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Introduction
Polynomial chaos expansions for supervised learning

Applications

Introduction: supervised learning

Machine learning aims at making predictions by building a model based on
data

Unsupervised learning aims at discovering a hidden structure within
unlabelled data

{
x(i), i = 1, . . . ,n

}
Supervised learning considers a training data set:

X =
{

(x(i), y(i)), i = 1, . . . ,n
}

where:
x(i)’s are the attributes / features (input space)

y(i)’s are the labels (output space)

B. Sudret (Chair of Risk, Safety & UQ) Sparse PCE in Machine Learning Mai 18th, 2015 2 / 37



Introduction
Polynomial chaos expansions for supervised learning

Applications

Classical problems and algorithms
Classification

In classification problems, the labels are
discrete, e.g. y(i) ∈ {−1, 1}. The goal is
to predict the class of a new point x

Logistic regression - Support vector
machines

Regression
In regression problems, the labels are
continuous, say y(i) ∈ DY ⊂ R. The goal
is to predict the value ŷ = M̃(x) for a
new point x

Artificial neural networks - Gaussian
process models - Support vector regression 0 5 10 15
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Uncertainty quantification

A computational model is defined as a map:

x ∈ DX 7→ y =M(x)

Uncertainties in the input are represented by a
probabilistic model:

X ∼ fX (joint PDF)

Uncertainty propagation aims at estimating the
statistics of Y =M(X)

Sensitivity analysis aims at finding the input
parameters (or combination thereof) which drive
the variability of Y
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Global framework for uncertainty quantification

Step A
Model(s) of the system

Assessment criteria

Step B
Quantification of

sources of uncertainty

Step C
Uncertainty propagation

Random variables Computational model Distribution

Mean, std. deviation

Probability of failure

Step C’
Sensitivity analysis

Step C’
Sensitivity analysis

B.S., Uncertainty propagation and sensitivity analysis in mechanical models, Habilitation thesis, 2007.
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Surrogate models for uncertainty quantification

A surrogate model M̃ is an approximation of the original computational model:

It is built from a limited set of runs of the original
model M called the experimental design
X =

{
x(i), i = 1, . . . ,n

}
It assumes some regularity of the model M and some
general functional shape

Name Shape Parameters
M̃(x) =

∑
α∈A

yα Ψα(x) yα

Gaussian process modelling M̃(x) = βT · f (x) + σ2 Z(x, ω) β , σ2 , θ

Support vector machines M̃(x) =
m∑

i=1

yi K(xi , x) + b y , b
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Bridging supervised learning and PC expansions

Features Machine learning Unc. Quant. /PCE
Computational model M

7 4

Probabilistic model of the
input X ∼ fX 7 4

Training data: X =
{(xi , yi), i = 1, . . . ,n} 4 4

Training data set Experimental design

Prediction goal: for a new
x /∈ X , y(x) ?

m∑
i=1

yi K(xi , x) + b
∑
α∈A

yα Ψα(x)

Validation (resp. cross-
validation) 4 4

Validation set Leave-one-out CV
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Outline

1 Introduction

2 Polynomial chaos expansions for supervised learning
PCE in a nutshell
Ad-hoc input probabilistic model

3 Applications
Combined cycle power plant
Boston Housing
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Polynomial chaos expansions in a nutshell

Consider the input random vector X (dim X = M ) with given joint
probability density function (PDF) fX(x) =

∏M
i=1 fXi (xi)

Assuming that the random output Y =M(X) has finite variance, it can
be cast as the following polynomial chaos expansion:

Y =
∑

α∈NM

yα Ψα(X)

where :
yα : coefficients to be computed (coordinates)
Ψα(X) : basis functions

The PCE basis
{

Ψα(X), α ∈ NM} is made of multivariate orthonormal
polynomials

Ψα(x) def=
M∏

i=1

Ψ(i)
αi (xi) E [Ψα(X)Ψβ(X)] = δαβ
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Practical implementation

The input random variables are first transformed into reduced variables
(e.g. standard normal variables N (0, 1), uniform variables on [-1,1], etc.):

X = T (ξ) dim ξ = M (isoprobabilistic transform)

e.g. : Xi = F−1
i ◦ Φ(ξi), ξi ∼ N (0, 1) in the independent case

The model response is cast as a function of the reduced variables and
expanded:

Y =M(X) =M◦ T (ξ) =
∑

α∈NM

yα Ψα(ξ)

A truncation scheme is selected and the associated finite set of
multi-indices is generated, e.g. :

AM,p = {α ∈ NM : |α| ≤ p} card AM,p ≡ P =
(

M + p
p

)
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Statistical approach: least-square minimization
Berveiller et al. (2006)

Principle
The exact (infinite) series expansion is considered as the sum of a
truncated series and a residual:

Y =M(X) =
∑
α∈A

yαΨα(X) + εP(X) ≡ YTΨ(X) + εP(X)

where : Y = {yα, α ∈ A} ≡ {y0, . . . , yP−1} (P unknown coef.)

Ψ(x) = {Ψ0(x), . . . ,ΨP−1(x)}

Least-square minimization
The unknown coefficients are estimated by minimizing the mean square
residual error:

Ŷ = arg min E
[
ε2

P(X)
]

= arg min E
[(

YTΨ(X)−M(X)
)2
]
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Least-Square Minimization: discretized solution

Ordinary least-square (OLS)
An estimate of the mean square error (sample average) is minimized:

Ŷ = arg min
Y∈RP

Ê
[(

YTΨ(X)−M(X)
)2
]

= arg min
Y∈RP

1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2

Penalized least-squares
`1- penalty is introduced to induce sparsity in the solution

yα = arg min 1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2
+ λ ‖ Y ‖1

The Least-angle regression (LAR) algorithm is used

Efron et al. , Ann. Stat. (2004), Blatman and S., J. Comp. Phys. (2011)
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Least angle regression
Path of solutions

Iteration
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A path of solutions is obtained
containing 1, 2, ..,min(n, |A|)
terms.
Leave-one-out error ELOO is
computed for each solution and
the best model (smallest error) is
selected

ELOO = 1
n

n∑
i=1

(
M(x(i))−MPC\i(x(i))

)2
= 1

n

n∑
i=1

(
M(x(i))−MPC (x(i))

1− hi

)2

where hi is the i-th diagonal term of matrix A(ATA)−1AT and Aij = Ψj(x(i))
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Back to supervised learning

Assume all features are continuous
variables

Data: training set
X = {(xi , yi), i = 1, . . . ,n}

A probabilistic model needs to be set
up from this data

Statistical inference
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Probabilistic modelling of (sufficiently) big data

Premise
Machine learning is often used for big data, i.e. thousands to even millions
of training points

No need for parametric estimation of the input distribution

Full non-parametric representation remains difficult in high dimensions

Proposed solution
Non parametric estimation of the marginals Xi , i = 1, . . . ,M

Parametric copula for the (possible) dependence
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Modelling of the marginals

For each univariate sample Xk
def=
{

x(1)
k , . . . , x(n)

k

}
a kernel smoothing

technique is used:

f̂Xk (x) = 1
n hk

n∑
i=1

K
(

x − x(i)
k

h

)

K : kernel function, e.g. the Gaussian kernel ϕ(t) = e−t2/2/
√

2π
hk : bandwidth to be adapted to the data (default value by
Silverman’s rule)
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Dependence modelling: copula theory

Reminder (Sklar’s theorem)
A continuous joint distribution FX may be represented uniquely through the
marginal distributions {FXk , k = 1, . . . ,M} and a copula function C:

FX(x) = C (FX1 (x1), . . . ,FXM (xM ))

Example
The Gaussian copula reads:

CN (u; Θ) = ΦM
(
Φ−1(u1), . . . ,Φ−1(uM ); Θ

)
where:

ΦM is the multivariate Gaussian CDF (of dim. M )
Θ is the copula parameters matrix (“correlation matrix”)
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Inference of the Gaussian copula
The Spearman rank correlation matrix is computed from
the training set:

ρ̂S
kl = corr (Rk ,Rl)

where Rk ,Rl are the ranks of univariate samples Xk ,Xl :

ρ̂S
kl = 1− 6

n

n∑
j=1

(R(j)
k −R

(j)
l )2

n2 − 1

Charles Spearman

(1863-1945)

The copula correlation matrix reads:

Θkl = 2 sin
(
π

6 ρ̂
S
kl

)
NB: The invertibility of this correlation matrix is not guaranteed
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Wrap-up: PCE-based supervised learning

Data: X =
{

(x(i), y(i)), i = 1, . . . ,n
}

Use kernel smoothing for setting marginals and e.g. the Gaussian copula,
so as to get the joint distribution

FX(x) = CN
(
F̂−1

X1 (x1), . . . , F̂−1
XM

(xM ); Θ̂
)

Transform data into a standardized space, e.g. [−1, 1]M :

Remove marginals z(i)
k = Φ−1(F̂Xk (x(i)

k ))

Decorrelate z’s z̃(i) = L−1 · z(i) where Θ̂ = L · LT

Normalize over [−1, 1] u(i)
k = 2 Φ(z̃(i)

k )− 1
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Wrap-up: PCE-based supervised learning

From the data set in the U -space [−1, 1]M , compute the coefficient of
the multivariate Legendre polynomials using least-square analysis:

Y def= MPC(u) =
∑
α∈A

yα Lα1 (u1)⊗ · · · ⊗ LαM (uM )

New predictions for x(0) ∈ DX

Transform input:

x(0) −→ z(0) −→ z̃(0) −→ u(0)

Predict:
ŷ(0) =MPC(u(0))
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Combined cycle power plant (CCPP)

Data set UC Irvine Machine Learning Repository

9568 data points

4 features:
Temperature T ∈ [1.81, 37.11] ◦C
Ambient pressure P ∈ [992.89, 1033.30] mB
Relative humidity RH ∈ [25.56− 100.16]%
Exhaust vacuum V ∈ [25.36, 81.56] cm Hg

1 output: net hourly electrical energy output EP ∈ [420.26, 495.76] MW

Strategy
Non parametric kernel density smoothing of the distribution

Fitting of a Gaussian copula
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CCPP: Training data (X -space)
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CCPP: Training data (U -space)

Samples of the data dependence structure

Correlation matrix:

Θ̂ =

(
1.00 0.85 −0.52 −0.54
0.85 1.00 −0.43 −0.30

−0.52 −0.43 1.00 0.09
−0.54 −0.30 0.09 1.00

)
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Validation of the probabilistic model

Training data – U -space Probabilistic model – U -space
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Validation of the probabilistic model

Training data – X-space Probabilistic model – X-space
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Error estimation

The data set is divided into a training set and a validation set
Xval =

{
x(1)

val , . . . , x
(n)
val

}
Given the validation set of data Xval and the corresponding responses
V =

{
v(1), . . . , v(n)}, one can define two error estimates to assess the

model performance:
Mean absolute error

MAE = 1
n

n∑
j=1

∣∣∣v(j) −MPC (x(j)
val)
∣∣∣

Root-mean square error

RMSE =

√√√√ 1
n

n∑
j=1

(
v(j) −MPC (x(j)

val)
)2

P. Tüfecki, Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning

methods, Electrical Power and Energy Systems 60, 126–140, 2014
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Leave-one-out cross-validation
PCE also provides an a posteriori error estimate that is closely related to
RMSE without requiring a validation set:

εLOO =
1

nED Var [Y]

nED∑
j=1

(
y(j) −MPC\k(x(k)

ED)
)2

where M PC\k refers to the metamodel built on the experimental design
X\x(k)

ED

The leave-one-out error εLOO can be used to compare with validation
RMSE

RMSE ≈ RMSELOO
def=
√

ELOO ·Var [Y]

Setup
10 data sets are generated as follows

The dataset is randomly permuted 5 times
For each permutation, first half is used for training, second half for
validation ( ntrain = nval = 4784 points)
... and the other way around (first half for validation, second half for
training)
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CCPP: Results

Method RMSE (best) RMSE (mean) RMSELOO

LMS 4.572 4.888 -
SMOReg 4.563 4.887 -
K* 3.861 4.552 -
BREP 3.787 4.239 -
M5R 4.128 4.462 -
M5P 4.087 4.428 -
REP 4.211 4.518 -
PCE 3.6182 3.855 3.860

Reference results: Tüfecki, Electrical Power and Energy Systems (2014)

Polynomial chaos features
Maximum PCE degree: 14 (full truncation: P =

(14+4
4

)
= 3, 060)

Non-zero coefficients: nnz = 117

Index of sparsity: IS = nnz/P = 3.82%

εLOO = 5.4 · 10−2
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CCPP: Scatter plots (10 different data sets)
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Boston Housing

Data set UC Irvine Machine Learning Repository

506 real data points

13 features:
CRIM: per capita crime rate by town
ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS: proportion of non-retail business acres per town
CHAS: River (= 1 if near river; 0 otherwise)
NOX: nitric oxides concentration (parts per 10 million)
RM: average number of rooms per dwelling
AGE: proportion of owner-occupied units built prior to 1940
DIS: weighted distances to five Boston employment centres
RAD: index of accessibility to radial highways
TAX: full-value property-tax rate per $10,000
PTRATIO: pupil-teacher ratio by town
B : 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town
LSTAT: % lower status of the population

1 output: median value of owner-occupied homes (MEDV) in $1000’s
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Boston housing: training data

Data rank-correlation matrixB. Sudret (Chair of Risk, Safety & UQ) Sparse PCE in Machine Learning Mai 18th, 2015 32 / 37
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Boston housing: probabilistic model (X space)

Training data – X-space
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Boston housing: probabilistic model (X space)

Probabilistic model – X-space
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Validation strategy: leave-k-out cross validation

Np = 200 permutations of the full data set (506 points)

For each permutation, last 25 points used for validation (ntrain = 481)

A PCE is generated using the training data set and the validation errors
(RMSE) is computed using nval = 25 points

Comparison with in-house Gaussian process models (UQLab)

Polynomial chaos features (one particular run)

Maximum PCE degree: 6 (full truncation: P =
(

13 + 6
6

)
= 27, 132)

Non-zero coefficients: nnz = 77

Index of sparsity: IS = nnz/P = 77/27132 = 0.28%

εLOO = 0.2041
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Boston housing: results

Method RMSE (best) RMSE (mean) RMSE (variance)
GP (Matérn 3/2) 1.7720 3.0747 0.8224

GP (Matérn 5/2) 1.8579 3.2882 0.7191

GP (Gaussian) 1.9663 3.3538 0.6346

PCE 2.0353 3.9009 1.1217

Comments
Results not so good as in the CCPP case

One categorical variable (just handled as the others here)

Significant correlations between features

... Additional investigations required, e.g. using PC-Kriging
Schöbi & S., IJUQ (2015)
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Conclusions and outlook

Sparse polynomial chaos expansions are introduced as a tool for
supervised learning

Pre-processing of the data required to build a “reasonable” probabilistic
model: non parametric marginals + Gaussian copula

Current approach: isoprobabilistic transform into a space of independent
uniform variables

Excellent results in the CCPP case, yet to be improved in the Boston
housing case

Many open questions: best joint probabilistic model, suitable data-driven
orthogonal polynomials, handling categorical variables

Extension to classification problems?
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Questions ?

Thank you very much for
your attention !

Chair of Risk, Safety & Uncertainty
Quantification

http://www.rsuq.ethz.ch

UQLab ...
... The Uncertainty Quantification Laboratory

Now available!
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