ETH zürich

Sparse polynomial chaos expansions as a machine learning regression technique

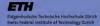
Other Conference Item

Author(s): <u>Sudret, Bruno</u> (D; Marelli, Stefano; <u>Lataniotis, Christos</u> (D)

Publication date: 2015

Permanent link: https://doi.org/10.3929/ethz-a-010583201

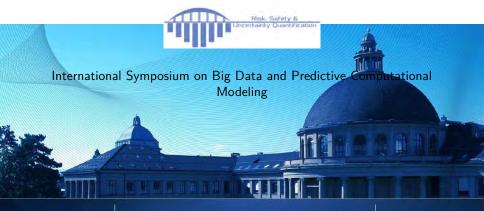
Rights / license: In Copyright - Non-Commercial Use Permitted



DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION

Sparse Polynomial Chaos Expansions as a Machine Learning Regression Technique

B. Sudret*, S. Marelli, C. Lataniotis



Introduction: supervised learning

- Machine learning aims at making predictions by building a model based on data
- \bullet Unsupervised learning aims at discovering a hidden structure within unlabelled data $\left\{ \pmb{x}^{(i)},\ i=1,\ \ldots,n\right\}$
- Supervised learning considers a training data set:

$$\mathcal{X} = \left\{ (\boldsymbol{x}^{(i)}, y^{(i)}), \ i = 1, \dots, n \right\}$$

where:

- $x^{(i)}$'s are the attributes / features (input space)
- $y^{(i)}$'s are the labels (output space)

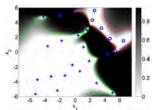
< □ > < □ > < □ > < □ > < □ >

Classical problems and algorithms

Classification

 In classification problems, the labels are discrete, e.g. y⁽ⁱ⁾ ∈ {-1,1}. The goal is to predict the class of a new point x

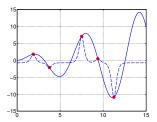
Logistic regression - Support vector machines



Regression

• In regression problems, the labels are continuous, say $y^{(i)} \in \mathcal{D}_Y \subset \mathbb{R}$. The goal is to predict the value $\hat{y} = \tilde{\mathcal{M}}(x)$ for a new point x

Artificial neural networks - Gaussian process models - Support vector regression



Uncertainty quantification

• A computational model is defined as a map:

 $x \in \mathcal{D}_X \mapsto y = \mathcal{M}(x)$

< □ > < □ > < □ > < □ > < □ >

• Uncertainties in the input are represented by a probabilistic model:

 $X \sim f_X$ (joint PDF)

- Uncertainty propagation aims at estimating the statistics of $Y = \mathcal{M}(\mathbf{X})$
- Sensitivity analysis aims at finding the input parameters (or combination thereof) which drive the variability of Y

Uncertainty quantification

• A computational model is defined as a map:

$$x \in \mathcal{D}_X \mapsto y = \mathcal{M}(x)$$

• Uncertainties in the input are represented by a probabilistic model:

$$X \sim f_X$$
 (joint PDF)

- Uncertainty propagation aims at estimating the statistics of $Y = \mathcal{M}(\mathbf{X})$
- Sensitivity analysis aims at finding the input parameters (or combination thereof) which drive the variability of *Y*

< □ > < □ > < □ > < □ > < □ >

Uncertainty quantification

• A computational model is defined as a map:

$$x \in \mathcal{D}_X \mapsto y = \mathcal{M}(x)$$

• Uncertainties in the input are represented by a probabilistic model:

$$X \sim f_X$$
 (joint PDF)

- Uncertainty propagation aims at estimating the statistics of Y = M(X)
- Sensitivity analysis aims at finding the input parameters (or combination thereof) which drive the variability of ${\cal Y}$

Uncertainty quantification

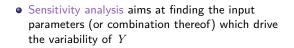
• A computational model is defined as a map:

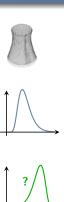
$$x \in \mathcal{D}_X \mapsto y = \mathcal{M}(x)$$

• Uncertainties in the input are represented by a probabilistic model:

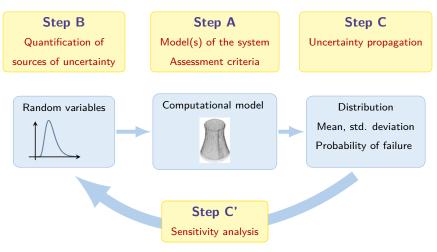
$$X \sim f_X$$
 (joint PDF)

 Uncertainty propagation aims at estimating the statistics of Y = M(X)





Global framework for uncertainty quantification



B.S., Uncertainty propagation and sensitivity analysis in mechanical models, Habilitation thesis, 2007.

イロト 不得 トイヨト イヨト

Surrogate models for uncertainty quantification

A surrogate model $\tilde{\mathcal{M}}$ is an approximation of the original computational model:

- It is built from a limited set of runs of the original model \mathcal{M} called the experimental design $\mathcal{X} = \left\{ x^{(i)}, i = 1, \dots, n \right\}$
- $\bullet\,$ It assumes some regularity of the model ${\cal M}$ and some general functional shape

$\Psi(\boldsymbol{x}) = \sum_{\boldsymbol{lpha} \in \mathcal{A}} y_{\boldsymbol{lpha}} \Psi_{\boldsymbol{lpha}}(\boldsymbol{x})$	y_{α}
$= \boldsymbol{\beta}^{T} \cdot \boldsymbol{f}(\boldsymbol{x}) + \sigma^2 Z(\boldsymbol{x}, \omega)$	$oldsymbol{eta},\sigma^2,oldsymbol{ heta}$
	$oldsymbol{y},b$
	$E) = \sum_{i=1}^{m} y_i K(\boldsymbol{x}_i, \boldsymbol{x}) + b$

イロト 不得 トイヨト イヨト

Surrogate models for uncertainty quantification

A surrogate model $\tilde{\mathcal{M}}$ is an approximation of the original computational model:

• It is built from a limited set of runs of the original model \mathcal{M} called the experimental design $\mathcal{X} = \left\{ \boldsymbol{x}^{(i)}, \ i = 1, \dots, n \right\}$

 $\bullet\,$ It assumes some regularity of the model ${\cal M}$ and some general functional shape

Name	Shape	Parameters
Polynomial chaos expansions	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum y_{oldsymbol{lpha}} \Psi_{oldsymbol{lpha}}(oldsymbol{x})$	y_{lpha}
Gaussian process modelling	$ ilde{\mathcal{M}}(\boldsymbol{x}) = \boldsymbol{\beta}^{T} \cdot \stackrel{\boldsymbol{\alpha} \in \mathcal{A}}{\underset{m}{\mathcal{T}}} + \sigma^{2} Z(\boldsymbol{x}, \omega)$	$oldsymbol{eta},\sigma^2,oldsymbol{ heta}$
Support vector machines	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum_{i=1}^m y_i K(oldsymbol{x}_i,oldsymbol{x}) + b$	$oldsymbol{y},b$

イロト 不得 トイヨト イヨト

Surrogate models for uncertainty quantification

A surrogate model $\tilde{\mathcal{M}}$ is an approximation of the original computational model:

• It is built from a limited set of runs of the original model \mathcal{M} called the experimental design $\mathcal{X} = \left\{ \boldsymbol{x}^{(i)}, \ i = 1, \dots, n \right\}$

 $\bullet\,$ It assumes some regularity of the model ${\cal M}$ and some general functional shape

Name	Shape	Parameters
Polynomial chaos expansions	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum y_{oldsymbol{lpha}} \Psi_{oldsymbol{lpha}}(oldsymbol{x})$	y_{lpha}
Gaussian process modelling	$ ilde{\mathcal{M}}({m{x}}) = {m{eta}}^{T} \cdot \stackrel{{m{\alpha}} \in \mathcal{A}}{{m{f}}({m{x}})} + \sigma^2 Z({m{x}}, \omega)$	$oldsymbol{eta},\sigma^2,oldsymbol{ heta}$
Support vector machines	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum^m y_i K(oldsymbol{x}_i,oldsymbol{x}) + b$	$oldsymbol{y},b$
	i=1	0,

Bridging supervised learning and PC expansions

Features	Machine learning	Unc. Quant. /PCE
Computational model ${\cal M}$	×	~
Probabilistic model of the input $\pmb{X} \sim f_{\pmb{X}}$	×	V
$\begin{array}{ll} Training & data: & \mathcal{X} & = \\ \{(\boldsymbol{x}_i, y_i), \ i = 1, \ \ldots, n\} \end{array}$	✔ Training data set	✓ Experimental design
Prediction goal: for a new $\pmb{x} \notin \mathcal{X}, \ y(\pmb{x})$?	$\sum_{i=1}^m y_i K(\boldsymbol{x}_i, \boldsymbol{x}) + b$	$\sum_{\boldsymbol{\alpha}\in\mathcal{A}} y_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{x})$
Validation (resp. cross- validation)	~	v
	Validation set	Leave-one-out CV

B. Sudret (Chair of Risk, Safety & UQ)

Sparse PCE in Machine Learning

Mai 18th, 2015 7 / 37

Outline

Polynomial chaos expansions for supervised learning

- PCE in a nutshell
- Ad-hoc input probabilistic model

3 Applications

- Combined cycle power plant
- Boston Housing

PCE in a nutshell Ad-hoc input probabilistic model

Polynomial chaos expansions in a nutshell

- Consider the input random vector X (dim X = M) with given joint probability density function (PDF) $f_X(x) = \prod_{i=1}^M f_{X_i}(x_i)$
- Assuming that the random output $Y = \mathcal{M}(X)$ has finite variance, it can be cast as the following polynomial chaos expansion:

$$Y = \sum_{oldsymbol{lpha} \in \mathbb{N}^M} y_{oldsymbol{lpha}} \Psi_{oldsymbol{lpha}}(oldsymbol{X})$$

where :

- y_{α} : coefficients to be computed (coordinates)
- $\Psi_{\alpha}(X)$: basis functions
- The PCE basis $\{\Psi_{mlpha}(m X),\,mlpha\in\mathbb{N}^M\}$ is made of multivariate orthonormal polynomials

$$\Psi_{\boldsymbol{lpha}}(\boldsymbol{x}) \stackrel{\mathsf{def}}{=} \prod_{i=1}^{M} \Psi_{\alpha_{i}}^{(i)}(x_{i}) \qquad \mathbb{E}\left[\Psi_{\boldsymbol{lpha}}(\boldsymbol{X})\Psi_{\boldsymbol{eta}}(\boldsymbol{X})
ight] = \delta_{\boldsymbol{lpha}\boldsymbol{eta}}$$

< □ > < □ > < □ > < □ > < □ >

PCE in a nutshell Ad-hoc input probabilistic model

Practical implementation

• The input random variables are first transformed into reduced variables (e.g. standard normal variables $\mathcal{N}(0,1)$, uniform variables on [-1,1], etc.):

$$X = \mathcal{T}(\boldsymbol{\xi})$$
 dim $\boldsymbol{\xi} = M$ (isoprobabilistic transform)

e.g. : $X_i = F_i^{-1} \circ \Phi(\xi_i), \quad \xi_i \sim \mathcal{N}(0,1)$ in the independent case

• The model response is cast as a function of the reduced variables and expanded:

$$Y = \mathcal{M}(\boldsymbol{X}) = \mathcal{M} \circ \mathcal{T}(\boldsymbol{\xi}) = \sum_{\boldsymbol{lpha} \in \mathbb{N}^M} y_{\boldsymbol{lpha}} \Psi_{\boldsymbol{lpha}}(\boldsymbol{\xi})$$

• A truncation scheme is selected and the associated finite set of multi-indices is generated, *e.g.* :

$$\mathcal{A}^{M,p} = \{ oldsymbol{lpha} \in \mathbb{N}^M \ : \ |oldsymbol{lpha}| \le p \}$$
 card $\mathcal{A}^{M,p} \equiv P = igg(egin{matrix} M+p \\ p \end{array} igg)$

`

1

PCE in a nutshell Ad-hoc input probabilistic model

Statistical approach: least-square minimization

Berveiller et al. (2006)

Principle

The exact (infinite) series expansion is considered as the sum of a truncated series and a residual:

$$Y = \mathcal{M}(\boldsymbol{X}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} y_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{X}) + \varepsilon_{P}(\boldsymbol{X}) \equiv \boldsymbol{Y}^{\mathsf{T}} \boldsymbol{\Psi}(\boldsymbol{X}) + \varepsilon_{P}(\boldsymbol{X})$$

where : $\mathbf{Y} = \{y_{\alpha}, \alpha \in \mathcal{A}\} \equiv \{y_0, \dots, y_{P-1}\}$ (*P* unknown coef.)

$$oldsymbol{\Psi}(oldsymbol{x}) = \{\Psi_0(oldsymbol{x}), \, \ldots \,, \Psi_{P-1}(oldsymbol{x})\}$$

Least-square minimization

The unknown coefficients are estimated by minimizing the mean square residual error:

$$\hat{\mathbf{Y}} = rg\min \mathbb{E}\left[arepsilon_P^2(oldsymbol{X})
ight] = rg\min \mathbb{E}\left[\left(\mathbf{Y}^{\mathsf{T}}oldsymbol{\Psi}(oldsymbol{X}) - \mathcal{M}(oldsymbol{X})
ight)^2
ight]$$

PCE in a nutshell Ad-hoc input probabilistic model

Least-Square Minimization: discretized solution

Ordinary least-square (OLS)

• An estimate of the mean square error (sample average) is minimized:

$$\hat{\mathbf{Y}} = \arg\min_{\mathbf{Y} \in \mathbb{R}^{P}} \hat{\mathbb{E}} \left[\left(\mathbf{Y}^{\mathsf{T}} \boldsymbol{\Psi}(\boldsymbol{X}) - \mathcal{M}(\boldsymbol{X}) \right)^{2} \right] = \arg\min_{\mathbf{Y} \in \mathbb{R}^{P}} \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{Y}^{\mathsf{T}} \boldsymbol{\Psi}(\boldsymbol{x}^{(i)}) - \mathcal{M}(\boldsymbol{x}^{(i)}) \right)^{2}$$

Penalized least-squares

• ℓ_1 - penalty is introduced to induce sparsity in the solution

$$\boldsymbol{y}_{\boldsymbol{\alpha}} = \arg\min\frac{1}{n}\sum_{i=1}^{n} \left(\boldsymbol{\mathsf{Y}}^{\mathsf{T}}\boldsymbol{\Psi}(\boldsymbol{x}^{(i)}) - \mathcal{M}(\boldsymbol{x}^{(i)})\right)^{2} + \lambda \parallel \boldsymbol{\mathsf{Y}} \parallel_{1}$$

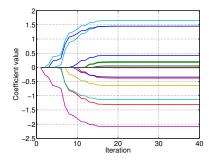
• The Least-angle regression (LAR) algorithm is used

Efron et al., Ann. Stat. (2004), Blatman and S., J. Comp. Phys. (2011)

< □ > < □ > < □ > < □ > < □ >

PCE in a nutshell Ad-hoc input probabilistic model

Least angle regression Path of solutions



- A path of solutions is obtained containing $1, 2, ..., \min(n, |\mathcal{A}|)$ terms.
- Leave-one-out error E_{LOO} is computed for each solution and the best model (smallest error) is selected

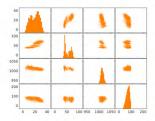
イロト イロト イヨト イヨト

$$E_{LOO} = \frac{1}{n} \sum_{i=1}^{n} \left(\mathcal{M}(\boldsymbol{x}^{(i)}) - \mathcal{M}^{PC \setminus i}(\boldsymbol{x}^{(i)}) \right)^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\mathcal{M}(\boldsymbol{x}^{(i)}) - \mathcal{M}^{PC}(\boldsymbol{x}^{(i)})}{1 - h_i} \right)^2$$

where h_i is the *i*-th diagonal term of matrix $\mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}$ and $\mathbf{A}_{ij} = \Psi_j(\boldsymbol{x}^{(i)})$

PCE in a nutshell Ad-hoc input probabilistic model

Back to supervised learning



- Assume all features are continuous variables
- Data: training set $\mathcal{X} = \{(\boldsymbol{x}_i, y_i), i = 1, \dots, n\}$
- A probabilistic model needs to be set up from this data

イロト イヨト イヨト イヨト

Statistical inference

Probabilistic modelling of (sufficiently) big data

Premise

- Machine learning is often used for big data, *i.e.* thousands to even millions of training points
- No need for parametric estimation of the input distribution
- Full non-parametric representation remains difficult in high dimensions

Proposed solution

- Non parametric estimation of the marginals $X_i, i = 1, ..., M$
- Parametric copula for the (possible) dependence

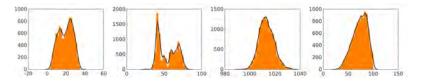
PCE in a nutshell Ad-hoc input probabilistic model

Modelling of the marginals

• For each univariate sample $\mathcal{X}_k \stackrel{\text{def}}{=} \left\{ x_k^{(1)}, \ldots, x_k^{(n)} \right\}$ a kernel smoothing technique is used:

$$\hat{f}_{X_k}(x) = \frac{1}{n h_k} \sum_{i=1}^n K\left(\frac{x - x_k^{(i)}}{h}\right)$$

- K: kernel function, e.g. the Gaussian kernel $\varphi(t) = e^{-t^2/2}/\sqrt{2\pi}$
- h_k : bandwidth to be adapted to the data (default value by Silverman's rule)



イロト イロト イヨト イヨー

Dependence modelling: copula theory

Reminder (Sklar's theorem)

A continuous joint distribution F_X may be represented uniquely through the marginal distributions $\{F_{X_k}, k = 1, ..., M\}$ and a copula function C:

$$F_{\boldsymbol{X}}(\boldsymbol{x}) = \mathcal{C}\left(F_{X_1}(x_1), \ldots, F_{X_M}(x_M)\right)$$

Example

The Gaussian copula reads:

$$\mathcal{C}^{\mathcal{N}}(\boldsymbol{u};\,\boldsymbol{\Theta})=\Phi_{M}\left(\Phi^{-1}(u_{1}),\,\ldots\,,\Phi^{-1}(u_{M});\,\boldsymbol{\Theta}
ight)$$

where:

- Φ_M is the multivariate Gaussian CDF (of dim. M)
- Θ is the copula parameters matrix ("correlation matrix")

< □ > < □ > < □ > < □ > < □ >

PCE in a nutshell Ad-hoc input probabilistic model

Inference of the Gaussian copula

• The Spearman rank correlation matrix is computed from the training set:

$$\hat{\rho}_{kl}^{S} = \operatorname{corr}\left(\mathcal{R}_{k}, \mathcal{R}_{l}\right)$$

where $\mathcal{R}_k, \mathcal{R}_l$ are the ranks of univariate samples $\mathcal{X}_k, \mathcal{X}_l$:

$$\hat{\rho}_{kl}^{S} = 1 - \frac{6}{n} \frac{\sum_{j=1}^{n} (\mathcal{R}_{k}^{(j)} - \mathcal{R}_{l}^{(j)})^{2}}{n^{2} - 1}$$

Charles Spearman (1863-1945)

• The copula correlation matrix reads:

$$\Theta_{kl} = 2\,\sin\left(\frac{\pi}{6}\hat{\rho}_{kl}^S\right)$$

NB: The invertibility of this correlation matrix is not guaranteed

PCE in a nutshell Ad-hoc input probabilistic model

Inference of the Gaussian copula

• The Spearman rank correlation matrix is computed from the training set:

$$\hat{\rho}_{kl}^{S} = \operatorname{corr}\left(\mathcal{R}_{k}, \mathcal{R}_{l}\right)$$

where $\mathcal{R}_k, \mathcal{R}_l$ are the ranks of univariate samples $\mathcal{X}_k, \mathcal{X}_l$:

$$\hat{\rho}_{kl}^{S} = 1 - \frac{6}{n} \frac{\sum_{j=1}^{n} (\mathcal{R}_{k}^{(j)} - \mathcal{R}_{l}^{(j)})^{2}}{n^{2} - 1}$$

Charles Spearman (1863-1945)

• The copula correlation matrix reads:

$$\mathbf{\Theta}_{kl} = 2 \, \sin\left(rac{\pi}{6} \hat{
ho}_{kl}^S
ight)$$

NB: The invertibility of this correlation matrix is not guaranteed

PCE in a nutshell Ad-hoc input probabilistic model

Wrap-up: PCE-based supervised learning

• Data:
$$\mathcal{X} = \left\{ (\boldsymbol{x}^{(i)}, y^{(i)}), \, i = 1, \, \dots, n
ight\}$$

• Use kernel smoothing for setting marginals and *e.g.* the Gaussian copula, so as to get the joint distribution

$$F_{\boldsymbol{X}}(\boldsymbol{x}) = \mathcal{C}^{\mathcal{N}}\left(\hat{F}_{X_{1}}^{-1}(x_{1}), \ldots, \hat{F}_{X_{M}}^{-1}(x_{M}); \, \hat{\boldsymbol{\Theta}}\right)$$

• Transform data into a standardized space, e.g. $[-1, 1]^M$:

Remove marginals $z_k^{(i)} = \Phi^{-1}(\hat{F}_{X_k}(x_k^{(i)}))$ Decorrelate z's $\tilde{z}^{(i)} = L^{-1} \cdot z^{(i)}$ where $\hat{\Theta} = L \cdot L^T$ Normalize over [-1, 1] $u_k^{(i)} = 2 \Phi(\tilde{z}_k^{(i)}) - 1$

PCE in a nutshell Ad-hoc input probabilistic model

Wrap-up: PCE-based supervised learning

• From the data set in the *U*-space $[-1, 1]^M$, compute the coefficient of the multivariate Legendre polynomials using least-square analysis:

$$Y \stackrel{\mathsf{def}}{=} \mathcal{M}^{\mathsf{PC}}(\boldsymbol{u}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} y_{\boldsymbol{\alpha}} L_{\alpha_1}(u_1) \otimes \cdots \otimes L_{\alpha_M}(u_M)$$

New predictions for $oldsymbol{x}^{(0)} \in \mathcal{D}_X$

• Transform input:

$$oldsymbol{x}^{(0)} \longrightarrow oldsymbol{z}^{(0)} \longrightarrow ilde{oldsymbol{z}}^{(0)} \longrightarrow oldsymbol{u}^{(0)}$$

Predict:

$$\hat{y}^{(0)} = \mathcal{M}^{\mathsf{PC}}(\boldsymbol{u}^{(0)})$$

Combined cycle power plant Boston Housing

Outline

Introduction

2 Polynomial chaos expansions for supervised learning

3 Applications

- Combined cycle power plant
- Boston Housing

Combined cycle power plant Boston Housing

Combined cycle power plant (CCPP)

Data set

UC Irvine Machine Learning Repository

- 9568 data points
- 4 features:
 - Temperature $T \in [1.81, 37.11] \circ C$
 - Ambient pressure $P \in [992.89, 1033.30]$ mB
 - Relative humidity $RH \in [25.56 100.16]\%$
 - Exhaust vacuum $V \in [25.36, 81.56]$ cm Hg
- 1 output: net hourly electrical energy output $EP \in [420.26, 495.76]$ MW

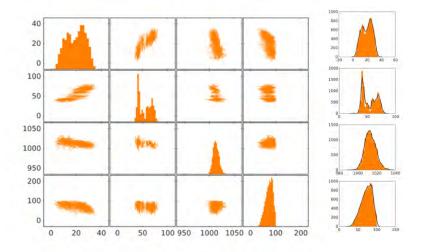
Strategy

- Non parametric kernel density smoothing of the distribution
- Fitting of a Gaussian copula

< □ > < □ > < □ > < □ > < □ >

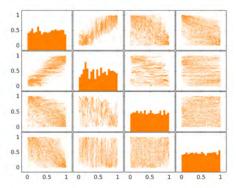
Combined cycle power plant Boston Housing

CCPP: Training data (X-space)



Combined cycle power plant Boston Housing

CCPP: Training data (U-space)



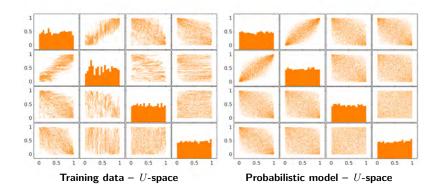
Samples of the data dependence structure

Correlation matrix:

	/ 1.00	0.85	-0.52	-0.54
$\hat{\Theta} =$	0.85	1.00	-0.43	-0.30
9 =	-0.52	-0.43	1.00	0.09
	(-0.54)	-0.30	0.09	1.00

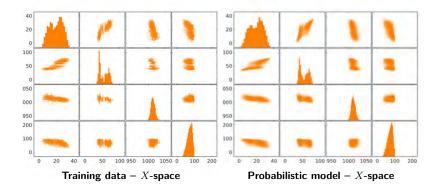
Combined cycle power plant Boston Housing

Validation of the probabilistic model



Combined cycle power plant Boston Housing

Validation of the probabilistic model



Combined cycle power plant Boston Housing

Error estimation

- The data set is divided into a training set and a validation set $\mathcal{X}_{val} = \left\{ \boldsymbol{x}_{val}^{(1)}, \ldots, \boldsymbol{x}_{val}^{(n)} \right\}$
- Given the validation set of data \mathcal{X}_{val} and the corresponding responses $\mathcal{V} = \left\{ v^{(1)}, \ldots, v^{(n)} \right\}$, one can define two error estimates to assess the model performance:
 - Mean absolute error

$$MAE = \frac{1}{n} \sum_{j=1}^{n} \left| v^{(j)} - \mathcal{M}^{PC}(\boldsymbol{x}_{val}^{(j)}) \right|$$

Root-mean square error

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} \left(v^{(j)} - \mathcal{M}^{PC}(\boldsymbol{x}^{(j)}_{val}) \right)^2}$$

P. Tüfecki, Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning

methods, Electrical Power and Energy Systems 60, 126-140, 2014

B. Sudret (Chair of Risk, Safety & UQ)

Sparse PCE in Machine Learning

イロン イロン イヨン イヨン

Combined cycle power plant Boston Housing

Leave-one-out cross-validation

• PCE also provides an a posteriori error estimate that is closely related to *RMSE* without requiring a validation set:

$$\varepsilon_{LOO} = \frac{1}{n_{ED} \operatorname{Var}\left[\mathcal{Y}\right]} \sum_{j=1}^{n_{ED}} \left(y^{(j)} - \mathcal{M}^{PC \setminus k}(\boldsymbol{x}_{ED}^{(k)})\right)^2$$

where $M^{PC\setminus k}$ refers to the metamodel built on the experimental design $\mathcal{X}\backslash \pmb{x}_{ED}^{(k)}$

 $\bullet~$ The leave-one-out error ε_{LOO} can be used to compare with validation RMSE

$$RMSE \approx RMSE_{LOO} \stackrel{\text{def}}{=} \sqrt{E_{LOO} \cdot \operatorname{Var}\left[\mathcal{Y}\right]}$$

Setup

- $\bullet \ 10 \ {\rm data} \ {\rm sets}$ are generated as follows
 - The dataset is randomly permuted 5 times
 - For each permutation, first half is used for training, second half for validation ($n_{train} = n_{val} = 4784$ points)
 - ... and the other way around (first half for validation, second half for training)

Combined cycle power plant Boston Housing

CCPP: Results

Method	RMSE (best)	RMSE (mean)	$RMSE_{LOO}$
LMS	4.572	4.888	-
SMOReg	4.563	4.887	-
K [*]	3.861	4.552	-
BREP	3.787	4.239	-
M5R	4.128	4.462	-
M5P	4.087	4.428	-
REP	4.211	4.518	-
PCE	3.6182	3.855	3.860

Reference results: Tüfecki, Electrical Power and Energy Systems (2014)

Polynomial chaos features

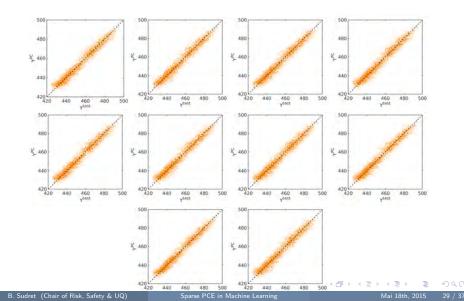
- Maximum PCE degree: 14 (full truncation: $P = \binom{14+4}{4} = 3,060$)
- Non-zero coefficients: nnz = 117
- Index of sparsity: IS = nnz/P = 3.82%

•
$$\varepsilon_{LOO} = 5.4 \cdot 10^{-2}$$

< □ > < □ > < □ > < □ > < □ >

Combined cycle power plant Boston Housing

CCPP: Scatter plots (10 different data sets)



Combined cycle power plant Boston Housing

Outline

Introduction

2 Polynomial chaos expansions for supervised learning

3 Applications

- Combined cycle power plant
- Boston Housing

Combined cycle power plant Boston Housing

Boston Housing

Data set

UC Irvine Machine Learning Repository

- 506 real data points
- 13 features:
 - CRIM: per capita crime rate by town
 - ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
 - INDUS: proportion of non-retail business acres per town
 - CHAS: River (= 1 if near river; 0 otherwise)
 - NOX: nitric oxides concentration (parts per 10 million)
 - RM: average number of rooms per dwelling
 - AGE: proportion of owner-occupied units built prior to 1940
 - DIS: weighted distances to five Boston employment centres
 - RAD: index of accessibility to radial highways
 - TAX: full-value property-tax rate per \$10,000
 - PTRATIO: pupil-teacher ratio by town
 - $B: 1000(Bk 0.63)^2$ where Bk is the proportion of blacks by town
 - LSTAT: % lower status of the population
- 1 output: median value of owner-occupied homes (MEDV) in \$1000's

< □ > < □ > < □ > < □ > < □ >

Applications

Boston housing: training data

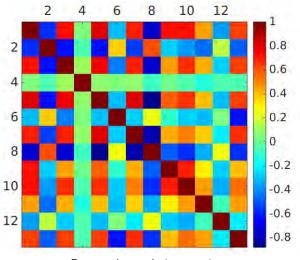
		4		. A	4		1	23	1	1	2	-
		-		t	all we have	100	Arth.	1	100	A.		Ant
F	hina			1	+	-	1	à.	4	24		-
	_	_	L.	_					_	_		
-	1 hours	10 C	11	14	٠		5	* 2	41	2	· •	-
1	1. box an	-	1-1	-	1		۴.	* 1	·*)	*		-
	1 de la		1-1	ſ	Ţ	1	1	1	Î.	1	19.2	
-	(territ	the -	()	6	4	-		* .	1.			-
T	15-	-		E.	-	-	-	11		-		-
T	Permi	P	(E.	-	-	*	4	1	191		
Fi	1911 10	e -	1	r	-	-	10	÷	1			5 .
5		7		1	1			1	7			- Aller
1	minh	ad .		A.	L	- and	1	1	1	1	0	K

B. Sudret (Chair of Risk, Safety & UQ)

Mai 18th. 2015

Combined cycle power plant Boston Housing

Boston housing: training data

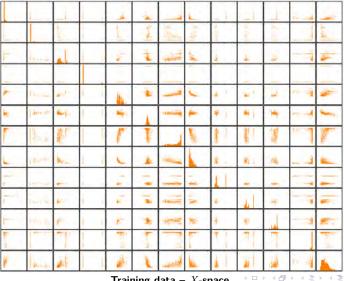


Data rank-correlation matrix

э

Combined cycle power plant Boston Housing

Boston housing: probabilistic model (X space)



Training data – X-space

Applications

Boston housing: probabilistic model (X space)

	-	ab		-	-		L		41		1.4	are
		2		5	the second		in a	1	1	11		1
F	in a	-1	1	-	-	UNICES	1	1	=	-	1	-
-		-		2	2				2	_	-	_
r	kena	2014 C	1 1	1			-	1		1	ê (î z te	-
F.		Martin .	1 1	-	1	hanning	*	• 1			and the	-
2	1	1		1	1	-	K.	11	1			1
L	1-1	E.	1 1	1	1	North Contest	1	1	41	14	1-14	¥
-	Record	-	1	-	-		-	1	-	-	1	-
F'	Pa	-	1	-			-	21	41	(iii)	1	-
F'	1000	211 ST	1 1		*	SPIN .		1	11	4	Arrest	and the second
5	-	2			1.4		1	21	21	-		in-
R	be an	21 ×		1	1	and the second	2	X-spa				

Probabilistic model – X-space

Sparse PCE in Machine Learning

Validation strategy: leave-k-out cross validation

- $N_p = 200$ permutations of the full data set (506 points)
- For each permutation, last 25 points used for validation ($n_{train} = 481$)
- A PCE is generated using the training data set and the validation errors (RMSE) is computed using $n_{val} = 25$ points
- Comparison with in-house Gaussian process models (UQLab)

Polynomial chaos features(one particular run)• Maximum PCE degree: 6(full truncation: $P = \begin{pmatrix} 13+6\\6 \end{pmatrix} = 27,132)$

- Non-zero coefficients: nnz = 77
- Index of sparsity: IS = nnz/P = 77/27132 = 0.28%
- $\varepsilon_{LOO} = 0.2041$

Combined cycle power plant Boston Housing

Boston housing: results

Method	RMSE (best)	RMSE (mean)	RMSE (variance)
GP (Matérn $3/2$)	1.7720	3.0747	0.8224
${\sf GP}$ (Matérn $5/2$)	1.8579	3.2882	0.7191
0. (1.0010	0.2002	011202
GP (Gaussian)	1.9663	3.3538	0.6346
PCE	2.0353	3.9009	1.1217

Comments

- Results not so good as in the CCPP case
- One categorical variable (just handled as the others here)
- Significant correlations between features
- ... Additional investigations required, e.g. using PC-Kriging

Schöbi & S., IJUQ (2015)

Combined cycle power plant Boston Housing

Conclusions and outlook

- Sparse polynomial chaos expansions are introduced as a tool for supervised learning
- Pre-processing of the data required to build a "reasonable" probabilistic model: non parametric marginals + Gaussian copula
- Current approach: isoprobabilistic transform into a space of independent uniform variables
- Excellent results in the CCPP case, yet to be improved in the Boston housing case
- Many open questions: best joint probabilistic model, suitable data-driven orthogonal polynomials, handling categorical variables
- Extension to classification problems?

< □ > < □ > < □ > < □ > < □ >

Combined cycle power plant Boston Housing

Questions ?

Thank you very much for your attention !

Chair of Risk, Safety & Uncertainty Quantification

http://www.rsuq.ethz.ch

< □ > < □ > < □ > < □ > < □ >

UQLAB ...

... The Uncertainty Quantification Laboratory Now available!