic heterogeneity in 

responding cells.  
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Figure 7—figure supplement 1. A) Comparison of cell-to-cell dynamic heterogeneity for different 

fractions of active cells for either constant or pulsed input (Figures 2 and 5). Pulsed (duration-

modulated) LPS input (red) achieves lower response time variability than constant (dose-

modulated) input for the same fraction of active cells. B) Unlike response delay, response intensity 

does not provide sufficient information to distinguish between pulsed LPS and constant LPS 

signals.  

 

 

Discussion 

This study asked how stimulus amplitude and duration determine NF-κB digital activation. Modeling and 

experiments showed that NF-κB activation is achieved by integrating the input: stimulus area 

(concentration × duration) controlled the percentage of cells that activated for both a “foreign” pathogen 

signal LPS and a “self” immune signal TNF (population response). Modeling did not perfectly reproduce 

the NF-κB dynamic trajectories in the data, and in particular showed more dose-dependent first peak 

amplitude variation than observed in experiments. However, switch dynamics and gene expression 

phenotype varied depending on the input dose (single-cell response), with rapid homogeneous responses 

at high dose and delayed heterogeneous responses at low dose. Dynamics of transcription factor 

activation determine the timing and specificity of gene expression and phenotype responses (Kobayashi et 

al., 2009; Purvis et al., 2012; Werner et al., 2005). Therefore, intercellular signaling systems may achieve 

distinct phenotype outcomes by controlling the input shape (whether SS or LL) – while input area 

determines percentage of cells that respond (Figure 7B). Greater heterogeneity with decreasing dose and 

decreased heterogeneity under short duration input is measured by coefficient of variation (Figure 7—

figure supplement 1).  

In lymphocyte signaling, T and B cells cell fate depends on both antigen quality (affinity) and quantity 

(amount of presented antigen). Antigen quality is encoded in the duration of receptor-antigen contact, 

with characteristic interaction times on the order of seconds (Altan-Bonnet and Germain, 2005; 
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Gottschalk et al., 2012; Miskov-Zivanov et al., 2013). T and B cell receptor binding with antigen-MHC 

triggers digital activation and cell fate control via NF-κB (Gerondakis et al., 2014; Kingeter et al., 2010; 

Oh and Ghosh, 2013; Shinohara et al., 2014). A reciprocal relationship is observed between antigen 

quality and quantity in lymphocyte activation: Higher antigen affinity requires lower dose of antigen to 

trigger T cell proliferation, and inversely, lower affinity requires higher dose (Gottschalk et al., 2012). 

Moreover, an intense, transient compared to a weak, sustained signal induces positive versus negative 

selection of naïve thymic T cells (Iezzi et al., 1998) and T helper cell differentiation into alternatively 

CD4 or CD8 status (Adachi and Iwata, 2002). Therefore analogous to our findings, while a combination 

of antigen dose and contact duration determines the probability of activation, input shape determined by 

relationship between antigen quality and quantity decides the phenotypic outcome of lymphocyte 

activation.  

We show that switch-like signaling enables parallel and independent control over response probability 

and response dynamics: while stimulus area (concentration × duration, or antigen quantity × quality) 

regulates the percentage of cells that respond, the stimulus shape (for example, whether short-strong or 

low-long, or antigen quality/quantity ratio) determines the response timing and gene expression 

phenotype in responding cells. Dose and duration sensing may be beneficial in different contexts. Dose 

information is encoded in the delay timing and heterogeneity of NF-κB response. On the other hand, 

modulating duration on the sub-minute timescale does not regulate response dynamics. Indeed, achieving 

control of percentage active in a population without introducing heterogeneity requires modulating 

duration of a high-dose input (Figure 4). It was shown that signaling dynamics mediates transfer of input 

dose information (Selimkhanov et al., 2014). We find that while dose information is transmitted through 

dynamics of NF-κB activation, on short (minute) timescales duration information is lost in the single-cell 

response but retained in the population response (fraction of activated cells).  

Between the innate immune signals TNF and LPS, we found that LPS exhibits greater ultrasensitivity (a 

steeper stimulus-response curve) and more pronounced activation delay than TNF. Both of these features 

are explained by higher coopertivity in IKK activation for LPS than for TNF (Figure 3—figure 

supplement 2B). Distinct higher-order adapter protein architectures may activate IKK with different 

effective coopertivities (Kazmierczak and Lipniacki, 2010). While TNF signaling activates formation of a 

filamentous amyloid complex involving RIP1 and RIP3 kinases, LPS signaling is mediated through 

helical assembly of the Myddosome complex (Lin et al., 2010) which interfaces with a TRAF6 lattice 

structure to activate IKK (Yin et al., 2009). Heterogeneity in switching threshold between cells may arise 

from cell-to-cell expression differences in signalosome components such as RIP1/3, MyD88, IRAK2/4, 

and TRAF6, leading to altered kinetics of signalosome assembly and IKK activation. Because the IKK 

hub mediates NF-κB responses for a multitude of input types and coordinates cross-talk with other 

signaling pathways, understanding how different signalosome architectures induce specific responses 

paves the way to interventions directed at switch-like signaling to modulate population and individual cell 

dynamics towards therapeutic outcomes (Behar et al., 2013; Negro et al., 2008).   

In this study we have shown that the switch-like character of NF-κB activation enables orthogonal control 

over two critical aspects of the response – probability of activation (fraction of active cells) and the 

heterogeneity of response – through the area and shape of the input profile. Secretion of signaling 

molecules often occurs in discrete or quantized way in the form of secretory bursts, and particularly in the 

case of short range paracrine signaling, cells may produce brief but intense secretion to achieve, for 
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example, low probability but high predictability responses (non-heterogeneous dynamics). Overall these 

results expand the repertoire of functions for digital signaling beyond increasing robustness to also 

facilitate multidimensional phenotype control based on temporal information in input signals.  
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Materials and methods 

Cell lines 

We used p65-knockout 3T3 fibroblasts (courtesy Markus Covert) modified using lentiviral vectors to 

express p65-DsRed under its endogenous promoter along with an H2B-GFP nuclear reporter, as described 

previously (Lee et al., 2009).  The cell line was clonally derived to express at p65-DsRed at lowest 

detectable level to preserve near endogenous expression.  

Automated microfluidic cell culture system 

Automated microfluidic cell culture was performed as previously described (Kellogg et al., 2014; Tay et 

al., 2010, Gomez-Sjoberg).  Briefly, microfluidic chambers were fibronectin treated and seeded with cells 

at approximately 200 cells/chamber. Cells were allowed to grow for one day with periodic media 

replenishment until 80% confluence. To stimulate cells, media equilibrated to 5% CO2 and containing the 

desired LPS amount was delivered to chambers, leading to a step increase in LPS concentration.  All LPS 

doses were tested in parallel in a single chip. Following stimulation, chambers were sealed and imaged at 

5-6 minute intervals. 

Image acquisition and data analysis 

DsRed and GFP channels were acquired using a Leica DMI6000B microscope at 20x magnification with 

a Retiga-SRV CCD camera (QImaging). One or two images were acquired per chamber and stitched if 

required using ImageJ (Pairwise stitching plugin). CellProfiler software (www.cellprofiler.org) and 

custom Matlab software was used to automatically track cells and quantify NF-κB translocation, and 

automated results were manually compared with images to ensure accuracy prior to further analysis. 

Mitotic cells were excluded from analysis. NF-κB activation was quantified as mean nuclear fluorescence 

intensity normalized by mean cytoplasm intensity. Area of the first peak was integrated after baseline 

correction from the time of LPS stimulation to the first minimum for each cell using Matlab function 

trapz. For peak analysis data was smoothed (Matlab functions smooth) followed by peak detection 

(Matlab function mspeaks) to extract NF-κB peak properties (intensity, area, delay) with manual 

verification using a custom interface in Matlab.  

Gene Expression 

Cells were seeded at 10000 cells/well in a 96-well plate and left to attach overnight before stimulation 

with LPS (1 – 500 ng/ml). Cells were then lysed, the RNA reverse-transcribed and cDNA pre-amplified 

(specific target amplification with the set of 24 primers) using the One-Step RT-PCR kit from Invitrogen. 
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Quantitative PCR was carried out on 48.48 dynamic arrays from Fluidigm according to manufacturer 

instructions, and expression was normalized to GAPDH. 
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4. NOISE FACILITATES TRANSCRIPTIONAL CONTROL UNDER 

DYNAMIC INPUTS  

The contents of the chapter published in Cell: Kellogg, R.A., and Tay, S. (2015). Noise Facilitates Transcriptional Control 

under Dynamic Inputs. Cell 160, 381–392. doi:10.1016/j.cell.2015.01.013 
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SUMMARY 

Cells must respond sensitively to time-varying inputs in complex signaling environments. To understand 

how signaling networks process dynamic inputs into gene expression outputs and the role of noise in 

cellular information processing, we studied the immune pathway NF-κB under periodic cytokine inputs 

using microfluidic single-cell measurements and stochastic modeling. We find that NF-κB dynamics in 

fibroblasts synchronize with oscillating TNF signal and become entrained, leading to significantly 

increased NF-κB oscillation amplitude and mRNA output compared to non-entrained response. 

Simulations show that intrinsic biochemical noise in individual cells improves NF-κB oscillation and 

entrainment whereas cell-to-cell variability in NF-κB natural frequency creates population robustness, 

together enabling entrainment over a wider range of dynamic inputs. This wide range is confirmed by 

experiments where entrained cells were measured under all input periods. These results indicate that 

synergy between oscillation and noise allows cells to achieve efficient gene expression in dynamically 

changing signaling environments.  

 

 

INTRODUCTION  

Understanding how cells efficiently process information in rapidly changing and noisy 

environments is a fundamental problem in biology. Cells experience environments that fluctuate over 

time during physiological conditions such as inflammation, where oscillating input signals can occur due 

to pulsatile secretion of signaling molecules from immune cells, (Goldbeter et al., 1990; Han et al., 2012), 

propagating signaling waves (Falcke, 2003; Schutze et al., 2011; Yde et al., 2011), or by coupling 

between upstream pathways (Gerard and Goldbeter, 2012; Goldbeter and Pourquie, 2008; Yang et al., 

2010; Yoshiura et al., 2007). How cells process such dynamic inputs into functional gene expression 

outputs is not well understood. Further, signaling systems are subject to biochemical noise originating 

from stochastic molecular interactions, leading to system noise and cell-to-cell variability in response to 
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input signals. While it is common belief that noise is harmful to information processing (Cheong et al., 

2011), cell signaling pathways perform with remarkable robustness despite ever-present system noise and 

variability (Little et al., 1999). It is not clear how cell-signaling pathways overcome system noise and 

whether there are functional roles for noise in cellular information processing. 

Signaling systems often employ oscillatory network architecture to process environmental inputs 

(Levine et al., 2013). For example, specific transcriptional responses can be achieved by encoding the 

dose or identity of a constant input signal by modulating oscillatory response dynamics (Kupzig et al., 

2005). Theoretically, oscillation can be advantageous also in the processing of fluctuating and noisy input 

signals. For example, dynamic inputs that contain noise can be transmitted efficiently in an oscillating 

system through a phenomenon called stochastic resonance (Douglass et al., 1993), previously observed in 

neuronal circuits (McDonnell and Ward, 2011). Nevertheless, such a beneficial role for biochemical 

system noise in the processing of fluctuating environmental signals has not been shown.  

To study how oscillation and system noise may interact in processing of dynamic input signals 

we consider the NF-κB system, a gene regulatory network central to immune functions and many diseases 

including autoimmunity and cancer (Hayden and Ghosh, 2008). NF-κB pathway activation by TNF 

cytokine leads to oscillations in p65:p50 heterodimer localization between the cytoplasm and nucleus 

(Hayden and Ghosh, 2008; Hoffmann et al., 2002; Nelson et al., 2004), mediated by NF-κB dependent 

induction of negative feedback genes of the IκB family (Fig. 1A). Pathway activation through IKK under 

TNF occurs in a digital, switch-like fashion (Tay et al., 2010).  

NF-κB oscillations are subject to intrinsic and extrinsic noise, leading to variable timing between 

cells that obscures single-cell behavior in population analyses (Swain et al., 2002; Tay et al., 2010).  

Sources of extrinsic noise include different signaling histories and uneven cell division leading to 

variation in protein abundance (Huh and Paulsson, 2011). Variation in TNF receptor or NF-κB molecules 

create different response characteristics between cells (Tay et al., 2010). Significant contributions to 

intrinsic (biochemical) noise in NF-κB include burst-like transcription of IκB and A20 negative feedback 

genes, and receptor-ligand interaction at low ligand concentration (Elowitz et al., 2002; Tay et al., 2010). 

Another negative feedback gene IκBϵ is induced with a 45 min delay compared to IκBα, which is 

optimally timed for increasing cell-to-cell oscillation variability, suggesting that transcriptional noise 

might provide a functional advantage (Ashall et al., 2009; Paszek et al., 2010).  

The function of NF-κB oscillation is not fully understood. Other pathways like p53 and Notch 

convert between oscillatory and non-oscillatory response to achieve specific cell fate responses 

(Dolmetsch et al., 1998; Kageyama et al., 2008; Purvis et al., 2012; Purvis and Lahav, 2013). The 

frequency of oscillation in ERK, Crz1, and NFAT4 is altered depending on input signal concentration, 

achieving expression control across diverse promoters through frequency modulation (Albeck et al., 

2013; Berridge et al., 2003; Cai et al., 2008; Dolmetsch et al., 1998; Eldar and Elowitz, 2010; Shankaran 

et al., 2009; Yissachar et al., 2013). However, NF-κB oscillation frequency (90 to 100 min peak-to-peak 

interval) is unchanged across a wide range of input concentrations (Longo et al., 2013; Tay et al., 2010; 

Turner et al., 2010), and it is uncertain how NF-κB oscillation changes and directs gene expression in 

response to a fluctuating input.  

Oscillatory systems can experience resonance, where a periodic stimulus leads to amplified 

output (Abraham et al., 2010; Pikovsky et al., 2003). Periodic input may also entrain or synchronize a 
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population of oscillators so that all oscillators adopt the same frequency and phase. Entrainment leading 

to resonant amplification of NF-κB oscillations may occur for input signals that fluctuate at a rate similar 

to the NF-κB natural frequency, increasing the sensitivity of the NF-κB system especially to small 

signals. Theoretical studies predict that periodic input to NF-κB may generate entrainment, quasiperiodic 

oscillations, or even chaos (Jensen and Krishna, 2012; Wang et al., 2011). Entrainment, with prominent 

examples from circadian rhythms and brain waves, allows oscillatory signaling and transcriptional 

pathways to synchronize and work in harmony (Reppert and Weaver, 2002; Varela et al., 2001). It is 

conceivable that entrainment could reduce cell-to-cell NF-κB oscillation variability, leading to 

homogenous transcriptional responses at the population level. Nevertheless, experimental studies are 

lacking on whether NF-κB can experience resonance and entrainment, and whether there is impact on 

gene expression output and variability (Longo et al., 2013; Tay et al., 2010; Turner et al., 2010). 

Although noise is detrimental to signal transmission in linear systems, it can facilitate information 

transfer in a nonlinear system by decreasing the amplitude of a periodic input needed to achieve coupling 

(Collins et al., 1996; Lindner et al., 2004; Mori and Kai, 2002; Zhou et al., 2002). For example, input 

noise can facilitate sensory neuron processing (McDonnell et al., 2011) and intrinsic noise may cause 

oscillations to become more robust to perturbation (Paszek et al., 2010; Perc and Marhl, 2003; Vilar et al., 

2002). Extrinsic noise (i.e. variation in signaling parameters between cells) may also impact entrainment 

due to increased population diversity, similar to bacterial bet hedging when external conditions change 

(Mondragon-Palomino et al., 2011; Suel et al., 2006; Wakamoto et al., 2013). However, it is not known 

how noise could affect entrainment of a complex and physiological mammalian system such as NF-κB.  

To probe how oscillation and noise together determine NF-κB dependent transcription in 

dynamic settings, we used a microfluidics-based experimental pipeline that enabled automated cell 

stimulation, live imaging, and gene expression measurements (Gómez-Sjöberg et al., 2007; Junkin and 

Tay, 2014; Kellogg et al., 2014; Tay et al., 2010). We delivered various TNF cytokine inputs to p65-/- 

mouse 3T3 fibroblast cells expressing p65/DsRed fusion protein at near wild-type levels (Lee et al., 2008; 

Tay et al., 2010) (Fig 1B, 2A and 3A). The microfluidic chip utilizes computer controlled PDMS 

membrane valves, allowing constant perfusion or periodic pulsing of signaling factors. 96 independent 

cell culture experiments each with complex fluidic conditions can be maintained in parallel. Cell images 

acquired at 5 min intervals were automatically analyzed, extracting thousands of single-cell trajectories of 

NF-κB nuclear intensity over time (Kellogg et al., 2014). Following periodic TNF stimulation, cells were 

retrieved for gene expression analysis in a high-throughput microfluidic qPCR system to understand the 

influence of entrainment on target gene expression (Kellogg et al., 2014). Furthermore, we performed 

stochastic simulations using an established model of NF-κB (Tay et al., 2010), and varied both intrinsic 

and extrinsic noise to interpret our experimental findings and understand the role of noise and oscillations 

for NF-κB dynamic signal processing.  
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Figure 1. Noise origins of sustained NF-κB oscillation and heterogeneity   

A) NF-κB transcription factor oscillates between cytoplasm and nucleus in response to 

inflammatory signals. NF-κB dynamics relay external signals to gene expression outputs. B) We 

deliver continuous or periodic inputs to cells using microfluidic cell culture. In continuous mode, 

TNF is flowed over cells to maintain constant concentration. C) We record single-cell NF-κB 

translocation using live cell microscopy. Images show nucleus-cytoplasm oscillations in NF-κB 

(p65-dsRed) under continuous TNF perfusion. (Scale bar: 10μm) D) Under constant 10ng/ml TNF 

concentration, NF-κB shows long sustaining, asynchronous oscillations. E) NF-κB oscillates with 

mean period ~90 min under constant high and low dose input (n = 40 cells). F) Pictorial depiction of 

within- and between-cell oscillation variability. While cells may have different mean periods 

(between-cell variability), each cell also exhibits fluctuation in its own oscillation (within-cell 

variability). G) Simulations with parameter settings from show that extrinsic noise increases 
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between-cell variability, and intrinsic noise increases within-cell variability. H) In simulations 

increasing extrinsic noise increases between-cell variability, while increasing intrinsic noise 

increases within-cell variability. I) Experimentally, we observe ~12% period fluctuation between 

different cells and 34% within the same cells under 10ng/ml TNF. Variability in simulated traces 

agrees with experimentally measured values. Intrinsic noise results from discrete regulation of gene 

activity. To affect transcriptional intrinsic noise, we increased gene copy number and 

proportionally decreased rate of IκB and A20 synthesis, and to increase extrinsic noise we 

increased variance of the log-normal distribution from which NF-κB and TNFR number are drawn 

with each model simulation (Extended Experimental Procedures). All other model parameters 

were unchanged from the previously published TNF NF-κB model (Tay et al., 2010).  

 

 

RESULTS 

Constant TNF stimulation generates sustained, noisy NF-κB oscillations 

Previous studies of NF-κB dynamics were subject to TNF ligand loss due to degradation and 

cellular internalization, leading to damped oscillations (Tay et al., 2010). Here, constant TNF 

concentration was achieved by perfusion of fresh TNF-containing media using an on-chip peristaltic 

pump (Fig. 1B). Under constant TNF concentration, we observed NF-κB oscillations sustaining longer 

than 24 hours with mean period approximately 90 min (Fig. 1C-D and movie S1). Cells exhibited 

different natural frequencies (between-cell variability) and cycle-to-cycle timing fluctuation (within-cell 

variability) (Fig. 1F). NF-κB oscillation is robust to changes in dose, and lowered dose, which generates 

high receptor-ligand noise, modestly lengthened the average period and increased period variability (CV: 

coefficient of variation, in Fig. 1E). These findings show that NF-κB oscillation sustains under constant 

TNF input, pointing to a conserved function for oscillations. 

 To understand how noise underlies oscillation variability, we performed simulations of NF-κB 

dynamics under constant TNF concentration. We used a stochastic single-cell model, which faithfully 

reproduces the NF-κB dynamics in single 3T3 fibroblast cells used in this study (Tay et al., 2010). To 

affect transcriptional intrinsic noise, we increased gene copy number and proportionally decreased rate of 

IκB and A20 synthesis, and to increase extrinsic noise we increased variance of the log-normal 

distribution from which NF-κB and TNFR number are drawn with each model simulation (Extended 

Experimental Procedures). All other model parameters were unchanged from the previously published 

TNF NF-κB model (Tay et al., 2010). The simulations showed sustained oscillation and period 

characteristics similar to our experiments (Fig. 1G) (Lipniacki et al., 2004; Lipniacki et al., 2007; Tay et 

al., 2010). Varying intrinsic noise in the model associated with changes in cycle-to-cycle variability, 

while changing extrinsic noise affected variability in average (natural) oscillation period between cells 

(Fig. 1G-H).  Magnitudes of variability for simulations matched that of experimental measurements, 

supporting an appropriate balance between intrinsic and extrinsic noise in the model (Fig. 1I).  
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Figure 2. Periodic TNF stimulation can entrain or disrupt NF-κB oscillations  

A) We deliver periodic inputs to cells using a microfluidic cell culture chip. In periodic mode, TNF 

is replaced at specified intervals, and ligand decay (due to cell uptake and degradation) leads to a 

periodic sawtooth concentration profile. B) Single-cell traces for stimulation at 120 min input 

period, which entrains and synchronizes NF-κB oscillations. C) Single-cell NF-κB trajectories 

measured for stimulation at 60 min input, which disrupts NF-κB oscillations. D) Image time-series 

for 120 min periodic input for times t1-t3 indicated by arrows in B. The entrained cell population 

oscillates synchronously. Inset: Nucleus color indicates nuclear NF-κB intensity from red (low) to 

green (high). (Scale bar: 25μm) E) Image time-series for 60 min periodic input for times t1-t3 

indicated by arrows in B. The cell population does not synchronize. F) Phase variability for 60 min 

stimulation remains constant over time. In contrast, during 120 min stimulation (red), phase 

variability decreases as the cell population synchronizes over time. G) Simulations reproduce non-

entrained and entrained responses. See also Figure S1. 

 

 

Single-cell NF-κB dynamics becomes entrained under an oscillating cytokine signal 

During inflammation cells operate under dynamic TNF signals, which may interfere with NF-κB 

oscillations needed for processing of input dose information and differential gene expression (Tay et al., 



 

- 83 - 

2010). Depending on frequency and amplitude, periodic input to an oscillator like NF-κB can either 

entrain or disrupt the oscillation. Entrainment describes when the oscillator becomes phase-locked and 

synchronized with the driving stimuli (Pikovsky et al., 2003), with prominent examples in biology from 

circadian rhythms (Leloup and Goldbeter, 2003; Reppert and Weaver, 2002) and brain waves, to synthetic 

bacterial oscillators (Mondragon-Palomino et al., 2011). On the other hand, when entrainment cannot 

occur due a significant frequency mismatch between the oscillator and input signal, the result is a 

disrupted oscillation that is quasiperiodic or even chaotic (Jensen and Krishna, 2012; Pikovsky et al., 

2003). How NF-κB responds to sustained periodic inputs that could entrain NF-κB oscillations has not 

been experimentally investigated so far. 

To test the entrainment capacity of NF-κB and how oscillation contributes to gene expression 

control under fluctuating cytokine signals, we applied TNF inputs to fibroblasts using two stimulation 

periods (Fig. 2A): In the first case, TNF stimulus is applied every 120 minutes, which indeed efficiently 

entrained NF-κB after a transient (Fig. 2B). In the second case, TNF stimulus was provided every 60 

minutes, which was sufficiently mismatched from the ~90 min NF-κB natural period to induce a 

disrupted, non-entrained NF-κB response in most cells (Fig. 2C). Movies S2-S4 show single-cells under 

these inputs as well as under 90 min input, and Supplementary Figure S1 shows the difference between 

entrained cells and cells oscillating under constant TNF signal. Images selected at three timepoints show 

that for 60 min input NF-κB oscillations remain asynchronous in the population, and for 120 min input 

NF-κB oscillates synchronously across cells (Fig. 2D-E, also see and supplementary movies S2-S4). 

Population phase variability, a measure of synchrony, remains high during the timecourse with 60 min 

stimulation, but it quickly reduces during 120 min stimulation as the population entrains (Fig. 2F, and 

S1C). Simulations with our comprehensive NF-κB model also reproduced non-entrained and entrained 

responses under similar inputs (Fig. 2G).  
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Figure 3. Entrained NF-κB oscillations improve transcriptional efficiency  

A) Cells are cultured and provided periodic stimulation on chip and harvested for qPCR analysis. 

B) TNF stimulation with 60 min period (blue) leads to non-entrained NF-κB response, and most 

individual cells do not synchronize with the input. C) NF-κB regulated gene expression under non-

entrained (60 min stimulation) and entrained (120 min stimulation). Higher transcriptional output 

is seen when NF-κB oscillations are entrained. Enhanced transcription occurs consistently for 

early, middle, and late genes. The effect is most pronounced for late responding genes (i.e. ccl5). D) 

Gene expression output measured by area under curve (AUC). AUC is higher for entrained 

compared to non-entrained NF-κB response. Although 120 min stimulation increases transcript 

production, it is not due to higher TNF exposure, which is lower compared to 60 min stimulation. 

E) Analysis of single cell NF-κB trajectories shows modest increase in response area (p = 0.04) and 

strong increase in oscillation energy (p = 0.0002) (bars indicate median +/- interquartile range, p-

values by Mann-Whitney test.)  F) Example NF-κB trajectories (for later part of timecourse 

starting at 500 min) and corresponding power spectra for 60 and 120 min input, showing stronger 

oscillation under entrained (120 min) input.  G) Stochastic NF-κB simulation of cells under either 

entraining or non-entraining input (left) and gene expression output (right). Due to nonlinear 

binding of NF-κB to DNA, stronger oscillation under entraining input creates increased gene 

expression output, in agreement with experiments. Increasing intrinsic noise amplifies oscillations 

and leads to even higher transcription output. mRNA cell-to-cell variability (measured by 

Coefficient of Variation, CV) is lower for entrained cells, indicating that entrainment reduces cell-

to-cell mRNA variability compared to non-entrained cells. See also Figure S2 and S3. 

 

Entrained NF-κB oscillation improves gene expression efficiency and reduces cell-to-cell variability 

NF-κB regulates hundreds of pro and anti-inflammatory genes (Hao and Baltimore, 2013). To 

understand the influence of entrained vs. disorderly NF-κB dynamics in gene expression, we measured 

time-dependent expression of target genes for 120 min and 60 min periodic TNF stimulation using 

microfluidic qPCR (Fig. 3A-B, S2, and S3). Cells stimulated in independent chambers of the cell culture 

chip were harvested for expression analysis at 30 minute time increments (Fig 3A) (See protocols in 

(Kellogg et al., 2014)). Under the entraining 120 min input, gene expression output is notably enhanced, 

especially in genes with later induction times (Fig. 3C, red lines). In contrast, 60 min input that leads to 

non-entrained NF-κB response caused an impaired transcriptional response (Fig. 3C, blue lines). 

Importantly, the difference in measured mRNA expression is not due to a difference in total TNF 

exposure, as there is greater TNF exposure for 60 minute input (Fig. 3D).  

We analyzed single-cell NF-κB trajectories for entrained and non-entrained conditions to identify 

what might give rise to the observed gene expression difference. Since differences are most evident in the 

later part of the timecourse, we focused our analysis to time after 500 min. We measured NF-κB area 

under the curve (AUC) and determined the extent that each trace is oscillatory vs. non-oscillatory by 

power spectral analysis. The AUC is a measure of total NF-κB protein localization into the nucleus, 

which did not change in a significant way to explain the observed gene expression difference. Entrained 

compared to non-entrained cells showed only 9% increase in NF-κB area. However, we measured 83% 

increase in NF-κB oscillatory energy (Fig. 3E). Non-entraining input at 60 min mostly resulted in non-

oscillatory localization profiles, while entraining input at 120 min resulted in strong oscillations with 

large amplitude (Fig. 3F). 
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To understand how increased oscillation magnitude under entraining input could lead to higher 

transcriptional output, we simulated traces for 60 and 120 min sawtooth input, similar to those used in 

experiments. Simulated NF-κB single-cells exhibited similar changes in area and oscillatory energy for 

entrained vs. non-entrained conditions (Fig. 3G and S2). However, the existing transcriptional model, 

which assumed that NF-κB binding to DNA increases linearly with nuclear NF-κB concentration (Tay et 

al., 2010), did not reproduce increased gene expression for the entrained condition (Fig. S2). Experiments 

indicate that NF-κB binds DNA cooperatively with Hill coefficient ~4 (Phelps et al., 2000) (Fig. S2A). 

Introducing this nonlinearity in our model created significantly increased transcriptional output for 

entrained versus non-entrained conditions, in agreement with our experiments (Fig. 3G and S2C) (Wee et 

al., 2012).  Increasing intrinsic noise led to stronger oscillations and further amplified the NF-κB induced 

gene expression (Fig. 3G). Thus, entraining input leads to strengthening of NF-κB oscillations, which are 

further amplified by noise to drive increased transcriptional output. 

We asked whether entrainment could reduce cell-to-cell variability in transcriptional output in our 

simulations. Comparing the coefficient of variation of mRNA output over time indicates that cell-to-cell 

transcription variability is significantly reduced under entraining input (Fig. 3G). This result is consistent 

across simulated early, middle, and late-response genes (Fig. S3). With reduced mRNA variability 

between individual cells, oscillations appear even in the population averaged experimental timecourse, 

especially in late genes (Fig. 3C). Therefore, through entrainment that reduces gene regulatory and gene 

expression variability between cells, one may increase response homogeneity of a cell population.  

These results reveal the important role for NF-κB oscillations in generating efficient transcription, 

and indicate that periodic signaling inputs can amplify transcriptional outputs by resonantly stimulating 

oscillatory pathways like NF-κB, with a beneficial role for intrinsic noise in further improving the 

transcriptional output. Moreover, simulations and experiments show reduced cell-cell variability in 

mRNA level for entraining input. Therefore entrainment provides a way to increase both expression 

output and homogeneity of a cell population.  
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Figure 4. Stochastic modeling predicts entrainment to be robust and that noise underlies 

enhancement in oscillation and entrainment range 

A) Deterministic Arnold tongues (grey shaded regions) computed for decay-type TNF input show 

that entrainment is readily achieved in narrow regions around 90 min and 180 min (TF/TN = 1, 2) 

periodic stimulation (10ng/ml TNF). Entrainment is also possible for 30 and 45 min input (TF/TN = 

1/3, 1/2). Locations of experimentally tested values are indicated by blue circles. B) Input-output 

phase relationship and phase-locking. Phase between TNF input and NF-κB output is calculated as 

the distance from each NF-κB peak to the start of the previous TNF cycle, normalized by the input 

period. When phase change between cycles is less than a threshold (|ϕt+1 – ϕt| < 0.15), input and 

output are considered phase-locked. Locking can occur at 1:1 ratio (one input cycle for one output 

cycle), or other ratios such as 1:2 (one input cycle for two output cycles). C) Adding intrinsic noise 

amplifies and sustains NF-κB oscillations in the model under constant TNF input (example single 
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cell traces are shown). D) Comparison of entrainment in simulated NF-κB trajectories under low 

and high intrinsic noise. Under 120 min periodic TNF stimulation, high noise leads to an entrained 

response indicated by 120 min peak in the power spectrum. In contrast, the response under low 

noise is not entrained as seen in the power spectrum that shows weaker oscillations and only at the 

natural period.  E-F) Entrainment simulation: Under low-noise simulation (extrinsic noise off, 

intrinsic noise reduced), entrainment occurs for narrow regions around 90 min stimulation period 

(1:1 entrainment, panel E) and around 180 min period (1:2 entrainment, panel F). Increasing 

intrinsic noise in the model broadens regions of entrainment (dotted line). Extrinsic noise alone also 

increases entrainment range for the population. Adding both extrinsic and intrinsic noise further 

expands entrainment. See also Figure S4. 

 

Stochastic modeling shows noise-enhanced NF-κB oscillation and entrainment 

We next turned to simulations to evaluate the robustness of NF-κB entrainment to changes in the 

TNF input period and the influence of noise. Using the deterministic implementation of our model, we 

simulated periodic TNF stimulation of NF-κB in single cells and calculated entrainment ranges. In the 

space spanned by input modulation amplitude and period (TF), entrainment occurs in triangular regions 

called Arnold Tongues (Fig. 4A) (Erzberger et al., 2013; Jensen and Krishna, 2012). On the edges of 

Arnold Tongues synchrony between the input and oscillator breaks down leading to quasiperiodic or 

aperiodic rhythms. Deterministic Arnold tongues for NF-κB indicated entrainment principally when 

stimulation period is near 1:1 or 1:2 ratio with the natural period and (TF/TN = 1, 2) (Fig. 4A), meaning 

that entrainment is expected when the stimulation occurs with a period near 90 min or near 180 min under 

10ng/ml TNF input. 

To understand the role of different noise levels in entrainment, we simulated periodic TNF 

signals with varied intrinsic and extrinsic noise conditions and quantified NF-κB phase locking by 

comparing phase of the next cycle ϕt+1 to that of the current cycle ϕt. If the phase difference |ϕt+1 – ϕt| is 

less than a threshold (0.15) then the response was considered locked over that cycle (Fig. 4B). Our hybrid 

model based on Gillespie algorithm incorporates experimentally verified intrinsic noise in TNF receptor-

ligand binding, which is dominant at small TNF doses, and in transcription of IB and A20 that 

constitute the main negative-feedback loops leading to oscillations (Tay et al., 2010). Particularly, 

transcriptional noise arises form stochastic interaction of NF-κB transcription factors with the two copies 

of IB and A20 genes. We reduced the transcriptional noise by increasing the gene copy number and 

proportionally reducing gene expression rate per copy to maintain unchanged gene expression and similar 

NF-κB natural oscillation period between models. With the stochastic model with greatly reduced 

intrinsic noise, entrainment occurs for narrow regions around 90 and 180 min stimulation under high dose 

(10 ng/ml) TNF periodic input (Fig. 4E-F), similar to those in the deterministic simulations. Simulations 

with high intrinsic noise under the same TNF input led to a significant broadening of the entrainment 

regions (Fig. 4E-F, dotted line). The intrinsic noise level in these simulations was matched to the 

experimental level in Figure 1. High intrinsic noise in our simulations increased NF-κB oscillation 

amplitude of single cells and supported sustained oscillations needed for entrainment (Fig. 4C). The 

power spectrum provides information about entrainment, and degree of entrainment is indicated by the 

relative amount of spectral power at the input period. Example simulated NF-κB single cell trajectories 

for 120 min input are seen in Figure 4D, showing significantly increased oscillation and spectral power at 

the input period for the high noise case. To determine how noise effects depend on TNF dose and 

modulation level we simulated the same model using computationally efficient stochastic differential 
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equations, which showed that intrinsic noise improves NF-κB power at input period when the input 

modulation is smaller (i.e. weaker driving stimuli), as in higher-dose periodic TNF stimulation (Fig. S4).  

Extrinsic noise generates cell-to-cell variability in NF-κB natural period (Fig. 1G-H). When the 

natural period in an individual cell is sufficiently close to the TNF input period, entrainment will occur. 

Extrinsic noise in the system thus increases the probability that at least a portion of cells in the population 

will entrain to a given input. When we included extrinsic in addition to intrinsic noise in our simulations, 

we observed a further broadening of entrainment ranges NF-κB (Fig. 4E-F).  Overall, these simulations 

indicate that extrinsic and intrinsic noise together enable cells to entrain and drive efficient transcriptional 

responses for a wider range of dynamical inputs.  

 

 
Figure 5. NF-κB entrainment range is wide and agrees with noisy model predictions 

A) Heatmaps of single-cell NF-κB trajectories under different doses of TNF (10, 0.5, and 0.1 ng/ml) 

for stimulation periods ranging from 30 to 180 min. Color indicates NF-κB intensity from low 

(blue) to high (red). Entrainment of individual cells can be visualized with the appearance of well-

aligned peaks. Entrainment and synchronization is pronounced for 90 and 180 min stimulation. 

Reduced dose leads to greater oscillation synchrony and improved entrainment across all 

stimulation periods (Fig. S5B). B) Comparison of entrainment scores for 10ng/ml stimulation in 

various locking modes shows agreement between experiments and noisy model prediction. All 
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model parameters were unchanged from the previously published TNF NF-κB model (Tay et al., 

2010). See also Figure S5. 

 

NF-κB entrainment range is very broad as predicted by noisy simulations 

To experimentally test the robustness of NF-κB entrainment to changes in the input, we applied 

TNF inputs with 30 to 180 minute periods to fibroblasts cultured in separate chambers of the microfluidic 

system, under 3 different TNF doses of 10, 0.5 and 0.1 ng/ml (Fig. 5 and S5). The dataset contains 

analysis of approximately 2000 cells over 24hrs duration measured every 5 minutes, creating more than 

half a million data points (Movies S2-S4). Heatmaps with one row for each single cell NF-κB trajectory 

show population synchrony that improves with time (Fig. 5A). Periodic stimulation with reduced dose 

leads to even better entrainment (Fig. 5A). The fraction of NF-κB cycles locking to different entrainment 

ratios was computed for each stimulation condition, and as anticipated 1:1 locking is maximized when 

then stimulation period is near 90 min and 1:2 locking is maximized for 180 min stimulation (Fig. 5B). 

Surprisingly, we observed cells having entrained oscillations in every input period tested, even in those 

inputs like 120 min that are not predicted by the deterministic or low noise simulations. Good agreement 

is seen between experimental entrainment values and high-noise model simulations (both under 10 ng/ml 

TNF dose) incorporating both extrinsic and intrinsic noise and using model parameters published 

previously (Tay et al., 2010) (Fig. 5B). We did not observe dependence on cell density (Fig. S6). 

A consequence of natural period diversity is entrainment heterogeneity, including the ability for 

different cells in the population to entrain at different ratios. Cells entrained at multiple ratios or did not 

entrain and exhibited quasiperiodic oscillation (Fig. 6C). Period probability follows a multimodal 

distribution, indicating simultaneous mixture of for example 1:1 and 1:2 locking responses in the 

population (Fig. 6A). Simulations incorporating only extrinsic noise also generate mixed locking 

responses, indicating that locking heterogeneity can arise from extrinsic noise (Fig. 6D).  

Period distributions show narrowing with reduced TNF dose, supporting more effective 

entrainment (Fig. 6B). Comparing mean pairwise Spearman correlation for population responses at each 

input revealed increased correlation as dose decreases and at larger input periods (Fig. 6E). Therefore, 

NF-κB is more amenable to entrainment for input level in middle of its dose dynamic range (Tay et al., 

2010) in agreement with simulation (Fig. S5C). Entrainment is more efficient under input periods larger 

than 60min, and frequencies larger than 0.02 min-1 (50 min period) are not observed in the single cell 

power spectra, indicating that NF-κB system acts like a filter that prevents transmittance of rapid TNF 

input fluctuations into transcription.  
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Figure 6. Population heterogeneity and dose dependence of entrainment response   

A) Period probability distributions for 10ng/ml TNF input reveal entrainment at multiple ratios 

between the input and output period. Under 90 min input, the population entrains nearly 

homogeneously with a 90 min phase-locked oscillation (1:1 ratio, red line). In contrast, during 150 

min stimulation cells may respond with a 150 min oscillation (1:1 ratio, red line), or a 75 min 

oscillation (1:2 ratio, blue line), or without phase-locking (orange line). B) Period distributions for 

multiple TNF concentrations. Lower concentration leads to period distribution narrowing, 

indicating improved entrainment and reduced cell-to-cell variability. C) Measured single-cell NF-

κB traces for each locking ratio and an example quasiperiodic response (Not locked). D) Simulation 

with extrinsic noise shows that different locking ratios may occur simultaneously (blue line – 1:1 

locking, red and green lines – 1:2 locking). E) Mean pairwise spearman correlation in NF-κB 
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indicating better population entrainment at lower input concentration and higher input periods. 

The NF-κB system efficiently filters rapid input fluctuations with periods shorter than 50 minutes.  

See also Figure S6.   

 

DISCUSSION 

Here we provide insight into the function of transcription factor dynamics and noise in gene 

expression control under fluctuating signaling inputs. Sustained, heterogeneous single-cell NF-κB 

oscillations synchronize to an oscillating TNF signal in a wide range of stimulation frequencies and 

become entrained. Entrainment causes amplification of NF-κB oscillations and increased gene expression 

(Fig. 7). Simulations predict that both intrinsic and extrinsic noise can improve NF-κB entrainment range, 

allowing cells to respond synchronously to broader range of inflammatory signals (Fig. 4). Single cell 

measurements confirmed that indeed NF-κB entrainment occurs in the broad range as predicted by 

stochastic modeling (Fig. 5). While extrinsic noise leads to differences in oscillation frequency between 

cells creating heterogeneous locking behavior and increases entrainment robustness of the population to 

changes in input period, a surprising finding is the beneficial role for intrinsic noise in dynamical 

signaling: Molecular fluctuation arising from low copy number feedback transcripts (IκB and A20) can 

act to enhance NF-κB oscillation and expand the range of inputs that entrain NF-κB and ultimately 

enhance target gene expression (Fig. 7). Increased gene expression was explained by incorporating data 

on nonlinear NF-κB - DNA binding affinity into the model, and we see the greatest differential regulation 

for late genes such as Ccl5 in agreement with findings that late genes are more sensitive to oscillatory 

regulation (Ashall et al., 2009; Wee et al., 2012).   

Together, our results describe important functions for oscillation and noise in signaling networks. 

Transcription factor oscillation allows amplified pathway output in response to a periodic stimulus and 

thus increases system efficiency by reducing the amount of input signal needed to generate strong 

response. Oscillation moreover allows control of heterogeneity through synchronization of gene 

regulatory dynamics across the population. By enhancing oscillation and entrainment bandwidth, noise 

facilitates efficient transcription in dynamic signaling contexts.  

Cytokines like TNF activate multiple signaling pathways, and resonant pathway stimulation 

provides a way to achieve specific responses. A low-dose signal, delivered periodically, could excite NF-

κB oscillations and activate NF-κB signaling while avoiding activation of non-oscillatory pathways (such 

as AP-1). Entrainment with resonance also allows more efficient communication. Indeed, we show that a 

periodic resonant stimulus achieves greater pathway output while at the same time requiring fewer TNF 

molecules than a non-entraining stimulus.  

Oscillation with resonance may act as a filter. Non-entraining inputs like rapid TNF fluctuations 

are effectively attenuated at the gene expression level. This may allow NF-κB system to filter out fast 

cytokine fluctuations that are not physiological (i.e. input noise). While NF-κB exhibits a robust natural 

period of ~90 min, researchers are finding oscillation in many signaling pathways with differing 

characteristic frequencies. Therefore the pathway specificity of a pleiotropic factor such as TNF might be 

tuned by changing the frequency with which it stimulates a cell. Nonetheless it is likely that oscillatory 

pathways are linked within and between cells more than is currently appreciated (Kupzig et al., 2005), 

and temporal filtering allows cells to achieve specific responses based on the frequency content of input 

signals.  
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 NF-κB both responds to and drives cytokine production, and oscillatory cytokine production has 

been observed in activated single T cells (Han et al., 2012).  Entrainment of NF-κB could be a 

coordination mechanism during infection, by controlling paracrine signals that instruct migration or fate 

determination of immune cells (Yde et al., 2011). TNF positive feedback in secretory immune cells such 

as macrophages could improve entrainment at higher cell density, creating a more amplified (and more 

homogeneous) response (Pekalski et al., 2013). The broad entrainment range of the NF-κB system allows 

cells to adapt their oscillation frequency and gene expression dynamics to match cytokine fluctuation in 

the environment.  

Our findings suggest a surprising role for noise and oscillation in mammalian signal transduction 

and transcriptional control (Fig. 7). In dynamic, physiological signaling scenarios oscillations provides 

cells the ability to decode not only the amplitude but also frequency content of input signals. Inputs 

occurring near the natural frequency of an oscillatory system are amplified and generate higher gene 

expression output, while other input frequencies generate an attenuated response. By enhancing 

oscillation and entrainment at small signal modulation noise may improve the transfer of weaker dynamic 

signals in the NF-κB system.  Entrainment allows efficient cell-cell communication, control of cell-cell 

heterogeneity, and possibility to selectively activate oscillatory pathways through resonant stimulation. 

The prevalence of oscillation in signaling networks suggests that cells are well-equipped for processing 

dynamic signals.  

 

 
Figure 7. Role of intrinsic and extrinsic noise in NF-κB entrainment and enhanced gene expression  
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Entrainment score for different inputs shown on the left side; single-cell NF-κB time course shown 

in the middle; and the corresponding mRNA output is shown on the right. A) Black curve on the 

left shows the entrainment range of a given cell with intrinsic noise, and grey curve shows the 

narrower noise-free entrainment range. Signaling inputs at the edge of the entrainment range (red 

dots) cause non-entrained NF-κB responses and small amplitude (in blue), resulting in impaired 

gene expression output. Intrinsic noise improves the amplitude and the regularity of NF-κB 

oscillations (in red), resulting in increased gene expression output. Intrinsic noise can increase 

entrainment score and also the bandwidth, where cells entrain to a broader range of input periods. 

B) Extrinsic noise creates cell-to-cell variability in the entrainment range, resulting in a broader 

entrainment bandwidth for the population. Population variability in entrainment potential ensures 

that at least some cells will entrain under a given input period.  

 

EXPERIMENTAL PROCEDURES 

TNF-α Stimulation using Microfluidic Cell Culture. We use the cell culture chip described 

previously (Gómez-Sjöberg et al., 2007). Cells were seeded in PDMS chambers coated with fibronectin at 

constant density ~20,000 cells/cm2 and were cultured overnight prior to stimulation. Standard culture 

conditions of 5% CO2 and 37° C were maintained using an incubation chamber. Mouse TNF-α 

(Invitrogen) was diluted in DMEM media in vials pressured with 5% CO2 and kept on ice. Microbore 

tubing (PEEK, Idex) connected the TNF-α supply to the chip. For continuous pumping input, the on-chip 

peristaltic pump was operated at a flow rate ~200nL/min. For periodic input, TNF-α containing media 

was introduced and incubated in the chamber, allowing degradation and internalization of the ligand. The 

chamber volume is replaced with fresh TNF-α containing media at defined intervals, leading to periodic 

sawtooth pattern in ligand concentration.  

Cell retrieval and gene expression analysis. Cells were loaded into the cell culture chip, and a 

Matlab program delivered 60min or 120min periodic inputs with start times staggered by 30 minutes to 

generate time points from 0 to 23.5 hours.  Cells in one chamber (approximately 200 cells) were retrieved 

for each timepoint.  At the conclusion of stimulation, cells in all chambers were lysed at once on-chip, 

and retrieved in a 2ul volume of lysis buffer using an automated routine. Cells exited the chip through 

~10cm length microbore tubing positioned into wells of a 96-well plate. Wash steps using PBS prior to 

retrieval prevented cross-contamination of chambers. cDNA was synthesized using Cells Direct One Step 

RT-PCR kit (Invitrogen). TaqMan primers and probes (Applied Biosystems) were used for real-time 

qPCR. Gene expression was assayed using the 48.48 Dynamic Array IFC chip (Fluidigm). Cycle 

thresholds (CT) were converted to relative expression values normalized to GAPDH (2Ct_gapdh - 

Ct_gene). Total expression abundance was calculated as the integral of the relative expression (using the 

Matlab trapz function).  

Image Acquisition and Data Processing. The microfluidic chip was mounted on an automated 

Leica DMI6000B microscope, and fluorescence images (red and green channels for p65 and H2B 

reporters, respectively) were acquired at 20x magnification via a Retiga-SRV CCD camera (QImaging) 

every 5-6 minutes for 24-48 hours. CellProfiler software (www.cellprofiler.org) and custom Matlab 

routines (Gómez-Sjöberg et al., 2007) were used for image processing (available on request). NF-κB 

activation was quantified as mean nuclear fluorescence intensity after background correction.  Area-

under-curve provides a measure of total NF-κB activity (Tay et al., 2010) and was quantified as the 

integral of the NF-κB response (using Matlab trapz). For peak analysis and heatmaps data was smoothed 

http://www.cellprofiler.org/
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and standardized (Matlab functions smooth and zscore) followed by peak detection (Matlab mspeaks). 

Peak-to-peak distances were computed as the difference between peak times (Matlab diff). Cell image 

overlays aided visualization of oscillation peaks (colored green) and troughs (colored red). 

NF-κB Reporter Cell Line. Mouse (3T3) fibroblasts expressing near-endogenous p65 levels were 

described previously (Tay et al., 2010). Briefly, p65-/- mouse 3T3 fibroblasts were engineered to express 

p65-DsRed under control of 1.5kb p65 promoter sequence (Lee et al., 2008; Tay et al., 2010). A clone 

was selected with minimum detectable fluorescence intensity to achieve near-endogenous expression 

level and NF-κB dynamics similar to wild-type (Lee et al., 2008).  Addition of ubiquitin-promoter driven 

H2B-GFP expression provided a nuclear label to facilitate automated tracking and image processing.  
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SUPPLEMENTAL INFORMATION 

 

Figure S1. Comparison of NF-κB dynamics for constant and periodic (entraining) TNF stimulation, 

Related to Figure 2 

A) Constant TNF input leads to asynchronous, heterogeneous oscillations in the population. B) 

Periodic input (90 min interval) generates entrained, synchronous population response. Color code 

in heatplots indicates NF-κB nuclear intensity from low (blue) to high (red). C) Peak timing for 120 

min periodic TNF (10ng/ml) input. Over time, timing of NF-κB oscillations in the population 

becomes increasingly synchronized.  



 

- 101 - 

 

Figure S2. Nonlinear NF-κB – DNA binding increases oscillation-mediated transcriptional output, 

Related to Figure 3 

A) Fitting of experimental NF-κB – DNA binding data from (Phelps et al., 2000). B) Area and 

oscillatory energy of simulated NF-κB trajectories for non-entraining (60 min) versus entraining 

(120 min) periodic input. C) Comparison of simulated NF-κB dynamics and mRNA output for 

entraining vs non-entraining model input, for linear and nonlinear (cooperative) NF-κB – DNA 

binding. Nonlinear NF-κB binding reproduces the experimentally observed gene expression 

enhancement under entrainment. 
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Figure S3. Enhanced NF-κB dependent gene expression under entraining input, Related to Figure 

3 

A) Gene expression under periodic stimulation ordered from early (top) to late (bottom). Relative 

expression values are plotted as 2ct_gene-ct_gapdh. TNF (10ng/ml) was provided for 60min (blue) 

or 120min (red) periodic input, and population gene expression was measured every 30 minutes. 
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Experiment duration was 12 hours. Stimulation and cell retrieval was conducted using the 

microfluidic cell culture chip. B) Simulated single-cell mRNA output for entrained vs. non-

entrained conditions for early and intermediate genes not shown in main text. Early, intermediate, 

and late genes are simulated by varying transcript stability (Tdeg). Values for Tdeg are 103 (~17 

min), 104 (~2.7 h), and 105 s (~27 h) to simulate early, intermediate, and late genes, respectively. 

Regardless of mRNA half-life, entrainment leads to both increased expression and reduced 

variability compared to non-entraining input.  
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Figure S4. Additional simulations on role of noise in NF-κB entrainment under different TNF 

doses, Related to Figure 4 

A) Stochastic differential equation (SDE) hybrid simulations of entrainment under various doses of 

sawtooth like periodic TNF inputs. Entrainment (y-axis) is quantified by the ratio of the spectral 

power at the input to the total power at other frequencies. Intrinsic noise increases when the 

reaction volume becomes smaller, reaching a maximum noise level at v=0.5. Reaction volume 

v=1000 produces near-deterministic conditions. Higher intrinsic noise improves entrainment at 

TNF doses of 50 and 10 ng/ml. B) Comparison of single-cell NF-κB trajectories for high and low 

noise conditions under resonant (95 min, 50ng/ml TNF) stimulation using SDE simulation. High 

noise (left) generates significantly increased oscillation amplitude and higher entrainment score. 

High NF-κB oscillation amplitude leads to increased gene expression (Fig. S2 and S3). C) Effect of 

intrinsic and extrinsic noise of the fraction of cells that phase-lock in the population. For the 

simulation analysis cell responses that phase-lock for > 60% of a 24hr timecourse are declared 

“locked”. Intrinsic noise (left) widens the input range that causes locking for an individual cell. 

Extrinsic noise (right) increases the variation in natural period between cells, leading also to wider 

entrainment range.  
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Figure S5. NF-κB Arnold tongue simulations, Related to Figure 5 
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A) Temporal profile and power spectrum for experimentally established periodic TNF input 

signals. B) Experimentally measured entrainment efficiency at different TNF doses for 1:1 locking. 

C) Arnold tongues numerically computed for sawtooth input. Modulation amplitude varies inverse 

proportionally with decay time λ. Lower input level gives rise to wider entrainment regions. Upper 

panel shows input function TNF(t) = d*exp(-λ*mod(t,Tf)). Middle panel shows entrainment regions 

for d = 10 (TNF 10ng/ml). Small circles correspond to experimental inputs. Lower panel shows 

entrainment regions for d = 0.5 (TNF 0.5ng/ml). D) Arnold tongues for numerically computed for 

sinusoidal TNF input. Lower input level leads to narrower entrainment regions for Tf/Tn period 

ratios greater than one but wider regions for ratio less than 1. Top panel shows sinusoidal input 

function, TNF(t) = ϵ(1+ ηsin(2πt/Tf)) (Wang et al., 2011). Middle panel shows entrainment regions 

for ϵ = 10 (10ng/ml TNF) and varying η from 0 to 1. Lower panel shows entrainment regions for ϵ = 

0.5 (0.5ng/ml TNF) and varying η from 0 to 1.  

 

Figure S6. Influence of spatial distance on entrainment, Related to Figure 6 

A) Spatial distance between cells and similarity in their oscillatory responses (by Spearman 

correlation coefficient) do not correlate strongly, in agreement with previous findings (Lee et al., 

2008).  B) Changing cell density from a low (50 cells/chamber) to high (300 cells/chamber) does not 

alter the distribution of peak-to-peak (period) time. These findings suggest that spatial paracrine or 

contact mediated interactions do not play a major role in the observed entrainment. 
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EXTENDED EXPERIMENTAL PROCEDURES 

Numerical computation of phase-locked regions (Arnold Tongues). We follow a 

similar procedure as described previously (Mondragon-Palomino et al., 2011). Sinusoidal input 

is simulated as shown (Fig. S5).  To construct Arnold Tongue diagrams for sawtooth input (Fig. 

4A), period Tf is varied from 15-250 min at 0.5 min increments and decay rate λ is varied from 

50 to 1000 sec (0.833 to 16.67 min) and locking regions are displayed in terms of modulation 

amplitude (1/λ). To construct Arnold Tongue diagrams for sinusoid input (Fig. S5D), period Tf is 

varied from 15-250 min at 0.5 min increments and modulation strength η is varied from 0 to 1. 

Simulations are run for sufficient duration (500 hr) to accumulate 90-100 phase measurements. 

Phase is the distance from start of an input cycle to the following NF-κB oscillation peak. If a 

new input begins before a NF-κB peak appears, no phase measurement is recorded for the cycle. 

The CV of these phase measurements is computed, and if the value is below an arbitrary 

threshold 0.1, the response is considered phase-locked.  

Analysis of peak timing variability. Between-cell variability (BCV) and within-cell 

variability (WCV) are expressed in terms of coefficient of variation (standard deviation / mean). 

BCV is the variation in mean period: Define M = vector of mean period for each cell. BCV = 

sqrt(var(M))/mean(M). WCV is the mean period variation: Define V = vector of period CV for 

each cell. WCV = mean(V).  

Analysis of phase locking. Phase ϕ is computed for each input cycle as distance from the 

next occurring NF-κB peak (if one occurs in the time before a new input cycle starts). This 

distance is normalized to the input period to arrive at a phase value in the range (0-1]. To assess 

locking, the current phase measurement ϕt is compared to the previous phase ϕt-1. Phase-locking 

is defined as a phase change less than 15% (|ϕt - ϕt-1| < 0.15).  Locking ratio is expressed as (# of 

input cycles):(# of response cycles) occurring during the time between ϕt and ϕt-1 measurements. 

Locking fraction indicates the proportion of cycles locked at each ratio compared to the total 

number of cycles, computed as number of locked input-response cycles over total input-response 

cycles.  

Spectral Analysis. Single cell time traces were transformed into frequency domain 

power spectral density (PSD) using the Matlab fft function. Frequencies were converted to 

periods to facilitate interpretation. A spectrum-based entrainment measure (Relative power at 
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input) is defined as the ratio of energy at input to non-input frequencies. The degree of 

oscillation in a signal (Oscillatory energy) is defined as energy in the power spectrum for periods 

shorter than 200 min.  

Simulation of NF-κB dynamics and entrainment using a hybrid stochastic-

deterministic model based on Gillespie algorithm 

We used deterministic and hybrid stochastic-deterministic models of the NF-κB pathway 

published previously (Tay et al., 2010). In the hybrid model, receptor binding and transcription 

are modeled stochastically while remaining interactions are modeled deterministically.  

The model includes the following components:  

IKKn Neutral form of IKK kinase 

IKKa 
Active form of IKK 

IKKi 
Inactive form of IKK 

KNN 
Total number of IKK=IKKn+IKKa+IKKi+IKKii 

molecules (assumed constant in time) 

IKKKa Active form of IKKK 

IKKKn 
Neutral form of IKKK 

KN 
Total number of IKKK=IKKKn+IKKKa 

molecules (assumed to be constant in time) 

IkB 
Cytoplasmic IκBα 

IkBn 
Nuclear IκBα 

IkBt 
IκBα transcript 

IkBp 
Phosphorylated cytoplasmic IκBα 

A20 
A20 protein 

A20t 
A20 transcript 

Rt 
Reporter transcript 

NFkB 
Cytoplasmic NF-κB 

NFkBn 
Nuclear NF-κB 

NFkB|IkB 
Cytoplasmic (NF-κB-IκBα) complexes 

NFkB|IkBp 
Phosphorylated cytoplasmic IκBα complexed to 

NF-κB 

NFkB|IkBn 
Nuclear (NF-κB-IκBα) complexes 
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TNFext 
Extracellular TNFα concentration [ng/ml] 

 

GIkB 
Discrete random variable, state of IκBα gene 

 

GA20 
Discrete random variable, state of A20 gene 

 

GR 
Discrete random variable, state of reporter gene 

B 
Number of active receptors 

M 
Total number of receptors (assumed to be constant 

in time) 

 

The model includes the following parameters: 

  

Parameter Value Description 

kv = V/U 5 Ratio of cytoplasmic to nuclear 

volume  

MMEFs 10
3 
molecules Average number of TNFR1 for 

MEFs cell simulations  

KN 10
5 
molecules Number of IKKK molecules  

NF-κBtot 10
5 
molecules Average number of NF-κB 

molecules 

Tdeg  2×10
-4

 s
-1 

 TNF degradation 

kb 1.2×10-5 s
-1

 molecules
-1

 Receptor activation rate  

kf 1.2×10-3 s
-1

 Receptor inactivation rate  

ka 2×10
-5

 s
-1

 IKKK activation rate 

ki 10
-2

 s
-1

 IKKK inactivation rate 

k1 6×10
-10

 s
-1 

molecules
-2

 IKKn activation rate 

kA20 10
5 
molecules Michaelis coefficient in TNFR1 

activity attenuation 

k2 10
4 
molecules Michaelis coefficient in IKKa 

inactivation 

k3 2×10
-3

 s
-1 

 IKKn inactivation rate  

k4 10
-3

 s
-1

 IKKi→IKKii and IKKii→IKKn 

transformation  

q1 4×10-7 s-1 NF-κB binding at A20 and IκBα 

gene promoters 
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q2 10
-6

 s
-1

 IκBα inducible NF-κB detaching 

from A20 and IκBα genes  

c1 0.1 s
-1

 inducible A20 and IκBα mRNA 

synthesis  

c3 7.5×10
-4

 s
-1

 A20 and IκBα mRNA degradation 

c4 0.5 s
-1

 A20 and IκBα translation - fitted 

c5 5×10
-4

 s
-1

 A20 degradation rate  

a1 5×10
-7

 s
-1 

molecules
-1

 IκBα association NF-κB  

a2 10
-7

 s
-1 

molecules
-1

 IκBα phosphorylation  

a3 5×10
-7

 s
-1 

molecules
-1

 IκBα phosphorylation in IκBα|NF-

κB complexes  

tp 10
-2

 s
-1

 degradation of phosphorylated IκBα  

c5a 10
-4

 s
-1

 spontaneous IκBα degradation  

c6a 2×10
-5

 s
-1

 spontaneous IκBα degradation in 

IκBα|NF-κB complexes  

i1 10-2 s-1 NF-κB nuclear import 

e2a 5×10
-2

 s
-1

 IκBα|NF-κB nuclear export 

i1a 2×10
-3

 s
-1

 IκBα nuclear import 

e1a 5×10
-3

 s
-1

 1 IκBα nuclear export 

q1r 10
-7 

s
-1

 NF-κB binding at reporter gene 

promoter 

q2r 10
-7

 s
-1

 IκBα inducible NF-κB detaching 

from reporter gene 

q2rr 10
-3

s
-1

 Spontaneous NF-κB detaching from 

reporter gene 

c1r 5x10
-2

s
-1

 Inducible reporter mRNA synthesis 

c1rr 10
-3 

s
-1

 Reporter mRNA constitutive 

synthesis 

c3r Various: 

10
-3 

s (~17 min) – early gene 

10
-4

 s (~2.7 h) – mid gene 

10
-5 

s (~27 h) – late gene 

Reporter mRNA degradation rate 

kr 5 Half-max value for cooperative NF-

κB – DNA binding  

n 4 Hill coefficient for cooperative NF-

κB – DNA binding 

ANa 2 IκB α alleles  

AN 2 A20 alleles 

ANr 2 Reporter gene alleles 
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The following ODEs comprise the fast reactions (all but transcription and receptor activity): 

 

𝑑[𝐼𝐾𝐾𝐾𝑎]

𝑑𝑡
= 𝑘𝑎 ∗ 𝐵(𝑡) ∗ (𝐾𝑁 − [𝐼𝐾𝐾𝐾𝑎]) ∗

𝑘𝑎20

𝑘𝑎20 + [𝐴20]
− 𝑘𝑖 ∗ [𝐼𝐾𝐾𝐾𝑎] 

𝑑[𝐼𝐾𝐾𝑛]

𝑑𝑡
= −[𝐼𝐾𝐾𝐾𝑎]2 ∗ 𝑘1 ∗ [𝐼𝐾𝐾𝑛] + 𝑘4 ∗ (𝐾𝑁𝑁 − [𝐼𝐾𝐾𝑛] − [𝐼𝐾𝐾𝑎] − [𝐼𝐾𝐾𝑖]) 

𝑑[𝐼𝐾𝐾𝑎]

𝑑𝑡
= [𝐼𝐾𝐾𝐾𝑎]2 ∗ 𝑘1 ∗ [𝐼𝐾𝐾𝑛] − 𝑘3 ∗ [𝐼𝐾𝐾𝑎] ∗ (𝑘2 + [𝐴20])/𝑘2 

𝑑[𝐼𝐾𝐾𝑖]

𝑑𝑡
= 𝑘3 ∗ [𝐼𝐾𝐾𝑎] ∗

𝑘2 + [𝐴20]

𝑘2
− 𝑘4 ∗ [𝐼𝐾𝐾𝑖] 

𝑑[𝐼𝑘𝐵𝑝]

𝑑𝑡
= 𝑎2 ∗ [𝐼𝐾𝐾𝑎] ∗ [𝐼𝑘𝐵] − 𝑡𝑝 ∗ [𝐼𝑘𝐵𝑝] 

𝑑[𝑁𝐹𝑘𝐵|𝐼𝑘𝐵𝑝]

𝑑𝑡
= 𝑎3 ∗ [𝐼𝐾𝐾𝑎] ∗ [𝑁𝐹𝑘𝐵|𝐼𝑘𝐵] − 𝑡𝑝 ∗ [𝑁𝐹𝑘𝐵|𝐼𝑘𝐵𝑝] 

𝑑[𝑁𝐹𝑘𝐵]

𝑑𝑡
= 𝑐6𝑎 ∗ [𝑁𝐹𝑘𝐵|𝐼𝑘𝐵] − 𝑎1 ∗ [𝑁𝐹𝑘𝐵] ∗ [𝐼𝑘𝐵] + 𝑡𝑝 ∗ [𝑁𝐹𝑘𝐵|𝐼𝑘𝐵𝑝] − 𝑖1 ∗ [𝑁𝐹𝑘𝐵] 

𝑑[𝑁𝐹𝑘𝐵𝑛]

𝑑𝑡
= 𝑖1 ∗ [𝑁𝐹𝑘𝐵] − 𝑎1 ∗ 𝑘𝑣 ∗ [𝐼𝑘𝐵𝑛] ∗ [𝑁𝐹𝑘𝐵𝑛] 

𝑑[𝐴20]

𝑑𝑡
= 𝑐4 ∗ [𝐴20𝑡] − 𝑐5 ∗ [𝐴20] 

𝑑[𝐴20𝑡]

𝑑𝑡
= 𝑐1 ∗ [𝐺𝐴20] − 𝑐3 ∗ [𝐴20𝑡] 

 

𝑑[𝐼𝑘𝐵]

𝑑𝑡
= −𝑎2 ∗ 𝐼𝐾𝐾𝑎 ∗ 𝐼𝑘𝐵 − 𝑎1 ∗ 𝐼𝑘𝐵 ∗ 𝑁𝐹𝑘𝐵 + 𝑐4 ∗ 𝐼𝑘𝐵𝑡 − 𝑐5𝑎 ∗ 𝐼𝑘𝐵 − 𝑖1𝑎 ∗ 𝐼𝑘𝐵 + 𝑒1𝑎 ∗ 𝐼𝑘𝐵𝑛  

𝑑[𝐼𝑘𝐵𝑛]

𝑑𝑡
= −𝑎1 ∗ 𝑘𝑣 ∗ [𝐼𝑘𝐵𝑛] ∗ [𝑁𝐹𝑘𝐵𝑛] + 𝑖1𝑎 ∗ [𝐼𝑘𝐵] − 𝑒1𝑎 ∗ [𝐼𝑘𝐵𝑛]                                   

𝑑[𝐼𝑘𝐵𝑡]

𝑑𝑡
= 𝑐1𝑎 ∗ [𝐺𝐼𝑘𝐵] − 𝑐3 ∗ [𝐼𝑘𝐵𝑡] 
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𝑑[𝑁𝐹𝑘𝐵|𝐼𝑘𝐵]

𝑑𝑡
= 𝑎1 ∗ [𝐼𝑘𝐵] ∗ [𝑁𝐹𝑘𝐵] − 𝑐6𝑎 ∗ [𝑁𝐹𝑘𝐵|𝐼𝑘𝐵] − 𝑎3 ∗ [𝐼𝐾𝐾𝑎] ∗ [𝑁𝐹𝑘𝐵|𝐼𝑘𝐵] + 𝑒2𝑎

∗ [𝑁𝐹𝑘𝐵|𝐼𝑘𝐵𝑛] 

𝑑[𝑁𝐹𝑘𝐵|𝐼𝑘𝐵𝑛]

𝑑𝑡
= 𝑎1 ∗ 𝑘𝑣 ∗ [𝐼𝑘𝐵𝑎𝑛] ∗ [𝑁𝐹𝑘𝐵𝑛] − 𝑒2𝑎 ∗ [𝑁𝐹𝑘𝐵|𝐼𝑘𝐵𝑛] 

 

Reporter gene transcript with cooperative induction:  

𝑑[𝑅𝑡]

𝑑𝑡
= 𝑐1 ∗

[𝐺𝑅]𝑛

(𝑘𝑟
𝑛 + [𝐺𝑅]𝑛)

− 𝑐3 ∗ [𝑅𝑡] 

 

The following are ODEs for the slow reactions (IκBα, A20, and Reporter gene and receptor 

activation) used in the deterministic approximation:  

 

𝑑[𝐵]

𝑑𝑡
= 𝑘𝑏 ∗ [𝑇𝑁𝐹] ∗ (𝑀 − [𝐵]) − 𝑘𝑓 ∗ [𝐵] 

𝑑[𝐺𝐴20]

𝑑𝑡
= 𝑞1 ∗ [𝑁𝐹𝑘𝐵𝑛] ∗ (𝐴𝑁 − [𝐺𝐴20]) − 𝑞2 ∗ 𝐼𝑘𝐵𝑛 ∗ [𝐺𝐴20] 

𝑑[𝐺𝐼𝑘𝐵]

𝑑𝑡
= 𝑞1 ∗ [𝑁𝐹𝑘𝐵𝑛] ∗ (𝐴𝑁𝑎 − [𝐺𝐼𝑘𝐵]) − 𝑞2 ∗ [𝐼𝑘𝐵𝑛] ∗ [𝐺𝐼𝑘𝐵] 

𝑑[𝐺𝑅]

𝑑𝑡
= 𝑞1 ∗ [𝑁𝐹𝑘𝐵𝑛] ∗ (𝐴𝑁𝑟 − [𝐺𝑅]) − 𝑞2 ∗ [𝐼𝑘𝐵𝑛] ∗ [𝐺𝑅] 

 

In the hybrid model, fast reactions are modeled stochastically. Receptors activate with and 

inactivate with propensities R
b
 and R

d
, respectively, as follows:  

[𝑅𝑟
𝑏] = 𝑘𝑏 ∗ [𝑇𝑁𝐹𝑒𝑥𝑡] 

[𝑅𝑟
𝑑] = 𝑘𝑑 

 

A20, IκBα, and reporter genes are activated by NF-κB binding and inactivated by IκBα removal of NF-

κB: 
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[𝑅𝑏 ] = 𝑞1 ∗ [𝑁𝐹𝑘𝐵𝑛] 

[𝑅𝑑 ] = 𝑞2 ∗ [𝐼𝑘𝐵𝑛] 

 

Numerical implementation scheme for the hybrid model is as described (Lipniacki et al., 2007; 

Tay et al., 2010). 

 

Noise simulation 

To simulate extrinsic noise, numbers of NF-κB and TNFR1 across cells follow a lognormal 

distribution with parameters A, μ, and σ:  

𝑓 =
𝐴

𝑥𝜎 √2𝜋
∗ 𝑒

−
(ln(𝑥)−𝜇)2

2∗𝜎2  

 

 A Μ σ  

NF-κB 10
5
 1/√2 -1/4 

TNFR1 10
3
 √2 -1 

 

Intrinsic noise results from discrete regulation of receptor and gene activity. To affect 

transcription noise, we increased gene copy number from 2 to 50 (parameters AN and ANa) and 

proportionally decreased rate of IκB and A20 synthesis (parameter c0).   

 

Simulating continuous and periodic TNF stimulation 

To simulate continuous flow, TNF-α input decay rate (model parameter Tdeg) is set to 0. To 

simulate periodic replacement, Tdeg is set to an assumed rate (equal to 2×10
-4

 s
-1

 based on 

estimated TNF-α degradation and cell internalization) (Lipniacki et al., 2004; Tay et al., 2010) 

and TNF-α concentration is reset at the defined periodic interval (30-180min) to create a 
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sawtooth input profile. Parallel simulations were performed using the ETH Zurich Brutus high-

performance cluster (www.cluster.ethz.ch). 

 

Hybrid stochastic-deterministic NF-κB simulation using stochastic differential equations 

We start with equations governing receptor binding and gene activation as follows: 

 

𝑥1 = 𝑘𝑏 ∗ [𝑇𝑁𝐹] ∗ (𝑀 − 𝑥1) − 𝑘𝑓 ∗ 𝑥1 

𝑥2 = 𝑞1 ∗ [𝑁𝐹𝑘𝐵𝑛] ∗ (𝐴𝑁 − 𝑥2) − 𝑞2 ∗ 𝐼𝑘𝐵𝑛 ∗ 𝑥2 

𝑥3 = 𝑞1 ∗ [𝑁𝐹𝑘𝐵𝑛] ∗ (𝐴𝑁𝑎 − 𝑥3) − 𝑞2 ∗ [𝐼𝑘𝐵𝑛] ∗ 𝑥3 

𝑥4 = 𝑞1 ∗ [𝑁𝐹𝑘𝐵𝑛] ∗ (𝐴𝑁𝑟 − 𝑥4) − 𝑞2 ∗ [𝐼𝑘𝐵𝑛] ∗ 𝑥4 

 

 where states 𝑥𝑖 and parameter values are described in the following table: 

State Species Description 

𝑥1 𝐵 Active receptor 

𝑥2 𝐺𝐴20 Gene A20 

𝑥3 𝐺𝐼𝑘𝐵 Gene IκBα  

𝑥4 𝐺𝑅 Gene Reporter 

 

All parameters are as described in the Gillespie-based model section above. All other equations are 

simulated deterministically as above.  

 

Stochastic Reaction Network derivation 

From the ODE model we derive a stochastic reaction network model for a system with volume Ω. 

The states 𝑥𝑖  are then given by 

𝑥𝑖 =
𝑦𝑖

𝑁𝑎 ∙ Ω
=

𝑦𝑖

Ω̃
 

http://www.cluster.ethz.ch/
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where 𝑁𝑎 = 6.022 ∙ 1023 is the Avogadro constant, Ω̃ ∶= 𝑁𝑎 ∙ Ω and 𝑦𝑖 is the copy number of species 𝑠𝑖. 

The reactions and corresponding propensities 𝜔𝑘(𝑥) are listed in the following table: 

 

1 ∅ → 𝑠1 𝜔1(𝑥) =  𝑘𝑏 ∗ [𝑇𝑁𝐹] ∗ (𝑀 −
𝑦1

Ω̃
) 

2 𝑠1 → ∅ 𝜔2(𝑥) = 𝑘𝑓 ∗
𝑦1

Ω̃
 

3 ∅ → 𝑠2 𝜔3(𝑥) = 𝑞1 ∗ [𝑁𝐹𝑘𝐵𝑛] ∗ (𝐴𝑁 −
𝑦2

Ω̃
) 

4 𝑠2 → ∅ 𝜔4(𝑥) = 𝑞2 ∗ 𝐼𝑘𝐵𝑛 ∗
𝑦2

Ω̃
 

5 ∅ → 𝑠3 𝜔5(𝑥) = 𝑞1 ∗ [𝑁𝐹𝑘𝐵𝑛] ∗ (𝐴𝑁𝑎 −
𝑦3

Ω̃
) 

6 𝑠3 → ∅ 𝜔6(𝑥) =  𝑞2 ∗ [𝐼𝑘𝐵𝑛] ∗
𝑦3

Ω̃
 

7 ∅ → 𝑠4 𝜔7(𝑥) = 𝑞1 ∗ [𝑁𝐹𝑘𝐵𝑛] ∗ (𝐴𝑁𝑟 −
𝑦4

Ω̃
) 

8 𝑠4 → ∅ 𝜔8(𝑥) = 𝑞2 ∗ [𝐼𝑘𝐵𝑛] ∗
𝑦4

Ω̃
 

 

The dynamics of the species copy numbers are then given by {𝑋(𝑡): 𝑡 ≥ 0} 

𝑋(𝑡) = 𝑋(0) + ∑ 𝑌𝑘 (∫ 𝜔𝑘(𝑋(𝑠))𝑑𝑠

𝑡

0

) 𝑠𝑘

𝑀

𝑘=1

 

where {𝑌𝑘: 𝑘 = 1, … , 𝑀} is a family of independent unit rate Poisson processes. 

Langevin Approximation derivation 

The Langevin Approximation (Van Kampen, 1992) {𝑍(𝑡): 𝑡 ≥ 0}  of a Stochastic Reaction 

Network results in a Stochastic Differential Equation approximating the dynamics of the species 

concentrations 

𝑍(𝑡) = 𝑍(0) + ∫ 𝐹(𝑍(𝑠))𝑑𝑠

𝑡

0

+ ∑
1

√Ω
(∫ √�̃�𝑘(𝑍(𝑠))𝑑𝑊𝑘(𝑠)

𝑡

0

) 𝑠𝑘

𝑀

𝑘=1

 

where 𝐹(𝑥) = ∑ �̃�𝑘(𝑥)𝑠𝑘
𝑀
𝑘=1  and {𝑊𝑘: 𝑘 = 1, … , 𝑀}  is a family of independent standard Brownian 

motions and the �̃�𝑘-s are the reaction-rate functions  from the ODE model: 
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1 ∅ → 𝑠1 �̃�1(𝑥) =  𝑘𝑏 ∗ [𝑇𝑁𝐹] ∗ (𝑀 − 𝑥1) 

2 𝑠1 → ∅ �̃�2(𝑥) = 𝑘𝑓 ∗ 𝑥1 

3 ∅ → 𝑠2 �̃�3(𝑥) = 𝑞1 ∗ [𝑁𝐹𝑘𝐵𝑛] ∗ (𝐴𝑁 − 𝑥2) 

4 𝑠2 → ∅ �̃�4(𝑥) = 𝑞2 ∗ 𝐼𝑘𝐵𝑛 ∗ 𝑥2 

5 ∅ → 𝑠3 �̃�5(𝑥) = 𝑞1 ∗ [𝑁𝐹𝑘𝐵𝑛] ∗ (𝐴𝑁𝑎 − 𝑥3) 

6 𝑠3 → ∅ �̃�6(𝑥) =  𝑞2 ∗ [𝐼𝑘𝐵𝑛] ∗ 𝑥3 

7 ∅ → 𝑠4 �̃�7(𝑥) = 𝑞1 ∗ [𝑁𝐹𝑘𝐵𝑛] ∗ (𝐴𝑁𝑟 − 𝑥4) 

8 𝑠4 → ∅ �̃�8(𝑥) = 𝑞2 ∗ [𝐼𝑘𝐵𝑛] ∗ 𝑥4 

 

Simulations of the Langevin Approximation are run with volumes varying from ω = 0.5 (low 

noise) to ω = 1000 (high noise). The equations are solved by the Euler-Maruyama method implemented in 

Java with a timestep of 𝑑𝑡 = 1 𝑠 (function SDE.simByEuler in Matlab 2014a).  
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5. CONCLUSIONS 

5.1 Summary 

This work has developed a microfluidic pipeline for single cell analysis and applied this pipeline towards 

understanding how cells process temporal fluctuation in signaling inputs. We focused on two dynamic 

features of the NF-κB pathway – digital activation and noisy oscillation.    

The NF-κB digital response is defined at the population level by two characteristics: 1) the percentage of 

cells exhibiting a response, and 2) the extent of cell-to-cell dynamic heterogeneity in the responses. 

Previous studies found that for input levels leading to a low fraction of the population responding also led 

to large cell-to-cell heterogeneity, suggesting that these two response characteristics were linked (Tay et 

al., 2010). In this work we find that the NF-κB switch in fact decouples activation probability and 

heterogeneity through processing area and shape of the input profile. By computationally and 

experimentally screening a range of intensity and duration combinations, we found that input area 

controls the fraction of cells activating, while input shape controls the extent of heterogeneity in the 

response. These two response properties are therefore tunable for specific functions depending on 

biological context. For example, NF-κB is involved in cytokine secretion in macrophages but regulates 

cellular differentiation in lymphocytes. Controlling NF-κB heterogeneity would have different effects in 

these contexts – impacting variability in secretion profile in one case, and variability in lymphocyte 

phenotypes in the second case.  

The reason for NF-κB oscillation has been a mystery since its discovery. We asked how oscillation 

functions to control transcription. Using periodic input that either enhanced or disrupted NF-κB 

oscillation without affecting total nuclear NF-κB, we found that oscillation was critical for efficient 

transcriptional output. Noise widened the range of input frequencies leading to entrainment and 

enhancement of oscillation. Therefore oscillation serves to sense frequency content of input signals. 

Oscillation enables cells to communicate by periodic signaling with increased efficiency by requiring 

fewer TNF molecules to achieve the same level of transcriptional output. Beyond increased efficiency, 

frequency encoding could increase information capacity and fidelity of cell-cell communication through 

regulating specific sets of NF-κB genes. 

5.2 Emerging concepts  

5.2.1 Digital signal integration through the NF-κB switch 
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Cells face multiple input signals at a time, and it remains uncertain how multiple signal types are 

integrated by the cell. For multiple inputs to a digital system, the inputs might integrate additively or the 

cell could make a decision about which input to respond to. In this work we showed that signaling 

response through TLR4 (via LPS input) is digital, and the area of the input determines the fraction of cells 

in the population responding. Signaling through TLR2 (via Pam3csk4 – PAM – input) produces dynamics 

that are distinct from those produced by LPS at low dose. When both input types are applied 

simultaneously, the population exhibits an approximately equal split in responses – some single cells in 

Figure 1. Digital integration of simultaneous inputs. When these two inputs are delivered 

simultaneously to cells, NF-κB appears to “choose” only one of them. A) It is unclear how the NF-

κB switch regulates responses to multiple simultaneous inputs. B) Two TLR ligands, LPS and PAM, 

show distinct dynamics at low dose. C) Heatplot showing single-cell responses in a population that 

received simultaneous PAM + LPS input. Color coding indicates that whether the single cell 

dynamic response matched LPS or PAM, and a fraction of the population exhibits dynamics 

resembling the response to LPS and the remainder show dynamics corresponding to PAM input.  
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the population show dynamics that mimic that of PAM input through TLR2, and the other portion shows 

dynamics resembling LPS input through TLR4.  

Similar to how the NF-κB switch responds under dose and duration inputs, this effect could arise from the 

cooperative process of adaptor assembly upstream of IKK activation. Receptor and adaptor assembly of 

one ligand type might rapidly accumulate and sequester all available molecules of a shared adaptor 

component (such as TRAF6), preventing activation due to a competing ligand type. This emerging result 

points to the NF-κB switch as not only a way for cells to manipulate response probability and 

heterogeneity, but also addresses the problem of how cells simultaneously process multiple ligands – by 

allowing cells to stochastically choose one ligand and effectively ignore other ligands competing for the 

same pathway.  

5.2.2 NF-κB oscillation as a frequency filter 

We showed that NF-κB dependent gene expression is 

enhanced when periodic input causes entrained NF-

κB oscillations and diminished when periodic input 

disrupts NF-κB oscillations. However it isn’t yet 

clear how NF-κB coordinates gene expression across 

the broader space of input frequencies.  

Simulations of periodic TNF pulse inputs show that 

NF-κB can act as a bandpass filter or a notch filter, 

depending on the width of the TNF pulse. For 10 min 

pulse width, gene expression output is maximized 

when the input frequency is near the NF-κB natural 

frequency (90 min), with decreased output for input 

frequencies either above or below – thus NF-κB acts 

as a bandpass filter. Curiously, simulations show 

opposite behavior with a shorter pulse width. For 1 

min pulses NF-κB functions as a notch filter, with 

minimized gene expression output when the system is 

stimulated near the NF-κB natural frequency.  

Secretion occurs in pulsatile fashion, and immune 

cells such as T cells can secrete periodically (Han et 

al., 2012). This simulation result implies that cells 

could communicate information based on both the 

frequency of pulsed secretion and length of individual 

pulses – and will be fascinating to follow up 

experimentally.  

Figure 2. NF-κB as a bandpass or notch filter on 

gene expression (simulation). For pulses of TNF 

delivered at different intervals, NF-κB gene output 

acts like a filter – either bandpass or notch, 

depending on the pulse width of the input signal. 

When the input interval is near the NF-κB natural 

period (90 min), output is maximized (for a 10 min 

pulse) or minimized (for a 1 min pulse).  
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5.3 Outlook 

This work showed that NF-κB digital activation and noisy oscillation serve specific function in the 

processing temporally modulated input signals: the digital NF-κB switch controls probability and 

heterogeneity of response based on the area and shape of the input, and NF-κB oscillation regulates 

transcriptional efficiency based on the input signal frequency. The logical extension of this work to look 

beyond cells in isolation and ask how cells communities organize and dynamically coordinate signaling to 

implement tissue functions. Microfluidics will again play an essential role by enabling 3D culture in 

designed geometrical and cell type conformations to mimic aspects of tissue organization (Huh et al., 

2013). Gene editing technologies such as CRISPR will greatly facilitate the ability to monitor an 

increasing number of dynamic signaling events inside cells (Yang et al., 2013).  Finally, microscopy 

technologies are rapidly advancing to allow fast, high-resolution imaging deep into living tissues 

(Pantazis and Supatto, 2014).  

Continuing in dynamics of innate immune signaling an emerging area is how the microbiome influences 

immunity and disease. Microbes reside in all mucosal and air surfaces on the body including skin, mouth 

and particularly the gut – and outnumbering human cells 10 to 1 (Arumugam et al., 2011).  Further, 

microbiome composition and function has been implicated in dozens of diseases spanning inflammatory 

bowel disease to brain diseases such as autism (Furusawa et al., 2013). However, the mechanisms of 

bidirectional interaction between microbiota and host physiology are unknown, making the field ripe for 

investigation into dynamic signaling at the microbe – immune interface using live imaging and 

microfluidics.  
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