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A B S T R A C T

One of the great scientific challenges of our time is the reverse-engineering of the algorithmic
principles operating in nervous systems. Progress in our understanding of these principles
requires the elucidation of the structure of neural circuits. The structure of neural circuits
can be obtained by mapping the morphology of neurons and annotating their synaptic
connections using electron microscopy (EM) methods. Large EM image volumes of neural
tissue can be generated routinely at nanometer resolution with automated acquisition meth-
ods. However, the size of these volumes and the complexity of neuronal arbors renders the
extraction and analysis of neural circuits slow and tedious. This represents a major bottleneck
for the analysis of neural circuits.

To tackle this bottleneck, we developed a web-based open-source software for the mapping,
analysis, and visualization of neural circuits (www.catmaid.org). This software enables fast,
accurate, and collaborative mapping of neural circuits of interest by globally distributed
groups of researchers. The software implements a novel iterative, non-redundant circuit
mapping approach. This approach was validated by mapping a subset of neurons in a
proprio-motor circuit of the Drosophila melanogaster larval ventral nerve cord. We compared
the reconstruction speed and accuracy from our approach to state-of-the-art, redundant
methods. Results yielded similar levels of accuracy at a faster reconstruction speed for our
approach. Detailed analyses suggest that cellular neuroanatomy of connectivity of Drosophila
neurons are decisive for the achieved accuracy. These properties generalize to Drosophila
neurons at different life stages and cell types, and enable robust and efficient mapping
of neural circuits in Drosophila. The toolkit is currently applied to map circuits across the
phylogenetic tree including mammals.

I applied this novel mapping approach to investigate how synaptic circuits and their
properties change between developmental stages using the Drosophila nociceptive system as
a model. Previous studies suggest that noxious stimulation causes behavioral phenotypes
at the late stages of larval development that are absent at early stages. The question thus
arises how the underlying synaptic circuits for nociception change across development.
Volumetric EM datasets were obtained from several individuals using large-scale, serial-
section transmission electron microscopy. Our novel circuit mapping method was applied
to reconstruct the class IV multi-dendritic nociceptors and their postsynaptic circuitry at
both early and late developmental stages. Changes in synaptic connectivity patterns and
morphological properties of neurons were investigated between early and late developmental
stages. Results revealed that the general organization and synaptic connectivity of all
nociceptive postsynaptic interneurons were preserved from the early to the late stages.
Moreover, across developmental stages, interneuron arbors grew considerably and synapse
numbers increased 3-4-fold. However, the proportion of the nociceptor inputs relative to
the total number of dendritic synaptic inputs remained similar and was cell type-specific.
Furthermore, different types of local interneurons receive inputs from different subsets
of somatotopically-organized nociceptors, suggesting parallel, specialized pathways for
noxious signal processing. The newly identified interneuron types and their genetic driver
lines provide a basis for future research to dissect this tractable model system for nociception.

In summary, this work contributes tools and methods towards mapping, analyzing and
visualizing large-scale neural circuits derived from volumetric EM and demonstrates their
practical applicability. This work hints at the tremendous potential of circuit mapping studies
to elucidate the relationship of synaptic circuit maps to neural function and animal behavior.
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Z U S A M M E N FA S S U N G

Die Entdeckung der algorithmischen Prinzipien der Funktion von Nervensystemen
ist eine der grossen wissenschaftlichen Herausforderungen unserer Zeit. Die Rekon-
struktion der Struktur von neuronalen Schaltkreisen ist erforderlich um Fortschritte
in unserem Verständnis dieser Prinzipien zu erlangen. Die Struktur der neuronale
Schaltkreise kann durch die Rekonstruktion von Neuronen Morphologien und der
Markierung von synaptischen Verbindungen mittels Elektronenmikroskopie (EM)
erhalten werden. Das Nanometer-Auflösungsvermögen von EM und automatisierte
Erfassungsmethoden erlauben grosse Mengen an 3D-Bilddaten von Nervengewebe
routinemäßig und auf grossen Skalen zu erzeugen. Die Extraktion und Analyse
neuronaler Schaltkreise ist jedoch langsam und mühsam und stellt daher den Haupt-
Engpass dar für die Gehirnrekonstruktion.

In dieser Arbeit haben wir eine neuartige, web-basierte Open-Source-Software-
Umgebung für neuronale Schaltkreis Kartierung, Analyse und Visualisierung (cat-
maid.org) entwickelt. Die Umgebung ermöglicht global verteilten Forschergruppen
eine schnelle, genaue und kooperative Kartierung von interessanten, neuronalen
Schaltkreisen in sehr grossen 3D-EM-Bilddatensätzen. Als Machbarkeitsstudie haben
wir einen Proprio-Motor-Schaltkreis in der Drosophila melanogaster Larve kartiert,
sowie neuartige Zelltypen identifiziert und eine Vielzahl von Verschaltungsmo-
tiven analysiert. Wir demonstrieren, wie die neuroanatomischen Eigenschaften
von Drosophila Neuronen unserem Kartiertungsverfahren Robustheit verleiht. In
einer Validierungsstudie zeigen wir weiter, dass unser iterative, nicht-redundante
Kartierungsansatz ein Mehrfaches schneller ist als aktuelle, redundante Methoden
und exakte Schaltpläne generieren kann. Der interaktive Aspekte der Analyse und
Visualisierung in Echtzeit, sowie die reibungslose Navigation von Bilddaten und
Schaltkreismerkmalen in unserer Umgebung, sind von entscheidender Bedeutung
für die Erforschung und das Verständnis von Schaltungsstrukturen in Drosophila und
möglicherweise auch andere Nervensystem.

Als nächstes haben wir weitere Drosophila Larven Schaltkreise auf der synaptischen
Ebene kartiert und zwischen Individuen und über Entwicklungsstadien verglichen.
Bei den späten Larven Entwicklungsstadien verursacht schädliche Stimulation bes-
timmte Verhaltensphänomene, die in einem frühen Stadium nicht vorhanden sind.
Wir untersuchten die offene Fragestellung, inwiefern sich die zugrunde liegenden
synaptischen Verschaltung für Nozizeption über die Entwicklung ändert. Wir haben
die class IV Nozizeptoren und ihre nachgeschalteten Interneuronen im zentrale Ner-
vensystem in frühen und späten Entwicklungsstadien mittels grosen Serienschnitten
von Transmissionselektronenmikroskopie abgebildet. Wir fanden, dass die allge-
meine Organisation und die Verschaltung von 14 identifizierten Interneuronentypen
von frühem bis spätem Stadium erhalten bleibt. Überraschenderweise bleit auch nach
erheblichen Wachstum von Interneuronen und der 3-4-fache Erhöhung der synaptis-
chen Verbindungen von frühem bis spätem Stadium der Anteil der Nozizeptoren
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Z U S A M M E N FA S S U N G

Typ-spezifische synaptische Eingänge in beiden Stadien erhalten. Darüber hinaus
erhalten verschiedene Arten von lokalen Interneuronen einen zelltypspezifische Ein-
gang von den somatotopisch organisierten Nozizeptoren, was auf parallele, potentiell
spezialisierte, Leitbahnen für die Transduktion von schädlich Signalen hinweist. Die
neu identifizierten Interneuronen können mit genetischen Methoden weiter funk-
tionell analysiert werden und tragen zur Etablierung dieses Model-Systems für die
Untersuchung von Nozizeption bei.

Zusammenfassend haben wir Werkzeuge und Methoden für die Kartierung, Anal-
yse und Visualisierung von neuronalen Schaltkreise abgeleitet von grossen, vol-
umetrischen Elektronenmikroskopie Datensätzen beigetragen. Wir verwendeten
diese neuen Werkzeuge und Methoden, um verschiedene neuronale Schaltkreise
zu extrahieren und haben damit verschiedene neurobiologische Fragen adressiert.
Dabei haben wir das enorme Potenzial dieser Werkzeuge für zukünftige Studien
gezeigt, die unser Verständnis der Struktur-Funktions-Beziehungen oder für vergle-
ichende Fragestellungen in den Neurowissenschaften, voranzubringen. Zukünftige
Studien werden nun weiter die Gemeinsamkeiten und Unterschiede der neuronalen
Schaltungsstruktur charakterisieren können in verschiedenen Individuen, Spezies, in
verschiedenen Entwicklungsstadien oder in Gehirnen von gesunden und erkrankten
Personen.
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1
I N T R O D U C T I O N

1.1 G E N E R A L I N T R O D U C T I O N T O C O N N E C T O M I C S

The drawings of the elaborate arborization of neurons by Ramón y Cajal in the 19th
century have captivated the imagination of explorers of the mind-brain connection
ever since. Generations of neuroanatomist have followed suit and utilized state-of-
the-art technology of their times to visualize and reconstruct neurons in exquisite
details in many species and brain regions (Senft 2011). However, the spatial reso-
lution limits of light microscopy prevented investigators to describe synapses - the
contact points between neurons. Only with the advent of electron microscopy (EM)
in the 1950s, investigators could overcome this limitation and obtain the first images
of chemical synapses and their pre- and postsynaptic specializations (Palade 1954).

Recently, advances in automation and scaling of EM data acquisition technology
form the basis for the newly emerging field of large-scale cellular EM connectomics
(Briggman et al. 2006a; Briggman et al. 2011a). Its major goals are to apply high-
throughput, large-scale EM acquisition and data processing methods to elucidate
the intricate networks of neurons and their detailed synaptic connectivity. A major
motivating force behinds these efforts is that neural circuit wiring diagrams help
to constrain models of circuit function, support the generation of new hypothe-
ses, or guide new experimental work and are therefore necessary to advance our
understanding of brain function and dynamics (Bargmann et al. 2013).

Neuroscience conceptualizes animal behavior and subjective experience as the
result of computations in neural circuits (Sherrington 1906; Carandini 2012). These
neural computations and their dynamics are constrained by the underlying circuit
structure. In turn, neural computations associated with behavioral learning and mem-
ory alter the structural properties of neurons and synapses at cellular and molecular
levels (Mayford et al. 2012). In order to understand the detailed interplay between
circuit structure and function, the production of structural circuit maps envisioned
by EM connectomics will be crucial to inform the interpretation of physiological
circuit data (Morgan et al. 2013).

A first deep insight into a neural structure-function correlate was the hypothesis
that synaptic vesicles are the structural source of spontaneous miniature pulses ob-
served in neurons with microelectrode recordings (Palay et al. 1955; De Robertis et al.
1955, reviewed in Wells 2005). This was the first time, 60 years ago, that structural EM
provided a confirmation for the functional hypotheses of quantal transmitter release.
Another 32 years later, a study found a reduction in the number of presynaptic
vesicles docked at presynaptic release sites after induction of synaptic depression
in Aplysia (Bailey et al. 1988) - a first glimpse into a structural correlate of learning.
These pioneering studies exemplify the potential to advance our understanding of
synaptic and circuit function by studying the ultrastructural details of the nervous
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I N T R O D U C T I O N

system. Scaling up EM connectomics to larger volumes will enable studies of the
structural underpinnings of function at the whole circuit level.

To date, only a few studies exist where connectomic circuit-level information could
be directly linked with functional features of neurons and circuits. In a recent study,
the asymmetry in specific synaptic connections in retinal starbust amacrine cells have
been found to contribute to the directional tuning of neurons (Briggman et al. 2011b;
Kim et al. 2014). In another study, the computation of motion anticipation was found
to be dependent on the distribution of inhibitory and excitatory synaptic inputs
on the dendritic trees of retinal ganglion cells (Johnston et al. 2015). These studies
are precursors that exemplify how circuit-level synaptic connectivity information
obtained from EM can support and inform a mechanistic understanding of the
computations in neurons and circuits (Koch 2004).

Beyond better understanding normal circuit function, EM connectomics may also
provide new windows into brain diseases in animal model systems - and eventually
in humans. Pathologies in synaptic connectivity have been hypothesized to underlie
various neurological and psychiatric conditions. For instance, autism, epilepsy or
Rett syndrome are thought to result, at least in part, from the abnormal growth
and development of the nervous system. Such neuro-developmental disorders are
caused by abnormalities of circuit wiring leading to aberrant neural computations,
which then ultimately negatively affect an individual’s emotion, cognition, learning
abilities, self-control or memories. Hence, one promising outcome of large-scale
EM connectomics efforts could be the uncovering of circuit structure signatures of
such disorders. With this knowledge, circuit-based intervention strategies could
be designed that target specific neuronal cell types. Treatment outcomes can be
evaluated as deviations from normal distributions on the level of synaptic properties
and connectivity (Karayiorgou et al. 2012). With novel neuronal cell replacement
therapies on the horizon, the integration of neurons derived from stem cells into
existing circuitry could be carefully evaluated and calibrated (Bargmann 2015).

An important requirement for such highly quantitative EM studies is quantifying
the accuracy and variability of synaptic connectivity. Biological synaptic variability
arises from developmental differences between genetically identical individuals and
from differences arising through experience. In addition to the biological variability,
errors in the reconstruction process can introduce spurious variability. For strong
connections in the wiring diagram, i.e. connections with many synaptic contacts
between neurons or neuron types, the reconstruction error might be negligible, and
therefore does not impact the interpretation of circuit information flow. However,
weak connections in the wiring diagram can be functionally relevant, and their
discovery or proper quantification requires very low error rates in the reconstruction
process in order not to mask true biological differences.

A major source of biological variability of circuit connectivity arises from the
stochastic nature of neural circuit development. Although genetic programs dictate
the rules for the growth of different neuronal cell types and the formation and elimi-
nation of synapses, these processes are not deterministic and synaptic connectivity is
thus variable. An open question is, for instance, how this circuit variability relates to
physiological or behavioral variability observable in populations of individuals.

2



1.1 G E N E R A L I N T R O D U C T I O N T O C O N N E C T O M I C S

The study of synaptic variability in genetic model organism at the same age, with
the same genotype and with very similar sensory experiential histories are an oppor-
tunity to provide first insights into the true biological variability of neural circuits,
and the redundancy necessary to ensure their robust functioning. Such studies have
also been recognized as one of the main subgoals of the recently launched BRAIN
Initiative in the United States (Jorgenson et al. 2015). The species of Drosophila
melanogaster is an advantageous, tractable genetic model system to study questions
of circuit variability, because genotypes, developmental stage and the exposure to
stimuli from its environment can be well controlled. Furthermore, its nervous system
and neurons are small compared to other systems (see Figure 1.1) which allows to
minimize reconstruction errors.

Cat cortex
neuron

50 µm

Largest
Drosophila

larva neuron
reconstructed
in this project

Dendrite

Axon

200 µm

long-range
axonal

projection

Figure 1.1.: Size comparison of invertebrate and vertebrate neurons. Dendritic and
axonal arbors of tufted layer 5 pyramidal cell in cat visual cortex V1
(Binzegger et al. 2004). The dendrite of the pyramidal cells receives more
than 10’000 inputs. The largest neuron reconstructed in this work is a
Drosophila larva ventral nerve cord interneuron - a Basin-2 cell - with a
total cable length of 1.68 mm with 1600 inputs and over 1000 outputs.
For comparison, both neurons are shown at the same scale.
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Ultimately, measures of synaptic accuracy and variability will be crucial to evaluate
how genetic mutations and environmental factors contribute to deviations in neural
circuit structure underlyying behavioral and experiential abnormalities. In this thesis
project, we contribute to different aspects of these long-term goals.

In Chapter 2, we present a novel web-based framework to map, analyze and
visualize neural circuits in large-scale, volumetric EM datasets. We implemented a
method for targeted circuit reconstruction that is both fast and accurate by leveraging
neuroanatomical knowledge of Drosophila neurons. The method delivers sparse
connectomes that can answer specific neurobiological questions in short time frames.
We validated the method in a small Drosophila melanogaster larva proprio-motor
circuit. We demonstrate the viability of the entire approach by reconstructing a
large proprio-motor Drosophila circuit and analyze circuit motifs and cell types that
underlies larval locomotion.

In Chapter 3, I use the novel method and framework to address basic questions
of comparative circuit neuroanatomy in the nociceptive system of Drosophila larvae.
The advantageous fact that larvae are genetically-identical and share similar life
experiences are both factors which reduce confounds when comparing circuits. I
evaluate the extent of similarities and differences in the nociceptive circuit architec-
tures both inter-individually, and as larvae develop from early to late stages. I tried
to relate these changes in synaptic circuitry with changes in nocifensive behavioral
patterns that change in larval development, and uncovered a number of anatomical
circuit invariants. Additionally in Chapter 4, I performed detailed comparisons of
changes and invariants in neuronal and synaptic features in different neuron types
between individuals and across developmental stages.

The Chapter 5 presents work aiming at automating circuit reconstruction work-
flows. The production of ground truth datasets enabled us to automatically extract
highly accurate volumetric information of a variety of structures in EM volumes
such as membranes, synapses, mitochondria and glia cells with state-of-the-art clas-
sification methods. We used this data to develop a prototype pipeline for large-scale
neuron segmentation. Newly developed user interfaces were applied for semi-
automated volumetric neuron reconstruction and crowd-sourceable corrections of
results from neuron segmentation algorithms.
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1.2 H I S T O R I C A L B A C K G R O U N D

In the past century, a series of remarkable inventions and studies lead to the con-
ception of the nervous system as a complex, adaptive signaling network. Early
anatomical and functional methods provided a wealth of data about single neurons,
and this focus importantly shaped the doctrine to understand nervous systems based
on single neurons as conceptual units. Novel, large-scale structural and functional
neural circuit mapping methods have started to shift this focus on single neurons to a
more comprehensive view of neural networks and groups of co-activated neurons as
basic building blocks of our understanding of nervous system function (Yuste 2015).

In this fragmentary historical overview, I highlight a few important historical
advances from the early conception of neurons and synaptic connections to our
current efforts in trying to map structural networks from large EM volumes. These
large-scale networks offer new windows into the complexity of nervous systems,
and novel tools for their visualization and analysis promise to transform data into
knowledge and insight. The interested reader is also referred to a recent in-depth
review on the history of neuron reconstruction methods by Senft 2011.

For the first time, the visualization of individual nerve processes was made possible
by the invention of the black reaction by Camillo Golgi (Golgi 1873). This reaction
allowed investigators to appreciate the intricate arborization patterns of individuals
neurons that constitute the nervous system. It marked the beginning of a new era in
the anatomical study of the nervous system. The method contributed importantly to
the neuron doctrine, the conception that the nervous system is made up of discrete
individual cells (reviewed in Pannese 2007). Ramón y Cajal was one of the most
effective advocates of this doctrine and extensively used the Golgi method to gather
evidence. Golgi, the inventor of the method, however, believed in another theory
that conceptualized the nervous system as a single continuous entity. It was not until
the invention of the electron microscope that these conflicting views could be settled
- in favor of Cajal.

Using the Golgi method, labeling of individual neurons in many species and brain
regions revealed distinct differences in arbor morphologies, and neuroanatomists
soon recognized geometric similarities. Similarities of arbor morphology became
soon the first criteria to define cell types (e.g. Purkinje cell types in the cerebellum,
Figure 1.2). The structural similarities that were discovered did indicate the possibil-
ity of shared functional and computational roles. Studies soon discovered common
neuronal cell types across brains of different species with remarkable similarities
(Figure 1.3).

On a sub-cellular level, distinct structural features of compartments of neuronal
arbors further indicated a segregation of function. Parts of the arbors were found to
contain thick varicosities and were thought of as sites of contact between neurons.
Other parts contained large number of so-called spines, small protrusions extending
from the main arbors, which were believed to be contact points between neurons
(Figure 1.4). These spines were soon proposed to be points of inputs to a neuron and
varicosities as points of outputs.
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Figure 1.2.: Purkinje cells type. Purkinje cell in the cerebellum drawn by Ramón y
Cajal with their intricate morphology. (Image source: Wikipedia)

Figure 1.3.: Evolution of an ancestral cell type - the pyramidal cells. The evolution
of the cerebral cortex of amphibians, reptilians, and mammals and their
correspondences with a progressive increase in pyramidal cell strata
(layers) (Reuse with permission from Marı́n-Padilla 1998).
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This distinction of neuronal arbors into input and output regions lead William
James and other investigators to conceive of the notion of networks of neurons, and
the flow of some as yet undefined nerve-energies between neurons (Berlucchi 1999).
The law of dynamic polarization was clearly proposed by Cajal which states that
there is a preferred direction of transmission within neurons (reviewed in DeFelipe
2009). However, the spatial resolution of the light microscopes was a limiting factor
to conclusively prove the existence of hypothetical contacts between neurons called
synapses and their directionality (Sherrington 1906, illustrated in Figure 1.5). Another
round of technological advancement was necessary in the history of connectomics.

Figure 1.4.: The discovery of dendritic spines in vertebrate neurons. Drawing by
Ramón y Cajal of pyramidal cell of rabbit cerebral cortex with clear
depiction of dendritic spines. Cajal Legacy. Instituto Cajal in Madrid,
Spain. (Image source: Scholarpedia)

The invention of the electron microscope (EM) in the early 1930s by Ernst Ruska
provided for the first time sufficient spatial resolution to investigate neurons and
their hypothetical synaptic contacts at nanoscale resolution. With this resolution,
neuroanatomists could provide the first images of synapses and their synaptic cleft
at the site of neuron membrane appositions (Palade 1954). These studies unambigu-
ously proved that specialized structures exist as contact points between neurons -
the chemical synapses. The discovery of synaptic vesicles as structural mediators
of signals at synapses (reviewed in Wells 2005) further confirmed the proposed
uni-directional action at these sites (Sherrington 1906). This evidence further corrob-
orates the proposed law of dynamic polarization, now being able to more clearly
state the preferred direction of information flow from dendrites to axons (reviewed
in DeFelipe 2015).
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presynaptic site

postsynaptic site

AP

EM Reconstruction of the same neuron

LM image of a single neuron

no postsynaptic
site suggested

Figure 1.5.: Postsynaptic sites on axonal arbors are below the resolution limit of
light microscopy Typical confocal stacks with in-plane resolution of
0.3µm can not resolve postsynaptic sites on axonal arbors. Light mi-
croscopy image shows dorsal view of a Basin-2 neuron in Drosophila
larva ventral nerve cord (Image courtesy of Jim Truman). Visibility of
varicosities in the light microscope indicates the axonal character of the
output arbor. However, any inputs to this axonal arbor are masked by the
resolution limit of the light microscope. To resolve these inputs electron
microscopic nanometer resolution is necessary. Input sites are directly on
axonal varicosities or on thin, filopodia-like processes protruding from
the varicosities, and can be resolved by EM.

The stage was now conceptually set for connectomics to conceive the mapping
of an entire nervous system. At this point in time, it was clear what the known
unknowns were. The major technical challenges were essentially how to scale electron
microscopy methods to larger volumes and more samples, while preserving the best
possible sample quality. To study entire neural networks in whole animal brains,
neuroscientists ultimately needed to image sufficiently large volumes that contain
complete neuronal morphologies and all its synaptic contacts. A major challenge for
such a project was the limited field-of-view of EM methods.

In order to image volumes of neural tissue, samples needed to be cut into series of
thin sections, on the order of tens of nanometer in thickness, and imaged individually
and manually using transmission electron microscopes (TEM). The reliability of the
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cutting and section pickup process depended mainly upon the skills of the electron
microscopist, and the throughput was strongly limited due to the manual nature of
the task.

Throughput in EM imaging was also limited. First, the microscopes had to be
operated manually to image individual portions of the section. Second, thin sections
were imaged on film. Subsequently, these films had to be developed one-by-one in
the dark room by a laborious manual process. Despite all these challenges, dedication
allowed neuroscientists already in the 1970s to reconstruct neurons in 3D from series
of 2D micrographs. This projects can be seen as the first connectomes in the visual
system of crustacean Daphnia magna (Horridge et al. 1970; Macagno et al. 1973).

A pragmatic approach to overcome the field-of-view limitation for whole nervous
system imaging was choosing to work in a system that fits the view. This lead to the
pioneering and ambitious project conceived by Sydney Brenner in the 1970s to map
the complete connectome of the nematode Caenorhabditis elegans (Emmons 2015). An
attempt was made to use an advanced laboratory computer for the reconstruction
of neurons and synapses, but the 64 KB of memory and 22 MB storage space were
insufficient to handle the amount of EM data. However, by manually marking
neurons with colored pens on large prints of the EM micrographs, the complete
connectome was eventually published - after 15 years from the initial start (White
et al. 1986).

The following decades saw improvements in volumetric electron microscopy
techniques and a revolution in Information Technology (Briggman et al. 2006a).
Computers became sufficiently powerful to handle and process large collections of
digital images. At the beginning of the 21st century, we have entered an era where
EM datasets can be produced at an unprecedented size and the extraction of circuit
data from these large volumes has become the main limiting factor.

In anticipation of the future, once the extraction of wiring diagrams from large-
scale EM volumes becomes fully automated, we will be facing the next big challenge.
How to make sense of all this intricate and complex circuit data? Thinking about
the trajectory of this development, Sydney Brenner has envisioned the possibility of
a framework which he called CellMap in his Nobel laureate speech (Brenner 2003).
This framework should be able to store vast amounts of biological data and help
researchers to query and extract knowledge and insights about the organization
of nervous systems at molecular, cellular and network levels. Eventually, such a
system will also need to incorporate physiological and behavioral data to build
predictive models of neural circuit dynamics and function. Importantly, for such a
system to work, Brenner emphasized the significance of researchers working as a
mutually-supportive community.

In the coming decades, I believe that this collaborative aspect will become in-
creasingly important for large-scale circuit mapping projects, and for neuroscience
in general. A new era of a networked, collaborative science enterprise is on the
rise, supported by modern web technology that harnesses collective intelligence
(Nielsen 2013). Facing the intricate complexity of neurobiological organization at its
many different spatial and temporal levels will definitely require new and creative
solutions. I hope that this thesis work contributes a step towards this future.
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1.3 I N T R O D U C T I O N T O C I R C U I T M A P P I N G

Advances in volumetric electron microscopy can deliver unprecedented image vol-
umes of neural tissue at high spatial resolution (Marx 2013). Although currently,
large by the standards of EM connectomics means fractions of a cube millimeter, this
size is sufficient to completely fit interesting brains such as that of an adult Drosophila
melanogaster or larval zebrafish with approximately 100’000 neurons. In large-scale
EM connectomics projects now underway, the amount of raw image data produced
from such brains requires storage capacities of hundreds of terabytes. Our ability to
collect data far exceeds our ability to extract neural circuits from these large image
volumes by orders of magnitude. This gap is currently the major bottleneck in con-
nectomics and hinders progress in mapping the structure of neural circuits at large
scales.

The first, pioneering large-scale connectomic project was done in the nematode
Caenorhabditis elegans. To this date, the C. elegans connectome is the only complete
circuit map of an entire animal (White et al. 1986). To map the 302 neurons, 5000
synapses and 600 gap junctions, the pioneering neuroanatomists spent more than 15
years to complete the project (Brenner 2003, reviewed in Emmons 2015). As is still
the case today, the majority of the work was and is spent on manually extracting the
neurons and synapses from serial images of electron micrographs. However, at the
time of the C. elegans mapping project this was without any help from computers
and only aided by pen technology and perseverance.

In more recent large-scale connectomics projects aiming at mapping complete
circuits, the time from the first data acquisition run to a partially completed connec-
tome is much shorter. A connectome of the inner plexiform layer of mouse retina
containing 950 neurons was produced using over 20’000 man-hours of manual, re-
dundant skeletonization (Helmstaedter et al. 2013). A map of 600 neurons with
over 8600 synaptic edges was produced in the rabbit retina by a team of dedicated
annotators over several years (Marc et al. 2014). Also in the mouse retina, the largest
crowd-driven connectomics project, EyeWire 1, counts more than 100’000 registered
users, with about 100 contributors doing more than half of the work. The produced
connectome contained 195 bipolar cell axons and 79 starburst amacrine cells (Kim
et al. 2014). In the optic system of Drosophila melanogaster, Takemura et al. 2013
reconstructed 379 insect neurons using about 14’000 man-hours worth of proofread-
ing. Direct comparison of these efforts are difficult due to differing workflows and
systems. Nonetheless, they clearly demonstrate the scale of the challenge when it
comes to circuit mapping and proofreading.

In the coming decades, interest in such datasets is likely to grow, and currently
advances in accelerating the speed of data generation are underway and will continue.
A recent technological achievement uses a multi-beam scanning EM technology
and promises to increase imaging speed several-fold (Eberle et al. 2014) with the
possibility to parallelize acquisition of a single sample (Hayworth et al. 2014). With
such speed-ups, the cost for acquiring a whole mouse brain was estimated to cost
less than $100 million dollar (Marblestone et al. 2013). Such an imaging run would

1 www.eyewire.org
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produce a dataset of over 60 petabytes (Mikula et al. 2015). With further advances
in parallelization and automation in high-throughput EM data collection, the gap
between data generation and data analysis will continue to widen further. Even
with the best circuit mapping approaches available today, completion of a mouse
connectome would presumably take several decades.

What is our contribution to tackle these challenges in large-scale connectomics
projects? We developed a software framework that can be installed in labs or insti-
tutions and allows researchers to effectively map, analyze and visualize circuits in
terabyte-sized EM image datasets. Due to the large size of these datasets, we adopted
a client-server architecture where researchers access relevant subregions of the data
online for collaborative annotation in their preferred web browser. Annotation data
are stored and backed up in a central database. The servers hosting entire raw EM
datasets provide efficient access to the image data. These servers can be mirrored to
locations around the globe to improve data access speed.

In the framework, we developed and implemented a novel circuit reconstruction
methodology that is both fast and delivers accurate neural circuitry. We achieved
this by an intelligent combination of software architectural decisions and insights
from neuroanatomy, in particular from Drosophila neurons, with a pragmatic outlook
on delivering circuits of interest in manageable time frames by sparse reconstruction
(Costa et al. 2013). The basis of our method uses an iterative and non-redundant
approach to circuit mapping which employs high-level features of Drosophila neu-
roanatomy for focused proofreading and quality control. The details of the method
are introduced in detail in Chapter 2. Three additional aspects of our framework and
method confer advantages for large-scale circuit mapping projects: the focus on cir-
cuits of interest guided by specific biological questions, the reduction of redundancy
in the reconstruction, and collaboration and parallelization.

First, in our framework brain mapping projects can advance incrementally with
opportunities for major results by contributing labs and researchers on the way.
Neuroscientist driven by particular research questions need to be able to address
them in a reasonable amount of time compatible with the duration of academic
projects. We sought to decrease the iteration cycle time from producing a useful
circuit-of-interest to informing further experiments and subsequent circuit mapping
and analysis. In this incremental approach, a circuit of interest is defined by a set
of research questions which delineates what neurons and circuits are mapped with
high priority. As the circuit map takes shape and is explored in real-time, further
mapping can be confined to specific subsets of neurons, such as specific synaptically-
connected pre- and postsynaptic partner neurons that seem most promising for
follow-up questions.

With this step-wise procedure, the iteration cycle from mapping to insight is
reduced. This approach prevents situations that are the norm in dense mapping
workflows where resulting circuits may be interrogated offline only after years of
mapping and proofreading a complete EM volume (Seung 2009). In the workflows
of the previously mentioned large-scale connectomics projects, this iteration cycle
was generally very long - up to several years. Therefore, our framework provides
the means for a researcher, lab or institution to keep questions matched to available
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mapping resources (Costa et al. 2013), and defines an optimal route to prioritize
mapping and crawl the neuronal networks efficiently.

A key requirement for sparse circuit mapping is the availability of specific neurons
as targets to start the reconstruction. In a neural system with a fixed set of neurons
with stereotyped morphologies and locations, visualization of single neurons imaged
with light microscopy is sufficient to uniquely identify and match them to EM
reconstructions (Ohyama et al. 2015). Cell body location and major arborization
patterns serve as landmarks to quickly find one’s neuron of interest in a large EM
volumes.

Another promising strategy in less stereotyped systems consist in aligning light-
microscopy image stacks from calcium imaging experiments with EM volumes to
find matching cell bodies that then serve as seeds for mapping (Bock et al. 2011;
Briggman et al. 2011b). Yet another approach is array tomography (Micheva et al.
2007) which is based on correlating light and electron microscopy. Neuron types
in EM volumes are distinguished based on different, overlayed fluorescent labels
which serve as starting points for whole circuit reconstruction (Oberti et al. 2011).
We aimed at designing our framework to support all of these use cases. For instance,
landmark detection is facilitated by fast, multi-scale browsing of image stacks and
colored, transparent light microscopy images can be overlayed on top of the raw EM
images.

Second, our approach to mapping individual neuronal arbors and annotating
synapses should proceed as fast as possible and maximally reduce redundant manual
work. Manual skeletonization of the center lines of individual neuronal processes is
orders of magnitude faster than volumetric pixel labeling (Helmstaedter et al. 2011).
Additionally, the skeleton is a compact representation of neurons and a good proxy
for overall neuronal shape and a variety of biologically-relevant neuronal features.
This representation further facilitates interactive, real-time analysis and visualization
of large sets of neurons.

Furthermore, our user interface allows to simultaneously annotate synapses, i.e. all
pre- and postsynaptic sites on a neuronal arbors, while skeletonizing neuronal arbors.
Many of the currently applied approaches separate synapse annotation from arbor
reconstruction and thereby increase the annotation workload. With our approach,
the circuit topology and synaptic counts between neurons can be extracted quickly.

Our approach aimed to reduce redundant reconstruction work as much as possible.
The state-of-the-art method introduced in Helmstaedter et al. 2011 spends a large
fraction of the 20’000 man-hours to redundantly skeletonize 950 neurons with a
factor of four on average. The redundancy for individual skeletons can be up to
seven. In our reconstruction method, we only require a first initial reconstruction
and subsequent review passes, typically less than two, which are faster than initial
reconstruction. In Chapter 2, we demonstrate in a validation experiment that our
method can achieve similar levels of accuracy to state-of-the-art methods while
reducing the total reconstruction time.

Third, we have built our application in such a way that workflows for mapping
and analysis are integrated in the same system, and can be performed online, collab-
oratively and in parallel. To achieve this, we extended the existing open-source web
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toolkit CATMAID (Saalfeld et al. 2009). A major advantage of a web-based tool is
that collaborative workflows can be implemented naturally through the centralized
storage of all annotation data and user management. The central data storage and
management has the advantage that multiple researchers can work in parallel on
the same dataset. This architecture creates synergies that are difficult to leverage if
researchers would work independently in the same datasets.

For instance, when researchers only reconstruct parts of a neurons and then aban-
don them, these parts can be readily reused by another researcher without duplicated
work. Similar reuse is possible if parts of a neuron are mistakenly connected and
then cut off. Resulting short fragments can be integrated into the reconstruction of
other neurons later.

The annotation of synapses is by convention made so that seed skeleton nodes are
placed for all pre- and postsynaptic locations. If the pre- and postsynaptic neurons
are reconstructed later, the synapses are checked for correct annotation multiple
times. These are examples of how the implementation of our method can naturally
support data reuse and improve data quality. Overall, the collaborative virtual
space so created allows for the efficient reuse of data and repeated observations
improve data quality. In addition to our mapping method, this further speeds up the
reconstruction and improves the quality of the resulting circuit maps.

We applied our sparse, targeted circuit mapping strategy to extract the connectome
of a proprio-motor circuit in the Drosophila melanogaster larval ventral nerve cord
underlying locomotion. The circuit mapping was performed collaboratively from two
continents (Ashburn, USA and Zurich, Switzerland) from a number of contributors
and yielded in over 400 neuronal arbors with over 50’000 synapses. We then use
this proprio-motor circuit as a model to demonstrate how detailed circuit analysis
and visualization can be performed in our framework. In particular, we elaborate in
Chapter 2 in detail how features of Drosophila neuroanatomy make our reconstruction
approach reliable and accurate, and demonstrate how interesting biological insights
can be gained by the analysis of particular circuit motifs.
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1.4 I N T R O D U C T I O N T O N O C I C E P T I V E C I R C U I T RY

In Chapters 3 and 4, my focus is on the neural circuits for nociception in Drosophila
melanogaster. After building the necessary software framework and developing
methods for fast and accurate EM circuit mapping described Chapter 2, I apply them
to address comparative questions in the Drosophila larva circuits that underlies the
transduction of noxious stimuli.

The perception of pain after noxious stimulation is a phenomenon known to
all of us. Our understanding of how pain arises made a major advance in 17th
century, when René Descartes proposed a mechanistic basis of pain perception in his
specificity theory (Figure 1.6). For the first time, he conceived pain as some form of
disturbance passed down nerve fiber pathways until they reach the brain and cause a
perception (Descartes 1664).

Figure 1.6.: First depiction of a pain pathway in 1664. Illustration of the specificity
theory by René Descartes (Descartes 1664). (Image source: Wikipedia)

The first definition of nerve fibers dedicated to detect noxious stimuli came from
physiological experiments of Sherrington (Sherrington 1906, reviewed in Woolf et al.
2007). He termed these fibers nociceptors. Their activation by intense, multi-modal
stimuli triggers withdrawal and escape behaviors and autonomic responses, thereby
signaling a potentially harmful event to the animal that supports its survival.

Since that time, our knowledge about the specific cellular and molecular un-
derpinnings of the pathways and processes underlying pain perception expanded
considerably (Basbaum et al. 2009). In vertebrate systems, we know a lot about
different types of nociceptive fibers, their sensitivities and the general organization
of circuit pathways in the spinal cord responsible for the transmission of pain signals
(Kandel et al. 2012). We have also recognized that probably almost all animals display
nociceptive-type responses, and most of them have dedicated nociceptors including
fish (Sneddon et al. 2003) or invertebrates (Smith 1991). To what extent pain is felt
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in ’lower’ invertebrate species, however, is an open question and one refers to the
behavioral escape and withdrawal correlates after noxious stimulation as nocifensive.
Investigating the nociceptive circuitry within the central nervous system of these
species postsynaptic of dedicated nociceptors might ultimately help to ’decide’ the
question to what extent these animals can and do suffer.

To this day, however, a comprehensive, quantitative map of central nociceptive
circuitry at the synaptic level in any animal species is lacking. Also for this reason, a
complete understanding of central circuit mechanism in normal and pathological
pain conditions remains incomplete (Todd 2010). The availability of central synaptic
level circuit maps would provide an important basis for further understanding of the
functional organization of central nociceptive processing. Due to volume limitations
in current EM technology, comprehensive synaptic level mapping is only feasible in
a model organism with a sufficiently small central nervous system (CNS).

The small CNS of Drosophila melanogaster larvae and its small set of of known
polymodal nociceptor, the so-called class IV multi-dendritic sensory neurons (Merritt
et al. 1995), provided an unique opportunity to map systematically their postsynaptic
interneuron networks (Figure 1.7). In Chapter 3, I describe comprehensively the first-
order nociceptive circuit map in the Drosophila larva ventral nerve cord. Furthermore,
the availability of multiple ventral nerve cord EM volumes provided another unique
opportunity to compare the same circuitry between multiple individuals. Larger
sample sizes (N>1) serve to validate the mapped circuits and allow to get a first
glimpse of the synaptic variability present in a supposedly stereotyped circuit.

a)

b)

c)
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Figure 1.7.: Drosophila melanogaster larvae and nociceptors a) The larva body con-
sists of a repeated set of segments, three thoracic (T1-T3) and eight ab-
dominal (A1-A8). b) Outline of a larva with the central nervous system
(CNS) consisting of the brain lobes and the ventral nerve cord. The three
types of polymodal nociceptors tile the body wall in each hemisegment
and project to the CNS. c) Dorsal view of the CNS (red) with repeated
nociceptive axon terminals and projecting nerves visualized using a
genetically-encoded green fluorescent protein (Image courtesy of balapa-
gos on flickr).
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The availability of invertebrate nociceptive circuit maps might reveal interesting
similarities and differences to vertebrate nociceptive circuits. Many similarities exist
in nociceptors across the animal kingdom, in particular at the level of receptors
(Woolf et al. 2007; Smith et al. 2009). In both C. elegans and Drosophila, conserved
sensory transduction channels and signaling molecules have been found (Tobin et al.
2004). On a circuit level, deep homologies between vertebrate and invertebrate brain
organization have been proposed (Strausfeld et al. 2013). It appears conceivable that
aspects of nociceptive circuit organization and processing may be common between
invertebrate and vertebrate species (see Discussion in Chapter 3). The nociceptive
circuit maps introduced in Chapter 3 enable further studies of the general principles
of nociceptive function and contribute to establish Drosophila larva as a genetically-
tractable model for circuit studies of nociception (Im et al. 2012).

Another unique opportunity for comparative circuit neuroanatomy was made
possible by the availability of a ventral nerve cord EM volume at a late stage of
larval development. With this late stage EM dataset, I aimed at comparing identified
interneurons and circuits from the early to the late larval developmental stage. Larvae
show withdrawal behaviors to noxious stimuli already early in their development,
but the characteristic, cork-screw, escape-rolling maneuver only appears later in
development (Sulkowski et al. 2011). Therefore, I asked in Chapter 3 to what degree
the first-order circuits postsynaptic to nociceptors are similar and different across
stages. Is a remodeling of the wiring diagram at the synaptic level observable? Are
the interneuron partners the same or do they change? How does the number of
synapses change and is the relative synaptic strength the same as the neurons grow?
The unique identity of neurons in the Drosophila larva ventral nerve cord makes
addressing these questions possible because individual neurons can be matched
between individuals based on morphological criteria alone (Figure 1.8).

In Chapter 4, I use a subset of the local interneurons of the nociceptive circuit to
quantitatively measure and compare detailed neuronal and synaptic properties at two
developmental stages. With the several-fold increase in neuronal size and synaptic
numbers across development, neuronal growth needs to fulfill developmental and
metabolic constraints. The result of these developmental constraints are, for instance,
reflected in a preserved proportion of neuronal arbor length between microtubuli-
free and microtubuli-filled processes across different Drosophila neurons (see also
Chapter 2). I extended these qualitative observations to a quantitative assessment of
five different neuronal types, and compared additionally a number of single neuron
features between early and late developmental stages.

One goal was to find simple descriptions and models of neuronal scaling across
development, and invariant neuronal features between developmental stages that
can, for instance, cluster cell types independent of their age. A number of these
detailed characterizations of neurons and their compartments can be employed
advantageously for constraining automated neuron reconstruction approaches, as
well as for making highly accurate, biologically-realistic computational models of
neuronal and circuit development.
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Figure 1.8.: Visualization of the 3D morphology of local nociceptive interneurons
in the ventral nerve cord at early and late developmental stages. The
shown set of interneurons is postsynaptic to primary nociceptors in larva
and local to an abdominal segment of the ventral nerve cord. As the larva
develops from early to late stage, its ventral nerve cord expands and neu-
rons grow yet maintain their overall shape. Size difference is indicated
by scale bars. The same set of neurons can be identified independently
in each stage and individual, and therefore matched between different
developmental stages.
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1.5 T O WA R D S S E M I - A U T O M AT E D V O L U M E T R I C C I R C U I T M A P P I N G

A major future challenge for quantitative neurobiology is to extract meaningful
information from Big Data (Freeman 2015). In EM connectomics, the anticipated Big
Data challenges are formidable due to the large volumes of image datasets (Lichtman
et al. 2014). Novel data acquisition instrumentation such as multi-beam scanning
electron microscopes are now able to produce image data at unprecedented rate
of 0.45 Gigapixel/second with 3.8 nm pixel size (Eberle et al. 2015). As the image
production rate is anticipated to further increase, associated infrastructure must scale
storage capacity and computational processing power. As an example, storing a
whole mouse brain at 10 nm isotropic voxel resolution is estimated to require more
than 60 petabytes for raw image data storage (Mikula et al. 2015).

In order to extract neural circuit data from such increasingly large 3D volumes,
automated image segmentation pipelines need to supplement any human effort. In
recent years, deep learning algorithms have dramatically improved image classifi-
cation results (LeCun et al. 2015; Schmidhuber 2015). These algorithms also deliver
state-of-the-art results for classifying EM images (Turaga et al. 2010; Ciresan et al.
2012).

Essentially, raw EM images are processed by a series of trained filters to produce
probability maps for different classes of objects present in EM images, such as mem-
branes or mitochondria. The generation of very accurate membrane probability
maps is a crucial factor to achieve good post-processing results for automated neuron
reconstruction. However, membranes are not homogeneously well preserved in EM
images and are cut in different angles, thereby limiting the accuracy of probability
maps. The limited accuracy can cause downstream segmentation algorithms to pro-
duce reconstructions with topological errors, such as spurious merging of neuronal
processes (Funke et al. 2015). Avoiding and correcting such topological errors is an
active area of research in the field of automating EM connectomics (Vazquez-Reina
et al. 2011). Although improvements in sample preparation and image classification
are expected to further reduce pixel error rates, topological errors will be difficult
to avoid completely and will continue to require human proofreading (Plaza et al.
2014).

In Chapter 5, I demonstrate the results of a prototype image processing pipeline
for large datasets based on an existing neuron reconstruction algorithm (Funke et al.
2012). I also generated a new ground truth dataset (Gerhard et al. 2013) that was ap-
plied to train deep convolutional networks for EM image data classification (Ciresan
et al. 2012). Using the results of this segmentation pipeline, I developed two user
interfaces, one to select volumetric neuron segmentations interactively in CATMAID,
and a second interface for correcting topological reconstruction errors resulting from
limitations in the segmentation pipeline. These proof-of-concept implementations
were intended to demonstrate the feasibility of volumetric segmentation approaches
in multi-terabyte sized volumes using the CATMAID framework.
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1.6 C O N T R I B U T I O N S A N D C O L L A B O R AT I O N

“Right now, one of the most popular majors in colleges is computer
science. I think that will be good for neurotechnology ... Students will
be completely fluent in programming by the time they get to the lab,
and I think they’ll lead the synthesis between computer science and
neuroscience that has to happen.” — Rafael Yuste at Kavli Foundation
Roundtable Discussion, 2015.

In this early phase of the formation of the field of large-scale EM connectomics,
every single dataset is the product of the concerted effort of experts, resources and
tools. I am extremely grateful to have been able to collaborate with so many excellent
people for this thesis project. They contributed their time and expertise ranging
from sample preparation, data acquisition and processing to neurobiology, software
engineering, computer vision and machine learning to enable and facilitate my work.

I was extremely fortunate to start my PhD project with EM datasets that were
already acquired with serial-section transmission electron microscopy at HHMI
Janelia Research Campus. Drosophila melanogaster larva samples were prepared
with high-quality preservation of tissue structure and good membrane contrast for
reconstruction. Long series with thousands of ultrathin 40-50 nanometer sections
were cut and collected manually with an ultramicrotome to cover extended volumes
of the larval neuropil. This diligent work was carried out by Richard Fetter. Image
acquisition was then performed over the course of many weeks and months using
TEM and STEM at Janelia Research Campus. See Appendix A for details on the data
generation and the people and labs involved.

At the same time, the challenge of assembling large amounts of raw 2D images
from the microscopes into aligned 3D volumes was solved. Large-scale image
alignment algorithms were developed which can montage a large numbers of small
2D image tiles into large 2D sections, on the order of 50’0002 pixels. These 2D
mosaics then had to be further non-linearly aligned into 3D volumes to make them
actually usable for circuit mapping (Saalfeld et al. 2012). These novel algorithms were
implemented in the TrakEM2 software in Fiji and performed well after sophisticated
parameter tuning (Cardona et al. 2012; Schindelin et al. 2012). I had the opportunity
to learn how to use this toolsuite first-hand from their original developer, Stephan
Saalfeld and Albert Cardona. I aligned two large EM datasets of Drosophila ventral
nerve cord at first- and third-instar developmental stages myself (datasets L3 and
L1c, see Appendix A). Two other first-instar larva datasets used in this thesis project
were aligned by Stephan Saalfeld and Albert Cardona (datasets L1a and L1b).

First as a research assistant and then as a PhD student in Albert Cardona’s group
at the Institute of Neuroinformatics (INI), I started to work with Mark Longair on ex-
tending the CATMAID software with circuit reconstructions tools. The Collaborative
Annotation Toolkit for Massive Amounts of Image Data project was initially started
by Saalfeld et al. 2009. Casey Schneider-Mizell and Albert Cardona provided a
never-ending stream of proposal for useful new features and improvements for the
tracing tools. They kept Mark and me very busy and made an extreme programming
approach a necessity. In the summer of 2012, I could supervise Oliver Uvman as a
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Google Summer of Code student. He helped us complete the port of the CATMAID
backend codebase from PHP to Python and Django. The International Neuroinfor-
matics Coordinating Facility (INCF) was hosting the project. Meanwhile, the project
was growing, and the list of GitHub issues with bugs and feature enhancements
was steadily increasing. It was with Tom Kazimiers who joined the lab in Janelia
in 2013 as a full-time software engineer, and Albert’s investments in refactoring the
codebase, that the project could further grow. We were very fortunate to also have
Andrew Champion joining in 2014 as a second full-time developer on the project. It
has been an extremely instructive for me to learn from and to work with this team of
excellent engineers on the tools for neural circuit mapping and analysis, and see the
project grow from a small lab effort to a widely used toolsuite2.

The increased manpower behind the tool development allowed me then to focus
on the neuroscience part of my PhD project - to actually apply this new toolkit to map
and analyze neural circuits. Neural circuit mapping is laborious and requires many
hours of sustained, concentrated attention. And as with many things in science, it
often takes longer than expected. I was very fortunate to have Ingrid Andrade, and
also Casey Schneider-Mizell and Waleed Osman, help me with the circuit mapping
and reviewing work.

I was fortunate to work in the lab of Albert Cardona, and in institutions at both INI
and Janelia, who recognize the importance of software engineering as a prerequisite
to do novel science and their investment into open source development with tight
development cycles with continuous user feedback. It is due to these great collabora-
tors and the supportive environments that I was able to advance so rapidly with my
thesis work.

CHAPTER 2 is based on the publication Quantitative neuroanatomy for connectomics in
Drosophila (in revision) adapted for this thesis format. I share co-first-authorship
with lead author Casey Schneider-Mizell. This work is further co-authored by
Mark Longair, Tom Kazimiers, Andrew Champion, Frank Midgley, Stephan
Saalfeld (software); Feng Li, Maarten F. Zwart (biology); Richard Fetter (EM)
under the supervision of Albert Cardona. See also Contribution section at the
end of the chapter, the commit log on GitHub3 and Appendix B for details.

CHAPTER 3 is based in part on neurons published in Ohyama et al. 2015. The third-
instar dataset was prepared and imaged by Richard Fetter and collaborators
as part of the Janelia FlyEM project (see Appendix A). I was supported in
circuit mapping by Ingrid Andrade, Waleed Osman and reviews by Casey
Schneider-Mizell and Albert Cardona. The identification of larva interneuron
was made possible by utilizing the light-level Neuron Catalog developed in
the lab of James Truman at Janelia Research Campus.

CHAPTER 4 is based on my annotation of more than 3’500 microtubule termination
points in 36 neurons in three datasets. Their fast annotation was made possible
by utilizing the Dendrogram Widget developed by Tom Kazimiers.

2 www.catmaid.org
3 github.com/catmaid
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CHAPTER 5 I generated a multi-label ground truth image stack of the L3 dataset
(see Appendix A) which was published on the FigShare platform (Gerhard
et al. 2013). I collaborated with deep learning experts Dan Ciresan and Alessan-
dro Giusti in the group of Jürgen Schmidhuber at the Dalle Molle Institute
for Artificial Intelligence in Lugano. We used the ground truth dataset to
train state-of-the-art deep convolutional neural networks and generate multi-
label probability maps of the whole L3 dataset. Our collaborator Jan Funke, a
computer scientist in the group of Matthew Cook at the Institute of Neuroinfor-
matics in Zurich, used the ground truth and probability maps very productively
to advance automated reconstruction and error measures (Funke et al. 2014;
Funke et al. 2015). I developed semi-automated neuron reconstruction inter-
faces and pipeline prototypes with support of Joachim Ott (user interface) who
I supervised during the Janelia Undergraduate Program in 2012, and with help
of Jan Funke at INI.

A P P E N D I X D The reimaging of putative septate junctions in the Drosophila CNS
with multi-tilt TEM was done by Richard Fetter. The CATMAID coordinate to
EM grid transformation was helped by Stephan Saalfeld.
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2
Q U A N T I TAT I V E N E U R O A N AT O M Y F O R C O N N E C T O M I C S I N
D R O S O P H I L A

A B S T R A C T

Large-scale neuronal circuit mapping using electron microscopy demands laborious
proofreading by humans who resolve local ambiguities with larger contextual cues or
by reconciling multiple independent reconstructions. We developed a new method
that empowers expert neuroanatomists to apply quantitative arbor and network
context to proofread and reconstruct neurons and circuits. We implemented our
method in the web application CATMAID, supporting a group of collaborators to
concurrently reconstruct neurons in the same circuit. We measured the neuroanatom-
ical underpinnings of circuit connectivity in Drosophila neurons. We found that
across life stages and cell types, synaptic inputs were preferentially located on spine-
like microtubule-free branches, “twigs”, while synaptic outputs were typically on
microtubule-containing “backbone”. The differential size and tortuosity of small
twigs and rigid backbones was reflected in reconstruction errors, with nearly all
errors being omission or truncation of twigs. The combination of redundant twig
connectivity and low backbone error rates allows robust mapping of Drosophila cir-
cuits without time-consuming independent reconstructions. As a demonstration, we
mapped a large sensorimotor circuit in the larva. We found anatomical pathways for
proprioceptive feedback into motor circuits and applied novel methods of represent-
ing neuroanatomical compartments to describe their detailed structure. Our work
suggests avenues for incorporating neuroanatomy into machine-learning approaches
to connectomics and reveals the largely unknown circuitry of larval locomotion.
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2.1 I N T R O D U C T I O N

Mapping circuits from electron microscopy (EM) volumes is hard (Helmstaedter
2013). Manually working through large volumes is slow and prone to attentional
errors (Kreshuk et al. 2011; Helmstaedter et al. 2011). Combining multiple indepen-
dent reconstructions of the same neuron can reduce errors (Helmstaedter et al. 2011;
Kim et al. 2014) at the cost of multiplying the required labor. Current computational
approaches operate only with “local” information, i.e. the EM micrographs and
algorithmically detected fine structures such as cell membranes and mitochondria.
They are therefore sensitive to noise (Jain et al. 2010), particularly in anisotropic EM
data where the smallest neurites may be thinner than the thickness of individual
serial sections (Veeraraghavan et al. 2010; Helmstaedter 2013). Machine-generated
neuron reconstructions are therefore proof-read by humans (Chklovskii et al. 2010;
Haehn et al. 2014).

Experts are able to resolve ambiguities that amateurs and current algorithmic
approaches cannot by using large-scale features about neurons to inform decisions
made at the level of nanometer-scale image data. In Drosophila, where neurons are
highly stereotyped, large branches in an EM reconstruction of a given cell can be
confirmed by comparing the observed anatomy to that of homologous cells from
light microscopy data or other reconstructions (Takemura et al. 2013; Ohyama et al.
2015). This suggests that one way to improve the toolkit for neuron reconstruction
and circuit mapping is to facilitate the application of cell- and circuit-level features
for disambiguation at noisy locations on EM volumes.

Crucially, different errors do not alter the wiring diagram equally. Missing small
dendrites can be acceptable; useful and reproducible wiring diagrams can be created
even when omiting 56% of all postsynaptic sites (Takemura et al. 2013) while missing
a single large branch hosting all the synapses in one neuropil region could omit
connectivity to entire populations of partners. Prioritizing proofreading time towards
the most impactful errors improves reconstruction efficiency (Plaza et al. 2012; Kim
et al. 2014).

However, to understand the impact of reconstruction errors in Drosophila, we need
to understand the relationship between circuitry and anatomy. Mesoscale anatomy,
in particular the placement of large branches, is well understood as a key component
of circuit structure (Zlatić et al. 2003; Zlatić et al. 2009; Wu et al. 2011; Couton et al.
2015). Similarly, the connectivity graph of a stereotyped circuit can itself relate back
to anatomy by consideration of the location of the synaptic sites between pairs of
neurons. However, relatively little is known about the smallest scales of synaptic
connectivity, the distribution of individual synapses on a neuron. Microtubule-free
and actin-rich structures have been identified as sites of excitatory input in the adult
Drosophila visual system (Scott et al. 2003; Leiss et al. 2009a), but questions remain
about how ubiquitous these are in the nervous system.

Here, we describe a collection of quantitative anatomical and connectivity features
across scales, from fine dendritic branches to multi-neuron graphs, and a method for
using them to swiftly and accurately map the Drosophila nervous system. We imple-
mented the calculation and visualization of such features on-demand as an extension
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of the web-based large image data viewer CATMAID (Saalfeld et al. 2009). Because
the detection of high-impact errors can occur concurrently with reconstruction via
interactive analysis, our tool removes the need for time-consuming repeated recon-
structions (Helmstaedter et al. 2013; Kim et al. 2014) and enables synergy among
collaborating expert neuroanatomists. We demonstrate our methods by mapping a
sensorimotor circuit in the Drosophila larva from proprioceptive sensory neurons to
motoneurons.

2.2 R E S U LT S

Collaborative circuit mapping

We extended the web-based image data viewer CATMAID (Saalfeld et al. 2009) to
enable a geographically distributed group of researchers to map neuronal circuitry.
A neuron is reconstructed with a skeleton, a directed tree graph with one or more
nodes in every cross-section of neurite in an EM volume (Helmstaedter et al. 2011;
Cardona et al. 2012). Where possible, we root skeletons at the soma to model the
anatomical notions of proximal and distal in the data structure. Synapses (see Sup-
plemental Fig. 2.7) are annotated as a relation from a node on the presynaptic neuron
skeleton to an intermediate “connector node” and then to a node of a postsynaptic
neuron skeleton. To express the polyadic nature of insect synapses (Meinertzhagen
et al. 1991), connector nodes can have multiple postsynaptic “targets”, but only
one presynaptic “source”. Reconstructions are immediately synchronized across
all users to avoid duplicate or conflicting work, and to take advantage of existing
reconstructions to aid further reconstruction and circuit discovery. For further details,
see Supplemental Text.

As a case study of our method, we focused on sensorimotor circuits in an abdomi-
nal segment of the first instar Drosophila larval central nervous system (CNS) using
an EM volume covering one and a half abdominal segments (Supplemental Fig. 2.8;
previously used in Ohyama et al. 2015). In total for this work, we reconstructed
425 neuronal arbors spanning 51.8 millimeters of cable, with 24,068 presynaptic and
50,927 postsynaptic relations, (see Supplemental Text for details). Reconstruction
time was 469 hours for reconstruction with synapse annotations plus 240 hours
for review (see below), for an average rate of ∼73 microns of proofread arbor with
synapses per hour.
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Microtubule-free twigs are the principal site of synaptic input

To be able to use neuronal anatomy to guide circuit reconstruction, it was crucial to
better understand the distribution of synaptic input onto Drosophila neurons. We
started by looking in detail at the relationship between the microtubule cytoskeleton
(Supplemental Fig. 2.8) and synaptic inputs in EM reconstructions of neurons from
different regions of the nervous system and life stages. For a diverse collection of
neurons, we marked all locations where the arbor continued distal to a microtubule-
containing process (Fig. 2.1a). We call such a terminal branch a “twig”. By definition,
all twigs have their base on a microtubule-containing backbone shaft. Following the
classification in Leiss et al. (Leiss et al. 2009a), a spine is a twig with a maximal depth
of less than 3 µm and that is not a presynaptic varicosity (Fig. 2.1b).

We found twigs in all neurons investigated, across multiple CNS regions and life
stages of Drosophila, and in all cases they were the dominant sites of synaptic input
(Fig. 2.1c–g). We first considered motoneurons aCC and RP2 (Landgraf et al. 1997),
which have functional and structural similarities to vertebrate neurons (Sánchez-
Soriano et al. 2005; Nicolai et al. 2010; Günay et al. 2015). In the first instar CNS, we
find aCC and RP2 have numerous twigs, which together host more than 80% of their
total number of postsynaptic sites (Fig. 2.1c). We found a similar majority of inputs
onto twigs in three hemisegmental pairs of premotor interneurons (Fig. 2.1d) and
brain neurons (Ohyama et al. 2015) in the first instar (Fig. 2.1e). We tested whether
the observed distribution of postsynaptic sites onto twigs generalizes across larval
stages by comparing a somatosensory interneuron in the first instar to its homologue
in late third instar (Fig. 2.1f). At both life stages, we find more than 80% of inputs
were onto twigs, suggesting that twigs are not a temporary developmental structure.
In the adult fly, light microscopy-level analysis of lobula plate tangential cells of the
visual system suggests a similar distribution of postsynaptic sites onto twigs (Leiss
et al. 2009a; Scott et al. 2003). We annotated EM skeletonizations of medullar Tm3
neurons reconstructed by Takemura et al. 2013 in the adult visual system neuropil
and found that nearly all their inputs were onto twigs (Fig. 2.1g). Our findings
suggest that microtubule-free twigs are a general feature of Drosophila neurons and
constitute the primary anatomical location of synaptic input. Spine-like twigs are
found in all cell types, but host a variable, typically non-majority, amount of synaptic
input (Fig. 2.1c–g). We consider all twigs for the remainder of our analysis.
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Figure 2.1.: Twigs, small microtubule-free neurites, are the primary site of input
in Drosophila neurons.
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Twigs, small microtubule-free neurites, are the primary site of input in
Drosophila neurons. (continued) a) A typical Drosophila neuron has a contiguous mi-
crotubule backbone from the soma to its arbors. Numerous terminal arbors without micro-
tubules (”twigs”) branch off the backbone. The presence (black arrows) or absence (green
arrows) of microtubules can be seen in EM cross-sections of the neuron. b) Twigs less than 3
µm are considered spine-like, while those longer or primarily presynaptic are not. (c–g) EM
reconstructions (middle) of Drosophila neurons from different parts of the nervous system
(left) showing backbone (black) and twigs (green). At right, the fraction of all synaptic inputs
onto short spine-like twigs, longer twigs, and backbone. Data sets are indicated by marks:
no asterisk: 1.5 segment volume. *: Whole CNS volume. **: 3rd instar abdominal segment
volume. ***: Adult medulla skeletons and images, generously provided by Janelia FlyEM
[9]. Neurons are individually scaled to show complete arbors. (c) Motoneurons in 1st instar
larva. (d) Premotor interneurons of 1st instar larva. (e) Interneurons in the brain of the 1st
instar larva. (f) A somatosensory interneuron cell type across life stages, 1st instar and 3rd
instar larvae. (g) Tm3 cells in the adult fly medulla.
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Distribution of inputs onto motoneuron dendrites

For a given presynaptic partner, a postsynaptic neuron could concentrate its input
synapses onto a single region or distribute them widely. The spatial distribution
of synaptic inputs has implications for dendritic processing (Polsky et al. 2004),
developmental robustness (Couton et al. 2015), and as we show, reconstruction
accuracy.

To study the relationship between presynaptic neurons and the anatomical loca-
tions of postsynaptic sites, we reconstructed all neurons synaptically connected to
motoneurons aCC and RP2 in the third abdominal segment of a first instar larva
(Fig. 2.2a-d). A dynamically-generated and interactive table of synaptic connectivity
in CATMAID enabled users to systematically trace all connected arbors. We found
198 identifiable neurons (Supplemental Fig. 2.10) and named them according to a
developmental lineage-based nomenclature (Ohyama et al. 2015) and classified 107
other arbors spanning the full segment into eight distinct intersegmental bundles
(Supplemental Fig. 2.11). Motoneurons each received between 1 and 28 synaptic
inputs from individual presynaptic neurons, with a maximum of 7.3% of all inputs
coming from a single neuron (Fig. 2.2e). The fraction of synapses accounted for by
their presynaptic partners (rank-ordered by number of synapses) is well-fit by an
exponential survival function, with a decay indicating that approximately the top 22
presynaptic partners of one motor neuron contribute 63% of all its synaptic inputs
(Fig. 2.2f).

We next asked how the synaptic input onto aCC and RP2 is distributed across
independent twigs. Most individual twigs were small, with the median twig mea-
suring 1 µm in cable and hosting 1 postsynaptic site. The largest typical twig had
16 µm of cable and 20 postsynaptic sites (Fig. 2.2g, but see Supplemental Text for
discussion of three larger outliers). We find that presynaptic neurons connect to
between 0 (backbone only) and 13 twigs, with nearly all connections with 3 or more
synapses per edge being distributed across multiple twigs (Fig. 2.2h). Similarly,
numerically strong edges spanned multiple twigs in the adult visual system Tm3
neurons (Supplemental Fig. 2.12).

Mitochondria and presynaptic sites

We next looked for ultrastructural features related to presynaptic sites in six pre-
motor interneurons, since the motoneurons had no central synaptic output. We
found that, in stark contrast to inputs, presynaptic sites were often associated with
microtubules (Supplemental Fig. 2.13). Approximately 50% of presynaptic sites are
located on the backbone and 90% were within 3 µm of it. Since presynaptic sites are
metabolically demanding (Laughlin et al. 1998), we also annotated the location of all
mitochondria in the neurons (Supplemental Fig. 2.13). We found that all presynaptic
sites were within 3 µm of their closest mitochondrion, though only 47% of neuronal
cable was within 3 µm of a mitochondrion. Taken together, this suggests that the
internal structure of neurons puts strong limits on the location of presynaptic sites.
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Figure 2.2.: Twigs are crucial to larval motor circuitry. (a) Dorsal projections of
genetically labeled motoneurons RP2 (top, from 1st instar) and aCC
(bottom, from 3rd instar). Each cell type has characteristic dendritic
arbors. Midline indicated by gray arrowhead. (b) EM reconstructions
of each of four motoneurons aCC and RP2 in the 1st instar larva match
the left and right homologs of aCC and RP2. Backbone is indicated by
black, twigs by colors. Midline is shown as dashed line.(c) True spatial
relationship of the four motoneurons in b), shown dorsally (left) and in
cross-section (right). Note that the boundary of the EM volume is limited.
(d) All arbors presynaptic to aCC and RP2. Colors indicate if neuron
is presynaptic to one or both motoneuron cell types. e) Histograms
of premotor partners connected via number of synapses. (f) Colored
lines: the cumulative fraction of total inputs as a function of ranked
presynaptic partners for each motoneuron are extremely similar. Black
dashed line: simultaneous fit for all four motoneurons to 1− exp (−r/ρ)
for rank r gives ρ = 22.34. (g) Scatterplot and histogram of the total
length and number of synapses on each of the 305 twigs for each of the
four motoneurons (colors as previous). h) Number of twigs contacted
by motoneuron partners as a function of the number of synapses in the
connection. Crosses are median, boxes the interquartile range, whiskers
the 10th to 90th percentiles. Outliers shown.
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Circuitry for proprioceptive feedback into a motor circuit

We next looked at the cell and circuit level for regularities that could inform proof-
reading. In the Drosophila larva, developmentally homologous neurons are strongly
stereotyped (Li et al. 2014), making quantitative analysis of their properties useful for
identifying irregularities between homologous cells. Most cell types are represented
in the fly nervous system by at least one homologous bilateral pair of individual
cells. Bilateral homology suggests both arbor morphology and synaptic wiring are
mirrored, up to developmental noise (Ohyama et al. 2015). To let morphology guide
proofreading, we developed a collection of neuroanatomical measurements that were
independent of absolute location. These metrics, combined with 3d visualization,
quickly summarize the structure of complex neurons to help identify and localize
inconsistencies (Supplemental Fig. 2.14) which could result from true developmental
differences (Supplemental Fig. 2.15) or reconstruction errors.

As a case study, we applied our tools to describe a complete sensorimotor circuit.
During forward crawling, a peristaltic wave of muscle contraction travels from
posterior to anterior segments (Hughes et al. 2007; Heckscher et al. 2012). Signals
from the segmentally repeated proprioceptive neurons dbd have been suggested to
act via a polysynaptic inhibitory pathway to stop motoneuron activity after successful
contraction of a given segment (Hughes et al. 2007). To find pathways between
proprioceptive and motor neurons, we further reconstructed axons for proprioceptive
sensory neurons dbd, vbd, dmd1, ddaD, and ddaD (Hughes et al. 2007; Grueber et al.
2007). Because of its implication in proprioceptive feedback (Hughes et al. 2007), we
further reconstructed all partners of the left and right dbd (Fig. 2.3a).

Using a graph search within CATMAID, we identified all 1–3 hop pathways from
dbd to motoneuron RP2. Comparison of the identifiable intermediate neurons
revealed five pairs of homologous neurons with consistent shape, connectivity,
and basic morphological quantities (Fig. 2.3b,c). Inconsistencies in any property
led to further review to determine if they were due to reconstruction error, true
developmental variability, or limitations of the raw data. For example, one strong
inconsistency in this network, the connection from A02l to A31k (Fig. 2.3b), was due
to the expected synapse locations being outside the imaged volume on one side but
not the other (Supplemental Fig. 2.8).

The five pairs of identified neurons could also be matched to light-level images
of neurons identified through sparse stochastic labeling (Nern et al. 2015) of neu-
rons within a GAL4 expression pattern (Fig. 2.3c). Of these, two directly premotor
interneurons (A27j and A31k) are immunoreactive to anti-GABA (Supplemental
Fig. 2.16), whereas the others, all from A02 lineage, are members of the glutamatergic
neuron class described in Kohsaka et al. 2014. These novel, putatively inhibitory
sensorimotor pathways are well-positioned to mediate a hypothesized ”mission
accomplished” signal (Hughes et al. 2007). This map also could explain why genetic
silencing of A02 neurons was shown to slow peristalsis (Kohsaka et al. 2014), as
doing so removes a major channel for proprioceptive feedback.
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Figure 2.3.: Wiring diagrams for larval motor circuitry enriched with anatomical
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32



2.2 R E S U LT S

Wiring diagrams for larval motor circuitry enriched with anatomical detail. (con-
tinued) a) Starting with motoneuron RP2 and proprioceptive sensory neuron dbd
(left), we identified all synaptic partners of each (right). b) Five symmetric pairs of
identified neurons link the two cell types with three or fewer hops. All edges are
observed in both the left and right hemisegments, except for a single edge outisde
the volume boundary (red dashed line, see Supplemental Fig. 2.8). Line thickness
increases with number of synapses (max. and min. values shown). In this and all net-
work diagrams, single synapse edges are not shown for clarity. c) All identified cells
in EM (left) could be matched to confocal maximum intensity projections of single
neurons found in sparsely labeled GAL4 lines (right, see methods for details). For
neuroglian staining, an approximate neuropile boundary is shown; for nc82 staining,
the blue region is a profile of neuropile. d) Cartoon example of splitting neurons
using synapse flow centrality (SFC). e) Examples of two premotor interneurons split
into axonal (darker) and dendritic (lighter) regions with this method. Split point
is indicated by the arrowhead. f) Splitting interneurons into axonal and dendritic
compartments in a proprio-motor circuit reveals stereotypic pre- and post-synaptic
connectivity to premotor interneuron A03a1 and differential contributions from pro-
prioceptor dbd relative to other proprioceptors dmd1, ddaD, and vbd. g) Splitting
interneurons A27j, A27e, and A27h reveals GABAergic pre- and post-synaptic input
to a premotor connection, as well as dendro-dendritic coupling between interneurons
that connect to synergistic motoneurons aCC and RP2. h) Dorsal projections of A27h
and A27e from EM (left) and light (right), as in c. Midline indicated by arrowheads.
i) Synapse clustering can represent dense groups of synapses on an arbor as distinct
nodes in a graph widget. Here, each of four groups of synapses (numbers in brack-
ets) is represented as a separate node in the graph. The graph demonstrates that
posterior and anterior clusters (3 and 4, respectively) target homologous neurons in
consecutive segments. j) Cross-sectional projection of A08a from EM (top) and light
(bottom), as in c.
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Anatomically enriched wiring diagrams reveal propriomotor circuit motifs

The physiology of synaptic input and output can differ across neuronal compart-
ments. For example, presynaptic inhibition is important for gain control in fly sensory
circuits in a fundamentally distinct manner than dendritic inhibition (Clarac et al.
1996). This suggests that connectivity can be stereotyped at the compartmental level
and therefore useful for proofreading. We thus sought a graph representation of a
circuit that could faithfully distinguish distinct types of connections (Fig. 2.3d-g).

In Drosophila, many neuronal cell types have distinct input and output compart-
ments, while a few have entirely intermingled inputs and outputs. Our approach
assumes that the neuron can be split into distinct compartments, and at the end
checks to see if the split was successful. First we calculate all paths along the skeleton
from each of the neuron’s input synapses to each of its output synapses and for
each node of the skeleton compute the number of centripetal (towards soma) and
centrifugal (away from soma) paths that pass through it (Fig. 2.3d). This quantity,
which we call “synapse flow centrality” (SFC), is analogous to a synapse-specific
version of betweenness centrality (Newman 2010). For most neuronal arbors, we find
that the most proximal skeleton node with the highest centrifugal SFC corresponds
to an intuitive generalization of the locations of spike initiation zones in known
polarized neurons of Drosophila (Gouwens et al. 2009; Günay et al. 2015) and other
insects (Gabbiani et al. 2002).

We quantify how completely input and output are separated on a neuron with a
“segregation index”, an entropic measure of the amount of input/output mixing in
each compartment, normalized by that of the whole arbor (see Methods and Supple-
mental Fig. 2.17). A very low segregation index means that pre- and post-synaptic
sites are intermingled and an axon/dendrite compartmentalization is inappropriate.
Using this approach, we classified all identifiable neurons found in both the left
and right hemisegments of the proprio-motor circuitry described above. Of the
3834 synapses between these cells, we found 79% were axo-dendritic (3033), 11%
axo-axonic (424), 9% dendro-dendritic (334) and 1% dendro-axonic (43).

We consider two examples of how compartment-enriched graphs add important
anatomical detail to small microcircuits. First, we analyzed how different proprio-
ceptive inputs converge onto motoneuron RP2 (Fig. 2.3e–h). By splitting interneu-
ron A02b into axon and dendrite we observed that its dendrites receive bilateral
proprioceptive input, while its axon synapses both onto the ipsilateral RP2 and axo-
axonically onto its strong premotor partner, A03a1 in both hemisegments (Fig. 2.3f).
In contrast, while dbd only connects indirectly with A02b (Fig. 2.3b), it synapses
exclusively ipsilaterally and axo-axonicaly onto A03a1 (Fig. 2.3f). This suggests that
the role of dbd in modulating motor patterns could be qualitatively different than the
other proprioceptive sensory neurons, since its direct pathways are typically longer
or involve connections types other than axo-dendritic.

Second, we analyzed interactions between the premotor neurons of aCC and RP2
(Fig. 2.3g,h) . We found that a neuron presynaptic to the aCC motoneuron on both
sides targets dendro-dendritically a pre-RP2 neuron (A27h), potentially coordinating
the joint excitation of their targets (Fig. 2.3g). We also found a premotor interneuron
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(A27e) with reciprocal connections with a GABAergic premotor interneuron (A27j;
see Supplemental Fig. 2.16) that receives convergent inputs from dorsal propriocep-
tive neurons (dmd1, ddaD, ddaE; Fig. 2.3g,h). This suggests that A27j might not only
act as an inhibitory premotor input in response to proprioceptive activity, but also
have subtler modulatory effects onto other sources of motor input.

Specific connections can also be allocated to specific regions of a neuronal arbor,
which could be used to localize proofreading guided by inconsistencies in connec-
tivity. We thus extended the concept of splitting a neuron into two regions to an
arbitrary number, by defining a region as a cluster of synapses near each other along
the arbor cable (see Methods). As an example, we consider the axon terminal of dbd,
which enters at the interface between two segments and extends symmetric arbors
towards the anterior and posterior segments (Fig. 2.3i). The synapses form multiple
well-separated clusters that we can visualize as a group of nodes, revealing that the
anterior and posterior branches synapse onto homologous interneurons (A08a) for
their respective segments (Fig. 2.3j). This pattern suggests that each A08a cell gets
convergent input from the dbd of two consecutive segments, which could reflect that
adjacent pairs of segments move together during locomotion (Heckscher et al. 2012).

Proofreading and error correction

Based on the spectrum of features described above, we developed a two step iterative
method of proofreading after an initial reconstruction. An initial systematic review
consists in traversing a whole arbor from distal to proximal to follow the expected
gradual changes in anatomical properties (e.g. caliber tapering and cytoskeletal
changes from microtubule-free to increasing number of microtubules). This review
mode helps discover attentional errors or anatomical inconsistencies, such as non-
contiguous microtubule cytoskeleton. Next, we reconstruct a second instance of
homologous circuitry and use the high-level quantitative anatomical and connectivity
measurements to highlight inconsistencies, which are then subjected to focused
review (see Supplemental Text for details). This review mode helps ensure that the
broad structure of the neuron is consistent and no high-impact large branches are
missed.

Importantly, any error correction is performed on the basis of local information, as
contained within the EM images (e.g. microtubules, texture, consistency with neigh-
boring neurites, etc. See Supplemental Text). Irregularities in higher level features
only serve to guide attention, not determine correctness. The strong stereotypy of
Drosophila neurons (Cardona et al. 2010; Jenett et al. 2012; Li et al. 2014) enables the
use of light microscopy images or contralateral homologs in the EM for overcoming
ambiguities in large, microtubule-rich backbone branches, but not for more variable
twigs. To do this requires partial annotation of all feasible continuations within the
EM volume to ensure that there is only single solution consistent with the stereotypic
features (see Supplemental Text). We also annotate ambiguities during reconstruction
with a scale from 1 to 5 for further consideration in subsequent quantitative or visual
analysis of the arbors and the wiring diagram.
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Validation of our iterative circuit mapping method

Our approach to circuit mapping consists of an initial reconstruction, followed by
edits by the same or different users during proofreading or incidental discovery of
errors during subsequent work. Small arbor pieces, left over from pruning when
proofreading other neurons or from explorative tracings, are merged in. We refer
to this as ”iterative,” as compared to consensus methods that combine multiple
independent reconstructions (Helmstaedter et al. 2011; Takemura et al. 2013; Kim
et al. 2014).

We evaluated the accuracy of our method for Drosophila circuits by comparing our
results to the those of a consensus approach. We selected six interconnected neurons
from the premotor network for independent reconstruction by four individuals.
Each individual skeletonized and reviewed his or her reconstructions and then
consensus skeletons were computed for each neuron using RESCOP (Helmstaedter
et al. 2011). Both methods resulted in extremely similar arbors, although each method
found branches not seen in the other (Fig. 2.4a, Supplemental Fig. 2.18). All sites of
disagreement between the two methods were validated by an expert to determine a
gold-standard morphology. Reconstruction and review of these six neurons in the
iterative approach took a total of 26.37 hours, while the redundant method by four
people took a total of 107.73 hours, almost exactly four times as long.

Existing consensus approaches only calculate neuronal morphology, not synap-
tic connectivity. We estimated the connectivity between consensus skeletons by
transferring each synapse from each independent skeleton to the consensus, nor-
malized by number of skeletons contributing to the consensus at the location of the
synapse. A synapse would have unit weight when annotated at the same location in
all independent skeletons.

We found that both methods recover an identical set of edges in the wiring dia-
gram, with similar number of synapses per edge (Fig. 2.4b,c). We next considered
the fine differences between consensus skeletons and skeletons reconstructed with
our method. The six gold-standard neurons had a total of 1341 input synapses, with
111 on neurites only present in the consensus skeletons, 229 on neurites only in our
method’s reconstructions, and 1001 in the arbor found by both. We located 91 missed
or incomplete branches (false negatives) in our method, 89 in twigs and 2 in back-
bones; and 7 incorrect continuations (false positives), 6 in twigs and 1 in backbone.
False positives added 30 incorrect postsynaptic inputs in total. Individual missed
branches were small in size, complexity, and number of synapses (Fig. 2.4e–g), with
more than 40 missed or truncated twigs having no impact on connectivity (Fig. 2.4f).
The 3 errors in backbones occurred in small distal dendritic shafts containing one
single microtubule, resulting in 7 missed and 4 false postsynaptic sites. Error rates
for synaptic output were even lower. The gold-standard neurons had a total of 510
presynaptic sites, of which 509 were found by our iterative reconstructions.

Our data suggest that anatomical structure strongly influences the rate of re-
construction errors in our iterative method. Our total error rate is dominated by
false negatives and is much higher for twigs (16.2 µm/error) than for backbone
(375.8 µm/error). While attentional errors seemed to dominate missed branches,
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data ambiguities were often associated with backbone errors. One backbone false
merge happened across two adjacent sections in poor registration with one another,
while an erroneous truncation occurred across a section where electron-dense precip-
itate occluded the neurite and its surrounding area.

Estimating errors in a reconstructed wiring diagram

Neuroanatomy strongly constrains the impact of a typical error on the wiring di-
agram because, as shown above, the most likely error is to miss a twig and an
individual twig hosts few or no synapses.

To estimate the probability of omitting a true edge in the wiring diagram, we
analyzed the distribution of synaptic contacts across twigs as a function of the total
number of synapses per edge. Edges comprising multiple synaptic contacts were
found to be distributed across multiple twigs (Fig. 2.2h). With the RESCOP-based
validation we found that our method identified 88% (672/761) of twigs, containing
91.7% of synapses (1230/1341). From these two observations, we estimated the
probability of completely missing a true edge as a function of the number of morpho-
logical synapses per edge. We found that our method recovers more than 99% of the
wiring diagram edges that have at least 3 synapses (Fig. 2.5a), assuming twigs are
missed uniformly at random (see Supplemental Fig 2.19).

In the larva, we are primarily interested in the most reliable edges between cell
types, as those are most likely to generalize across individual animals. Moreover,
we are concerned less about adding extra synapses to true connections and more
about adding false edges that would be interpreted as pathways that are not actually
present. To estimate the likelihood of introducing a false edge between cell types
not just once, but twice (e.g. in a left and right pair of homologs), we simulated
adding false twigs to a neuron. The probability of adding a false edge depends both
on the probability of adding a false twig (observed false positive error rate: 7 errors
in 605 twigs) and the number of nearby but unconnected neurons with presynaptic
sites. This will vary depending on the circuit in question. For example, a neuropile
with all-to-all connectivity will have no opportunity for false positive edges, while
in an array of rigorously separated labeled lines any false positive synapse would
be a false positive edge. Further, larger neurons offer more opportunities for false
positives than smaller neurons.

For a concrete and realistic example, we consider the motoneuron RP2 (a large
neuron). We estimated the number of proximate but unconnected neurons by con-
sidering all axons presynaptic to all motoneuron dendritic fields that overlap RP2’s
dendrites (Fig. 2.5b). We assume that a false positive reconstruction error distributes
m synapses across all available axons at random. Even if we assume that m is always
among the largest observed (m = 20), our model suggests that for the RP2 wiring
diagram we can trust symmetric connections of at least 2 synapses (Fig. 2.5c). We
further note that the small size of individual twigs and the ability in CATMAID to
jump directly to the image data associated with synapses comprising an edge make
review of a suspect false positive edge extremely fast, on the order of seconds.
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Figure 2.4.: Our method for iterative reconstruction produces reliable connectiv-
ity and anatomy. (a) Dorsal view of two of six neurons for which we
compared our iterative reconstruction method to a RESCOP-generated
consensus of four independent reconstructions. Arbor found in both,
dark lines; iterative only, blue; consensus only, orange. (b) The adjacency
matrix produced by our iterative method has an identical set of edges
as that of the consensus method, with variability only in the amount of
synapses per edge. (c) The weights of each edge (the amount of synapses)
are similar between methods. (d) Point errors in iterative reconstructions
are not distributed equally across the cable of neuronal arbors, instead
falling overwhelmingly on twigs. (e-g) Branches missed by our iterative
method but observed in the consensus method are typically very small
and lightly connected as seen from histograms of their (e) cable length,
(f) synaptic inputs, and (g) number of branch points.
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Figure 2.5.: Estimating errors that affect graph topology. a) Estimated probability
of fully omitting an edge as a function of how many synapses were on
the edge based on omitting random twigs with the frequency observed
in the validation data. b) Cartoon of dendritic overlap between RP2 and
aCC, U1, and U2. On average, 91 axons put at least 2 synapses on any
motoneuron (denoted N in the false positive estimate model, see text for
details), of which 33 are not connected to RP2 (denoted N0). c) Probability
that, given a pair of homologous postsynaptic neurons, introducing m
false inputs randomly distributed across N presynaptic neurons yields at
least one pair of false edges of kθ or more synapses each. The number of
axons were estimated in b, and false input counts are shown estimated
from the validation data (m = 5), as well as if they came from adding a
rare but large twig (m = 20), and the largest observed twig (m = 37).
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Figure 2.6.: Proximal regions of twigs reflect final wiring a) Cartoon of the proximal
depth (red) into of a twig (green) measured from from the backbone
(black). b) The fraction of >2 synapse edges onto aCC and RP2 that
would be found when considering only synapses onto the backbone
and twigs cropped at a maximum depth. From light to dark gray are
those edges whose final measured connectivity has more than 2, 4, and 8
synapses. Blue dashed line indicates fraction of all input synapses. The
inset depicts the fraction of pairs of homologous edges from identified
neurons (N=28 edge pairs) that would be identified using synapses
up to a given depth. c) Fraction of total reconstruction time for each
of the four motoneurons (see legend) as a function of cropping twigs
at a maximum depth. Note that 0 µm depth cropping corresponds to
backbone reconstruction only.

Since most errors were of omission and took the form of cropped twigs, we also
measured the impact of omitting the distal ends of twigs. Considering again aCC and
RP2, we looked at the connectivity observed by considering only synapses located at
a given depth into the twig relative to its base on the backbone (Fig. 2.6a). With all
twigs cropped to zero depth, only inputs onto the backbone remain. More than 90% of
postsynaptic sites lay within 5 µm of the backbone (Fig. 2.6b). We find that the first 2
µm already finds at least two synapses between∼90% of the most connected partners.
The first 4 µm similarly detects ∼90% of all partners with 2 or more synapses and
27/28 pairs of homologous edges (Fig. 2.6b). These results indicate that, given the
observed distribution of synapses over multiple twigs (Fig. 2.2h), edges with many
synapses are robust to errors of omission such as truncated twigs. Considering the
marginal time involved in reconstructing the full extent of twigs (Fig. 2.6c), this
robustness could be intentionally exploited towards discovering strong synaptic
partners in a time-efficient manner.
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2.3 D I S C U S S I O N

Neuroanatomy as the foundation for circuit mapping

Neurons are highly structured cells. A human expert’s success at circuit mapping
from EM volumes stems from the ability to use this structure and apply cell and
circuit-level context to interpret nanometer-scale image data. Here, we presented our
approach to circuit mapping in EM by building tools in CATMAID that ease and
emphasize the use of high level features concurrent with image-level reconstruction.
In addition to using existing measures of neuroanatomy and graph connectivity, we
devised novel algorithms to quantify the distribution of synapses across neurons,
which we applied to both quantitative neuroanatomy and to enrich wiring diagrams.

Central to our approach is the observation that Drosophila neurons contain a
contiguous microtubule-rich backbone and numerous small microtubule-free distal
twigs. We found that small twigs are the primary site of synaptic input for Drosophila
neurons and that numerically strong connections between neurons are typically
spread across many distinct twigs. If, contrary to observations, neurons were to
only contact each other via a single twig that hosts many postsynaptic sites, then
this connection would be fragile with respect to developmental noise (Couton et al.
2015). In contrast, backbones define the spatial extent and stereotyped shape of a
neuron, and we found that most presynaptic sites are located on or very near the
backbone’s microtubules and mitochondria. Our findings are consistent with the
notion that metabolic needs and microtubule-based trafficking are limiting factors
for the structure of synaptic output.

These different biological requirements for different neuronal compartments are
reflected in the rate of reconstruction errors. The large calibers and relatively gradual
turns associated with microtubules made errors on backbone less frequent by a factor
of nearly 20 relative to on smaller and tortuous twigs. However, we propose that
the circuit’s resilience to developmental noise, achieved in part by connecting via
multiple twigs, underlies the resilience of wiring diagrams to the omission of small
dendritic branches, the most typical error observed both here and in reconstructions
in the fly visual system (Takemura et al. 2013).

Irregularities within a cell type guide review toward small fractions of specific
neuronal arbors that could be responsible for a potential error. While reconstructing a
neuron, a user can quickly pull up its complete anatomy and connectivity to compare
to homologous cells or inspect for irregularities and, crucially, return quickly to the
locations in the image data necessary to make the appropriate decisions. We find
that this smooth flow from image data to high level features and back to image data
— without post hoc or offline analysis — is possibly the most important feature in our
EM reconstruction technique.

Dispensing with repeated reconstruction without reducing accuracy enables our
method to support concurrent neuron reconstruction by many collaborators. This
setup prevents duplicated work while ensuring that important locations are visited
multiple times. For example, synaptic relations are inspected at least twice in different
ways, once each from the pre- and postsynaptic side. The presence of existing
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and correct skeletons in complicated areas, such as registration errors between
consecutive sections or gaps, reduces the time necessary for resolving possible
ambiguities and effectively provides an extra step of proof-reading by not allowing
contradictory reconstructions. Further savings originate in the reuse of data, for
example exploratory reconstruction of backbones in search of specific neurons or
branches pruned during proofreading are merged into the arbor currently being
reconstructed. In summary, in a collaborative environment, the more neurons that
are reconstructed, the faster new ones can be added, and the fewer errors existing
reconstructions will contain.

Automated methods will be necessary to map circuits with more than a few
thousand neurons (Helmstaedter 2013), but they require extensive proof-reading
(Chklovskii et al. 2010; Plaza et al. 2012; Haehn et al. 2014). Our methods for analysis
of arbor morphology, synaptic distribution and circuit structure and reliability, and
their application in proof-reading, apply equally to manually and automatically
reconstructed neurons. Neuroanatomical measurements suggest mixed strategies
for leveraging both automated algorithms and human effort. For example, mito-
chondria can be reliably located automatically (Lucchi et al. 2011; Funke et al. 2014)
which, together with our finding of a distance constraint between mitochondria and
presynaptic sites, could assist in automated synapse detection (Kreshuk et al. 2011;
Becker et al. 2012; Kreshuk et al. 2014). Similarly, the properties of neuronal backbone
and twigs suggest that algorithms for the automatic detection of microtubules in
serial section EM would be a profitable source of constraints for automated recon-
struction of neurites across consecutive sections (Vazquez-Reina et al. 2011; Funke
et al. 2012). While we only considered the relationship between error rate and the
presence or absence of microtubules, with the use of automated detection methods it
will be important to look at more detailed measures of arbors such as the number of
microtubules, curvature, or caliber.

We expect that the fundamental principles described here will hold for regions
of the nervous system of the adult fly other than the optic neuropils, although the
exact properties, e.g. mean twig length, will likely differ across time and cell type.
In contrast, applying our method to vertebrate neurons would require extensive
adaptation. Connectivity and morphology are less stereotyped, making it impossible
to build strong expectations from a single example of a cell type. However, given
careful measurement of cell types, such as the distribution of branches or synapses
in a given retinal layer already used in retinal reconstructions (Helmstaedter et al.
2013; Kim et al. 2014; Seung et al. 2015) or automated cell type discovery using
anatomy and connectivity (Jonas et al. 2015), similar neuroanatomically-guided
reconstruction and proofreading could inform methods for vertebrate connectomics.
The key challenge will be to find, as we did here for Drosophila neurons, measurable
quantities that are most informative for discovering those errors that have the greatest
impact on the interpretation of wiring diagrams.
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Sensorimotor circuitry

Larval locomotion, like many motor patterns, results from rhythmic activation of
motoneurons (Heckscher et al. 2012), but few central components of the underlying
premotor circuitry had been identified (Kohsaka et al. 2014; Couton et al. 2015). Our
reconstruction of propriomotor circuitry revealed a complex network comprised of
numerous cell types, including a subset of those previously described (Kohsaka et al.
2014). We identified a rich collection of local neurons, including neurons anatom-
ically well-suited to provide common drive to synergistic muscles (Schaefer et al.
2010) and thus likely a key motor network components. Using anatomically faith-
ful simplifications of neuronal structure, we found several premotor microcircuits
employing dendro-dendritic and axo-axonic synapses in parallel with conventional
axo-dendritic synaptic connections. For example we found a GABAergic input pre-
and post-synaptic to motoneuron input, a motif also observed in mammalian motor
circuits (Fyffe et al. 1984).

Although the motor system is rhythmically active in the absence of sensory in-
put (Suster et al. 2002), proprioceptive sensory feedback is required for natural
coordination and timing (Hughes et al. 2007; Song et al. 2007). We found diverse
and complex circuitry for relaying proprioceptive information, including GABAergic
and glutamatergic neurons directly relaying proprioceptive input to motoneurons.
This motif is well-posed to provide an inhibitory ”mission accomplished” signal to
surpress motoneuron activity after a successful contraction during forward locomo-
tion (Hughes et al. 2007). However, we also observed that many synaptic partners
of dbd were themselves presynaptic to neurons downstream of the other proprio-
ceptive axons, suggesting other, more complex roles for proprioceptive feedback
in modulating motor activity. Surprisingly, the axon terminals of proprioceptive
neurons themselves almost entirely lacked presynaptic input. This suggests that
proprioceptive input is privileged by the larval nervous system and not under fast,
dynamic modulation by central circuitry (Clarac et al. 1996), unlike proprioceptive
afferents in the locust leg (Burrows et al. 1994) and other somatosensory modalities
in the larva (Ohyama et al. 2015).

Wiring diagrams have been deemed necessary, yet not sufficient, for understanding
neural circuits (Bargmann 2012) and a fast approach for discarding hypotheses
of circuit function (Denk et al. 2012; Takemura et al. 2013). The neuronal wiring
reconstructed here offers insights into the structure of an insect motor circuit and its
control by sensory feedback, and serves as a complementary resource for detailed
functional studies. With the circuit mapping tools and methods demonstrated here,
fast, accurate, and targeted reconstruction of circuits in Drosophila larva (Ohyama
et al. 2015) and adult, and other species (e.g. Platynereis (Randel et al. 2015)) is
possible.
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2.4 M E T H O D S

Serial-section Transmission Electron Microscopy

Wild-type Drosophila first instar larval central nervous systems were manually dis-
sected by mechanical separation of the anterior tip of the larva from the posterior
portion in PBS, and immediately transferred to 2% glutaraldehyde in 0.1 M Na-
cacodylate, pH 7.4 buffer. Samples were post-fixed in 1% OsO4 in the same buffer
and stained en bloc with 1% aqueous uranyl acetate before subsequent dehydration
in ethanol and propylene oxide, and embedding in Epon. Serial 45 nm sections
were cut with a Leica UC6 ultramicrotome using a Diatome diamond knife, and
picked up on Synaptek slot grids with Pioloform support films. Sections were stained
with uranyl acetate followed by Sato’s lead (Sato 1968). Sections were then imaged
at 4.4 nm x 4.4 nm resolution using Leginon (Suloway et al. 2005) to drive an FEI
Tecnai 20 transmission electron microscope. The resulting 77,000 image tiles were
contrast-corrected, montaged and registered with TrakEM2 (Cardona et al. 2012)
using the nonlinear elastic method (Saalfeld et al. 2012). The generated data volume
of 22775 × 18326 × 462 voxels corresponds to a volume of 91 × 73 × 21µm3. The data
set covers approximately the posterior half of abdominal segment A2, and a nearly
complete abdominal segment A3.

Immunolabelings and light microscopy

Central nervous systems of Drosophila larva were dissected in PBG (10% NGS
[Normal Goat Serum] in 1% PBS) with tweezers under a scope and fixed with
4% paraformaldehyde in 1% PBS for 30 min, washed 3 × 10 minutes in PBT (1%
Triton-X100 in 1% PBS), blocked for 1 h in PBG, then washed 3 × 10 minutes in PBGT
(1% Triton-X100 in PBG), and incubated with primary antibodies (rabbit anti-GABA:
Sigma A2053 at 1/1000; chick anti-GFP: Abcam ab13970 at 1/2000) in PBGT for 24
h at 4oC on small Eppendorf tubes laid on a gentle horizontal shaker. They were
then washed 4 × 15 min in PBT, and incubated with secondary antibodies (goat anti-
chick 488: Invitrogen, at 1/500; goat anti-rabbit 568: Invitrogen, at 1/500) in PBGT
at 4oC in Eppendorf tubes wrapped in aluminum foil on a horizontal shaker for
24 h, subsequently washed in PBT 4 × 15 min (wrapped in foil), and mounted on
poly-lysine coated glass slides. Then samples were dehydrated by dipping the slides
in an alcohol series (30%, 50%, 70%, 90% in distilled water, then twice 100%) and
then in 100% xylene (3 times) using Columbia glass jars with slits for slides; then
mounted on glass slides in DePeX (Li et al. 2014) using spacer coverslips on the sides.
Glass slides were left to dry in a large Petri dish with a lid, wrapped in foil and at 4oC
for 3 days. Imaging was done with a Zeiss 710 confocal laser-scanning microscope.
Positive immunoreactivity was confirmed by consistent labeling across multiple
GFP-labeled cells per imaged nervous system in two or more nervous systems.
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Synapse clustering algorithm

In order to associate synaptic connectivity not to whole neurons, but to regions
of neurons, we adopt an approach where we cluster nearby synapses. Mean shift
clustering has been shown to be an effective approach to finding synapse clusters
in 3d without assuming a particular number of groups a priori (Binzegger et al.
2007). This approach involves convolving synapse locations with a Gaussian kernel
to estimate the density of synapses in space. A cluster is then the set of synapses
for which, starting at their location, gradient ascent reaches the same density peak.
However, locations on one neuron that are close in space can be very far apart
along the neuron. Here, instead of considering the density of a neuron’s synapses
in 3d space, we use a similar procedure to estimate the density of synapses at every
point on the arbor (following the cable) and define synapse clusters in the same
manner. The only parameter in both approaches is the width of the Gaussian kernel,
a physically meaningful parameter.

For these purposes, we define the skeletonization of a neuron to be a graph with
a set of nodes N with locations xi for i ∈ N and edges E . Because the neuron’s
graph is tree-like, there is a unique non-overlapping path on the graph between
any two points i, j ∈ N with distance δij. All synapses (both inputs and outputs)
associated with the neuron are represented by the set of their associated nodes,
S ⊂ N , noting that the same node can be associated with multiple synapses and
thus appear multiple times in S . For every node in the neuron graph, we compute
the synapse density

d(i) = ∑
j∈S

exp

(
−

δ2
ij

2λ2

)
where λ is a bandwidth parameter that effectively determines the size of clusters,
and presynaptic sites of polyadic synapses are counted as many times as they have
postsynaptic partners. Note that due to branches, a single synapse close to a branch
point may contribute more total density than one that is very distant, reflecting its
greater within-graph proximity to more of the arbor. We then look for all maxima in
the synapse density and the basins of attraction that flow to them via gradient ascent
(i.e. starting at a given node, moving along the maximally positive difference in
density between adjacent nodes). A cluster of synapses is then all synapses associated
with nodes found within a single basin of attraction of the density function. For
neurons found in the 1st instar larva, with ≈500–2000 µm of cable, bandwidths
around 8–30 µm provide clusterings that match the subjective description of either
“dendritic arbor” or “axon”. Smaller bandwidth values result in more granular
breakdowns of dendritic and axonal trees (e.g. dbd axons in Fig. 2.3i).

Synapse flow centrality of segments of a neuronal arbor

We define synapse flow centrality (SFC) as the number of possible paths between
input synapses and output synapses at each point in the arbor. We compute the flow
centrality in three flavors: (1) centrifugal, which counts paths from proximal inputs
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to distal outputs; (2) centripetal, which counts paths from distal inputs to proximal
outputs; and (3) the sum of both.

We use flow centrality for four purposes. First, to split an arbor into axon and
dendrite at the maximum centrifugal SFC, which is a preliminary step for computing
the segregation index, for expressing all kinds of edges (e.g. axo-axonic, dendro-
dendritic) in the wiring diagram, or for rendering the arbor in 3d with differently
colored regions. Second, to quantitatively estimate the cable distance between the
axon terminals and dendritic arbor by measuring the amount of cable with the
maximum centrifugal SFC value. Third, to measure the cable length of the main
dendritic shafts using centripetal SFC, which applies only to insect neurons with at
least one output synapse in their dendritic arbor. And fourth, to weigh the color of
each skeleton node in a 3d view, providing a characteristic signature of the arbor that
enables subjective evaluation of its identity.

Segregation index: a measure of synaptic sign distribution in a neuronal arbor

An ideal, textbook neuron has a purely dendritic tree and a purely axonal tree, that is,
one tree that only receives inputs and another that only delivers outputs onto other
neurons. In reality, dendro-dendritic and axo-axonic synapses are common. We have
observed that homologous neurons (e.g. identifiable neurons in the left and right
hemisegments) have a similar synaptic distribution, which differs from that of other
neurons. In insects, we find (1) neurons that abide to the canonical model as outlined
above—separated input and output trees—such as motor neurons and many types
of projection neurons; (2) neurons that consist of a unique tree with mixed inputs
and outputs (some of these neurons have been reported as non-spiking (Burrows
1992)); and (3) everything in between.

Having clustered synapses into groups (either by synapse clustering or by splitting
the neuron by centrifugal synapse flow centrality), we ask how neuronal inputs and
outputs are distributed among the clusters. If the clustering can adequately separate
axon from dendrite, then a highly polar neuron will have most of its outputs on the
”axon” cluster and most of its inputs on the ”dendrite” cluster. Motor neurons in
the abdominal segments of the Drosophila larva are examples of completely polar-
ized neurons. Conversely, highly non-polar neurons will have inputs and outputs
distributed homogeneously throughout their arbor. An example of the latter are
non-spiking neurons that perform extremely local computations, such as GABAergic
antennal lobe interneurons (Wilson et al. 2005).

A measure of synaptic sign distribution in a neuronal arbor has the potential
to distinguish similar yet uniquely different neurons, as well as to suggest broad
functional roles of the neuron. Here, we describe an algorithm to quantify the degree
of segregation between input and outputs in a neuronal arbor.

For each synapse cluster i on a neuron with Ni synapses, compute the fraction pi
that are postsynaptic. We measure the uniformity of the distribution of inputs and
outputs within cluster i by computing its entropy, for which we consider synapses as
entities with two possible states: input or output. At the limits, when all synapses of
the cluster are either inputs or outputs, its entropy is zero. When half of the synapses
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are inputs and the other half are outputs, the entropy is maximal. The contribution
of each cluster i to the total entropy is weighted by its fraction of the total synapses
(either inputs or outputs).

The entropy of the input/output distribution for each cluster is then

Si = − (pi log pi + (1− pi) log (1− pi)) .

The total entropy for the arbor is then just

S =
1

∑i Ni
∑

i
NiSi.

However, for reference we need to compare this to an unstructured arbor (i.e. non-
clustered) with the same total number of inputs and outputs; for this we consider
the whole arbor as one cluster, and we compute

Snorm =
∑i piNi

∑ Ni
log
(

∑i piNi

∑ Ni

)
+ (1− ∑i piNi

∑ Ni
) log

(
1− ∑i piNi

∑ Ni

)
(where ∑i pi Ni

∑ Ni
is just the total fraction of synapses that are inputs).

We define the segregation index as

H = 1− S
Snorm

so that H = 0 corresponds to a totally unsegregated neuron, while H = 1 corre-
sponds to a totally segregated neuron. Note that even a modest amount of mixture
(e.g. axo-axonic inputs) corresponds to values near H = 0.5–0.6 (Supplemental
Fig. 2.17).

Model for estimating false negatives and false positives in the wiring diagram

To estimate the probability of completely missing an edge as a function of the number
of synapses in the edge, we combine the twig distribution with the error rates
obtained from multi-user reconstruction. We found that our reconstruction identified
672 out of 761 twigs, giving our method a recall rate for complete twigs of q = 0.88.
Let the distribution of nb twigs across edges with m synapses be p(nb; m). Assuming
each branch has a probability q of being correctly observed, the probability of not
observing a specific connection across all nb twigs is (1− q)nb . The probability of
omitting an edge with m synapses is thus given by

Ploss(m) =
m

∑
nb=1

p(nb; m)(1− q)nb .

In our reconstruction method, we emphasize connections that are found con-
sistently between cells of the same type, typically hemisegmental homologs of a
presynaptic and postsynaptic neuron. Using a simple model, we approximate the
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likelihood of introducing a symmetric, but false, edge between cell types in our
wiring diagram due to reconstruction mistakes. Consider two neurons, j = 1, 2,
of the same cell type, with the dendrites of each sufficiently close to N axons to
physically permit connections. To add an incorrect edge to the connectivity graph
and not just reweight an existing one, any added branches must have synapses from
otherwise unconnected neurons. Let the number of axons with zero true connectivity
be N0. Assuming symmetry, the number of axons for both neurons should be similar.
We then suppose that errors add m synapses to each neuron, with each synapse
assigned uniformly at random to axon i ∈ (1, 2, ..., N), with the final added edge
count onto neuron j from axon i given by ki,j. For clarity, we order the axons such
that i ≤ N0 designates an axon with no true connectivity. We then ask what is the
probability that both ki,1, ki,2 > kθ for any i ≤ N0.

The parameters of this model will vary depending on the properties of the neuron
and neuropil in question. For example, larger neurons will have more opportunities
for error than smaller ones, while neurons with more stringent synaptic specificity
have more true zero edges than broadly synapsing neurons. To estimate a realistic
set of values for the neurons here, we consider the validation data. Because nearly all
false positives occur on the terminal arbors, the number of synapses added by error
m can be expressed as m = rLt k̄, the product of the rate of incorrect branches per
length of twig r, the total length of twigs Lt, and the expected synapses per added
twig k̄. Based on the independent reconstructions, we estimate r as 6 false positive
errors per 1.63× 103 µm, k̄ = 5 synapses, and a typical Lt = 257 µm, making m = 5.
Determining N and N0 is difficult, as it requires knowledge of axons that would not
be in the connectivity-driven reconstruction. We estimate reasonable values using
the aCC and RP2 network, since aCC dendrites strongly overlap RP2 dendrites, but
have several presynaptic neurons not shared with RP2 (Fig. 2.5). In addition to the
axons presynaptic to RP2, we find a mean of N0 = 36 inputs exclusive to aCC, so
we estimate N = 87. We simulated the 106 iterations of the model for kθ = 1–4. To
investigate more extreme errors than the ones measured, we also considered m = 37
synapses, the largest twin twig observed across all neurons looked at, and m = 20
synapses, a more typical value for the largest twig of a single neuron.

Estimating skeleton reconstruction and review time

Skeletons are chimeras, with multiple contributors creating various parts at different
points in time. We estimate the total amount of time spent skeletonizing an arbor—
including its synapses—by counting the number of 20-second intervals that contain
at least one skeleton node or connector node related to the skeleton. This approach
is robust to the discontinuity in time and authorship of adjacent skeleton nodes,
but tends to overestimate slightly reconstruction time, given the contribution of
20-second intervals for single nodes that were created earlier in time as pre- or
postsynaptic placeholder skeletons with a single node, and which were subsequently
merged into the growing skeleton. If the latter were each counted as contributing 6
seconds only, reconstruction times per skeleton typically shrink between 15 and 25%.
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We estimate the time for the systematic review of a neuron similarly, with the
added caveat that parts of the same arbor may have been reviewed more than once.
We count the number of minutes for which at least one skeleton node was reviewed,
for every contributor that reviewed a fraction of the arbor, and then add up all the
minutes of each contributor.

CATMAID software

We rewrote and greatly developed the Collaborative Annotation Toolkit for Massive
Amounts of Image Data, CATMAID (Saalfeld et al. 2009) (GPL), to implement our
methods for neural circuit reconstruction, visualization and analysis, and with a user
and group management system with sophisticated permissions for graded access.
The toolkit consists of four parts: (1) the client (a web page), and three types of servers,
namely (2) an application server based on the Django web framework (https:
//www.djangoproject.com), (3) one or more image volume servers, and (4) an
instance of the relational database PostgreSQL (http://www.postgresql.org)
with all non-image data, which includes metadata such as the spatial information
of skeletons, the location of which types of synaptic relations, the text annotations,
timestamps and provenance of every action. The original web client accesses, in con-
stant time, arbitrary fields of view of remote stored image volumes. We have greatly
extended this capability to include 3-way views (XY, XZ and ZY) and a number of
color overlays for multi-channel data such as light-microscopy images or computed
derivative data such as membrane probability maps. Analysis of neurons and circuits
is performed primarily in the client using the programming language JavaScript,
relying on a large number of open source libraries for numerical processing, data
management and visualization (D3.js, Numeric Javascript, Cytoscape.js, three.js, js-
NetworkX, Raphaël, jQuery, SVGKit). Offline analysis for validation and probability
calculations was performed by custom scripts in MATLAB (Mathworks). Documen-
tation and installation instructions are available at http://catmaid.org.

Preparation of EM images for CATMAID

For display in CATMAID, we Gaussian-smoothed montages of registered EM im-
ages (sigma=0.7 pixels, sufficient to remove high-frequency noise to increase the
effectiveness of JPEG compression without sacrificing signal) and then generated an
image pyramid with five zoom levels and diced it to collections of 256 × 256 pixel tiles
(512 × 512 and larger can work better for fast Internet connections), stored in JPEG
format (75% compression and stripped of headers with jpeg-optim). This approach
reduced data storage from over 700 to 90 gigabytes, which were served from a fast
seek time solid-state hard drive.
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Server and database configuration

We setup a single server machine (Intel Xeon X5660 with 12 cores, 48 GB of RAM, 10
Gb network card) running Ubuntu 12.04 to host the PostgreSQL database, the image
server and the Django server. LDAP id caching was enabled for best performance.
Images were stored on high-performance solid-state drives mounted with noatime
flag or as read-only, and served via proxy with in-RAM varnishd for caching. The
database was configured with large shared buffers (4 GB) and autovacuum on
(naptime: 8642 min; scale factor 0.4; analyze scale factor 0.2; cost delay -1; cost
limit -1) for optimal performance. We chose to serve pages with Nginx, running 8
processes, with epoll on, 768 worker connections, disabled logs and gzip on (except
for JPEG image tiles) for best performance, and with public caching and no-expire
settings for images. Django was run via Gunicorn with python 2.7 using 8 processes.
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2.5 S U P P L E M E N TA L T E X T

N E U R O N A L R E C O N S T R U C T I O N A N D P R O O F R E A D I N G I N C AT M A I D

Finding known neurons in vast EM volumes

Finding specific neurons in unreconstructed data demands prior knowledge, for
example using image volumes of genetically labeled neurons, and reference mark-
ers like neuroglian or fasciclin II tracts (Landgraf et al. 2003) that have anatomical
correlates that are conspicuous in EM. The ability to navigate vast volumes at inter-
mediate or low resolution aids in identifying large features such as nuclei, nerves,
trachea, or neuropil boundaries, helpful for crossing the resolution gap between
light-level microscopy and EM. Although not used in the project described here, to
further facilitate finding specific neurons of interest in vast EM volumes, CATMAID
supports overlaying other volumetric image data on the EM images.

Given a good guess of the approximate location, finding a neuron of interest
involves reconstructing multiple partial backbones (the low-order, microtubule-rich
processes), an operation that consumes up to 10 minutes per arbor. The large caliber,
the presence of continuous microtubules, and the paucity of synapses on the primary
neurites facilitate fast and accurate reconstruction of backbones. In larval Drosophila,
even partially reconstructed backbones suffice to identify individual neurons by
comparing with high resolution single neuron images at light level, given that the
lowest-level branches are typically sufficient for unique identifiability of individual
neurons. In our experience, the best starting points are stereotyped features like the
main branch points, tracts, commissural crossings, or the neuropil entry point of
the primary neurite bundle of all sibling neurons of the same lineage (Cardona et al.
2010). Unfinished backbones remain for other contributors to expand or merge into
full arbors later, if desired.

Reconstruction of metadata-rich skeleton representations of neurons

We represent neuronal arbors as skeletons. Each skeleton is a collection of nodes,
each with a spatial coordinate and additional metadata (authorship, timestamp,
radius, text annotations, revision status and synaptic relations). Each node refers to
one single other node as its parent, except for the root node which has none, defining
a topological tree.

The process of creating a skeleton to represent a neuron is as follows. Upon
locating a cross-section of a neuron of interest, a contributor places a seed node in it
and proceeds to grow the skeleton of the neuron by browsing to adjacent sections
and placing further nodes, which are linked together in a sequential parent-child
relationship. The relationship—a skeleton edge—is annotated for perceived accuracy
using a confidence value from 1 to 5, with the maximum of 5 the default value. This
confidence value is then used in the analytical tools, for example to split neurons
at these nodes to consider the skeletons on each side as separate entities. Skeleton
edges with reduced confidence are displayed in the 3d viewer as a clickable point
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to jump to that location in the image stacks. Upon reaching a branch point, we
place a node at the base of each branch, which acts as a placeholder to return to
later. When the neurite being annotated ends, we tag the terminal node as complete
(”ends”), and resume from the nearest open leaf, which is found automatically (with
the ’R’ key) or from a table of skeleton nodes. Eventually all open leaves have been
explicitly declared finished and the first draft of the arbor is complete. Optionally,
a neurite radius can be measured for each skeleton node, with cylinders modeling
arbor segments in 3d and spheres modeling the somas.

Each skeleton node may also be tagged with any number of arbitrary text snippets
to express metadata. Search tools enable finding tags in a specific skeleton or across
the data set. We use text tags on skeleton nodes in two different ways. First, free
text can be used to denote structures of interest (e.g. ”Golgi apparatus”) or as a
personal or team communication convention (e.g. ”check this synapse”). Second,
standardized text tags, accessible via key bindings, are used by the analysis tools to
better interpret the annotations. The standardized tags are: ”ends”, ”uncertain end”,
”uncertain continuation”, ”not a branch”, ”soma”, ”TODO”, ”mitochondrion”, and
”microtubules end”. The first four mark terminal leaf nodes. In detail:

• ”ends” (key binding ’K”) signals that the skeleton does not continue beyond
the node. An open end (untagged leaf node) signals that a neuronal process
needs to be continued, or at least looked at further.

• ”uncertain end” (key binding ’U’) signals that a leaf node likely continues, but
can’t be followed further. These are often used when a twig enters an occlusion
(e.g. an electron-dense precipitate stain covering over one or more sections), a
gap (a set of missing sections), or is ambiguous due to the thickness of a single
section being comparable to the thickness of a very small neurite.

• ”uncertain continuation” (key binding ’C’) signals that a leaf node in all likeli-
hood continues into a large branch (e.g. it contains one or more microtubules),
but its continuation is unclear due to occlusions or gaps. These are generally
resolved later by reconstructing several candidate continuations and finding
the one consistent with fundamental neuroanatomy (e.g. continuation of the
microtubules and heuristics such as that neurons have one soma) and homol-
ogous neuron morphologies from EM or light microscopy. This tag typically
indicates large omissions in the reconstructed neuron.

• ”not a branch” (key binding ’N’) indicates that the skeletonization involved
branches that do not represent the true neuronal topology. A typical situation in
which this occurs are large varicosities, such as at sensory axon terminals, which
are compact but may have bulges that span multiple sections. An annotator
exploring such a varicosity may lay down branches either because this was
not initially obvious or to help annotate synapses. This tag signals this, and
allows the analytical tools to collapse these artifactual branches, reassigning
any synapses to the base of the branch.

• ”soma” (key binding ’M’) signals a leaf node located at the soma. While we gen-
erally reroot the skeletons at the soma, when forgetting to do so the analytical
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tools will reroot the skeleton at the node labeled with ”soma” for the purposes
of the analysis. The built-in skeleton analytics widget will automatically bring
attention to this and other issues during the review process.

• ”TODO” (key binding ’L’) signals the need to revisit a skeleton node without
specifying any further as could be done with a custom text tag. Nodes with
this tag are indicated in the 3d viewer as a clickable sphere to let the user jump
to that location in the image stacks.

• ”mitochondrion” signals the presence of a mitochondrion in the immediate
proximity of the tagged skeleton node.

• ”microtubules end” (key binding ’F’) signals that no microtubules are found
distal to the tagged skeleton node, relative to the soma.

Synapse annotation

Synapses are modeled as relations between nodes of different skeletons, mediated
by a connector node. The presynaptic arbor has a node presynaptic to the connector,
and one or more postsynaptic arbors have nodes postsynaptic to the connector. Each
relation is annotated with a confidence value from 1 to 5, with 5 being the default
and highest confidence. The connector node allows the annotation of synapses as
placeholders, expressing that a synapse exists at a defined location even if the partner
arbor hasn’t been reconstructed yet. The one-to-many structure of the connector mod-
els either the polyadic synapses typical of invertebrates or the one-to-one synapses
typical of vertebrates.

In Drosophila larva, we identify synapses at locations that match the following
criteria: 1) a T-bar presynaptic structure; 2) vesicles nearby; 3) distinct synaptic
cleft; 4) postsynaptic densities. Synapses of different neuron types can differ in
ultrastructural appearance, although cholinergic, glutamatergic and GABAergic
synapses appear very similar. Presynaptic sites on serotonergic neurons are far
smaller and distinct from the others (Supplemental Fig. 2.7)

Systematic review of a skeleton

Reviewing a skeleton consists in visualizing each of its skeleton nodes in a sequence,
and adding or editing nodes and synaptic relations to the skeleton as necessary.
For this purpose, we partition the arbor to generate the smallest possible set of the
largest possible sequences of continuous nodes to minimize the number of times
that the reviewer has to switch to a different arbor path. We sort leaf nodes by
path length (in number of intermediate nodes) to the root node in descending order.
Starting from the most distal leaf node, we generate a sequence of nodes all the
way to the root. Then we pick the second most distal node and generate another
sequence of nodes until reaching a branch point that has already been assigned
to a sequence, and so on for each remaining leaf node. When done, sequences of
nodes are sorted by length. The reviewer then iterates each sequence, automatically
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marking each node as reviewed upon visiting it (using ’q’ and ’w’ key bindings to
go forward and backward in a sequence, and ’e’ to jump to the beginning of the
longest unreviewed sequence). As a visual aid, each node is centered in the screen,
facilitating the detection of changes in the contour of the sectioned neurite, as well as
drastic shifts of the field of view that indicate an error (e.g. a jump to an adjacent
neurite).

The enforcement of a unique directionality and simple one dimensional path—
from distal ends towards inner parts of the arbor or the soma—facilitates noticing
glaring inconsistencies such as a path starting off large and microtubule-rich, then
reducing to small and microtubule-free, then becoming again large and microtubule-
rich. In other words, a review approach coherent with the expected tapering out of
neurite caliber and cytoskeleton from soma to distal ends adds context that helps the
reviewer.

The total fraction of nodes of a skeleton that have been reviewed is indicated
in most tools that can display lists of neurons (e.g. selection table, connectivity
tables, connectivity graph), as well as a skeleton coloring mode in the 3d viewer.
The coloring (green for 100%, red for 0%, and hues from green to red for any value
in between) enables evaluating at a glance the current status of revision of e.g.
all upstream and downstream synaptic partners of one or more neurons in the
connectivity widget, of all neurons in a wiring diagram in the connectivity graph,
or the revision status of a specific branch in the 3d viewer. Given that one or more
users may review any node of a skeleton, and the different proficiency of each user,
the settings of each user enable the definition of a team of trusted reviewers. The
coloring of skeletons by review status therefore can be restricted to the user’s self
reviews, to the union of everyone’s reviews, or to the union of all reviews performed
by the team of trusted reviewers.

Synapses are effectively reviewed multiple times, given that they are seen from
at least two arbors (the pre- and the postsynaptic); more in the case of polyadic
synapses, as nearly all synapses in the Drosophila larva are. We consider synapses
as two elements: the presynaptic relation between a skeleton node and a connector
node, and the postsynaptic relation between a skeleton node of a neuron and the
connector node. Reviewing the associated skeleton node tacitly marks its part of the
synapse as reviewed.

The process of creating a skeleton for a neuronal arbor includes a self-review
by the same contributor who authored or cares the most about the specific neu-
ron. Given that neurons participate in many connections with other arbors, their
morphology and connectivity are inspected many times in different contexts; when
found in disagreement with expectations, individual neurons are then partially or
fully reviewed by additional contributors who have reasons to suspect errors. Most
of the added time cost is incurred in locating errors, a task partially facilitated by
lowering the confidence of skeleton edges deemed potentially incorrect during the
initial reconstruction. These low-confidence edges can be inspected first by sorting
all skeleton edges by confidence or through highlighting them in the 3d viewer.

To further facilitate systematic review, a ”Skeleton Analytics” tool lists in an inter-
active table some potential issues that must be addressed in a neuron or collection of
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neurons. The user can move through the list and immediately jump to the associated
region in the image data to determine whether or not the issue describes a genuine
error.

• Skeleton nodes tagged with ”ends” which are not leaf (terminal) nodes.

• Skeleton nodes tagged with ”TODO”, ”uncertain end” or ”uncertain continua-
tion”.

• Leaf nodes that are not tagged with neither ”ends” nor ”not a branch”.

• Autapses, in the form of a skeleton node that is postsynaptic to a connector
that is presynaptic to the same skeleton. All autapses in the larva detected so
far indicated errors in reconstruction, however they may be legitimate in other
nervous systems.

• Potentially duplicated synapses: when a neuron synapses twice onto another
neuron within a small cable distance it is possible that the synaptic active zone,
which spans from 2 to 20 serial sections, has been annotated multiple times
erroneously.

• Potentially duplicated postsynaptic relations: when a skeleton receives more
than one postsynaptic relation from the same connector, is possible that the
extra postsynaptic relations are accidental duplicates rather than e.g. two
different dendritic twigs of the same postsynaptic skeleton.

• Lack of a node tagged as ”soma”, or the root node of the skeleton not corre-
sponding to a node tagged as ”soma”. The case of multiple somas is generally
noticed immediately and addressed without needing special tools.

Neuroanatomy-driven proofreading techniques

Arbor structure

A correctly reconstructed neuronal arbor must be biologically plausible. The distri-
bution of microtubules is a biologically grounded approach to subdivide an arbor for
analysis. Additionally microtubules are robust to artifacts in serial section EM (e.g.
missing sections and noise), since they span many sections while remaining straight
and in a consistent configuration within a neurite (Supplemental Fig. 2.8). Errors in
the backbone are readily detected by comparing with homologous neurons, or by
the extreme and evident consequences of the reconstruction error, such as dramatic
changes in direction (sharp angle without branching), the presence of more than one
soma, missing large axonal or dendritic trees, or violations of the self-avoidance of
neuronal processes, which is often but not always observed.

While most twigs were short and had few synaptic contacts, we did find three
interesting outliers. Each outlier twig was much larger and some included neurites
that, upon careful inspection, were in the backbone in their contralateral homolog.
This could suggest that parts of the larger twigs could become backbone at a later
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developmental time point, or they contained labile microtubuli that were not cap-
tured in the EM sample preparation. Furthermore these three outlier twigs all had
smooth endoplasmatic reticulum at their base and branched very early, suggesting
that they are effectively a pair of twin twigs. Considered alone, each half fell within
the dimensions of typical large twigs.

Comparing cell types

Neurons of the same cell type share many properties in common. For Drosophila,
we define cell type as the pair of left and right homologs, symmetric across the
midline, as observed from light-microscopy (Li et al. 2014; Vogelstein et al. 2014).
Most cell types repeat across multiple consecutive segments, though a few do not.
Exceptionally a cell type may consist of more than one pair of cells, or of a single
unpaired cell with a bilaterally symmetric arbor. Quantitative analysis of the anatomy,
synaptic distribution and connectivity for a group of neurons containing potential
pairs of homologs helps with detecting potential issues by comparing homologs with
each other and with other types.

Reconstructions of homologous neurons can differ due to true developmental
differences (Supplemental Fig. 2.15), errors in EM reconstruction, misidentification
of homology, or asymmetries in imaging data (Supplemental Fig. 2.8). To help detect
and classify these differences we generate interactive plots of numerous user-selected
metrics on demand. If a pair of homologs is consistently more similar to each other
than to other neurons for all three kinds of metrics—anatomy, synaptic distribution
and connectivity—the likelihood that the pair contains significant errors is low, and
therefore other neurons can be prioritized for review.

We consider several anatomical quantifications that are independent of absolute
spatial coordinates and orientation, avoiding issues of mirroring and alignment of
neurons. To determine which measures are most helpful for identifying homologous
neurons, we applied a distance metric learning method (Xing et al. 2002) that scales
individual dimensions to minimize Euclidean distance between homologs and max-
imize distance from other cells. The two most effective measures were total cable
length of branches other than the main branch and normalized difference between
the number of input and output synapses.

The distribution of synapses over an arbor is characteristic of each cell type. Some
cell types have distinct input and output regions with or without dendritic outputs
and axonic inputs, while others have arbors with entirely intermingled inputs and
outputs (Supplemental Fig. 2.17). We devised a novel metric, the ”segregation index”,
that measures the degree of separation between input and output regions of an arbor.
First we calculate the number of paths from input synapses to output synapses
that pass through every node on the skeleton, a quantity we call synapse flow
centrality (SFC). We found that the point on the arbor with the highest centrifugal
SFC (which considers for any skeleton node only distal outputs and proximal inputs)
best separates the axon (distal) from the dendrites (proximal).

To detect and analyze neurons with similar network roles, we reduce neuronal
arbors and synapses to nodes and edges in a graph. From the adjacency matrix de-
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scribing the connectivity, we measure the signal flow and perform graph partitioning
via spectral graph analysis (Varshney et al. 2009). We find that neurons of the same
cell type can group together, even when the number of neurons is variable such as in
the optic lobe of Drosophila larva (Simon Sprecher, Ivan Larderet & Albert Cardona,
unpublished observations).

Analysis of edges in the wiring diagram

Not all connections in a wiring diagram are equivalent. The synapses that count
towards an edge (a connection) have a specific spatial distribution on the postsynaptic
arbor. Small errors could change network topology when all synapses of an edge are
spatially close or on the same twig. In contrast, when synapses are widely distributed
over the postsynaptic arbor small errors will mostly alter the number of synapses
per edge. From this intuition we define an edge risk metric as the fraction of inputs
eliminated from the postsynaptic arbor by removing the spanning tree between all
the postsynaptic sites associated with the edge. Synapses and twigs involved in
high-risk edges are thus sensitive to small errors and are subject to focused review.

The neuroanatomical basis for the edge risk measurement is as follows. Dendrites
taper out centrifugally, and the radius of the curvature of dendrites shortens with
diminishing calibers. Therefore terminal dendrites take relatively sharp turns. We
measured the smallest caliber of a distal dendrite at about 40 nm. In combination, the
small caliber and a short bending radius of distal dendrites results in that a fraction
of terminal dendrites will travel horizontally inside a single 45-nm section, increasing
the reconstruction difficulty. Therefore synapses on terminal dendrites are more
likely to be false positives, introducing noise into the wiring diagram. Conversely,
synapses onto central, large-caliber shafts are relatively uncontroversial. Furthermore
we note that a large number of postsynaptic sites distributed over different parts of
an arbor are unlikely to be all wrong, whereas when concentrated in a single terminal
dendrite, one error would render the wiring diagram edge incorrect. We therefore
define the concept of synaptic robustness of an edge (the edge risk) in the wiring
diagram as the complement of the fraction of all postsynaptic sites that would be
removed when cutting the skeleton of the postsynaptic arbor at the lowest common
ancestor segment of all the postsynaptic sites that constitute the edge.

Resolving conflicts in a collaborative setting for editing skeletons

In an environment where multiple contributors simultaneously reconstruct neuronal
arbors, eventually an ongoing reconstruction reaches that of another contributor.
Attempted edits are resolved according to predefined permission rules for who
can edit whose work. These rules are implemented as permissions granted to a
contributor to alter another contributor’s work. The status of ”superuser” enables a
trusted expert neuroanatomist to edit at will.

Our system operates at two levels: locked and unlocked skeletons. Skeletons that
are deemed complete are locked by the contributor, and by default cannot be edited
by others unless they have been granted permission to do so. Unlocked skeletons,
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such as partial reconstructions produced when searching for a specific neuron or
when pruning away incorrect branches, can be merged or split by others at will.
Neurons are unlocked by default and locking is only to be used upon completion,
which prevents sudden and unexpected changes in established results. Individual
skeleton nodes and their relations to connectors (which express synapses) can only
be edited by the original author, or by others that have been explicitly granted
permission to edit the contributions of the original author. In case of conflict or
insufficient permissions, a notification system delivers the request to the contributor
who can review and effect the change. The result of the collated work of multiple
contributors can be inspected in 3d, with each node of the skeleton colored according
to the identity of the contributor, as well as in the review table.

A circuit mapping strategy to efficiently identify strongly connected partners

As described above, to identify a neuron quickly in the larva, the first few minutes
are best spent skeletonizing the largest structures on the backbone and tracing them
to the soma. This minimal representation generally suffices to identify the neuronal
lineage and the overall span of the arbor. When the correct neuron has been found,
reconstructed in full and reviewed, we begin to map its synaptic partners.

To find out the strongly connected partners of a neuron, we use the connectivity
table that aggregates all synaptic relationships, whether with fully reconstructed
neurons or single-node skeletons used as placeholders to indicate synaptic partners.
Starting at each single-node skeleton, we reconstruct the arbor all the way to the
soma by choosing, at every branch point, the larger caliber (may require jumping
back to the last branch node occasionally), momentarily ignoring the rest of the
arbor. This partial reconstruction suffices to obtain a minimum of information about
the partner arbor, such as the lineage. Partner neurons that receive more than one
synapse from the neuron of interest will quickly accumulate further fractions of
their arbors. These preferred partners—those with many synapses with the arbor of
interest—can then be selected for full-arbor reconstruction, while the completion of
single-synapse partners (of which a neuron has many, and which in the Drosophila
larva may play a lesser role in understanding the circuit role of a neuron) can be
postponed.

Application of prior knowledge to resolve ambiguities

Electron microscopy image volumes of neuropils contain noise. For serial section
transmission EM, noise originates during fixation (e.g. broken membranes and
reduced extracellular space), serial-sectioning (e.g. folds, cracks, missing sections,
thick sections), counter-staining (e.g. precipitated heavy metals, dust particles,
or absence of staining due to microscopic air bubbles), and imaging (e.g. locally
uneven illumination, tile-wise constant noise originating in improper correction of
the camera’s dark- and brightfields); for examples see Supplemental Figure 2 in
Saalfeld et al., 2012 (Saalfeld et al. 2012).
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The most common form of noise consists in missing data either as a partial oc-
clusion of a section, or by the loss of one or more sections. When reconstructing
a neuronal arbor, upon reaching an area with missing data (a gap) we use both
global and local cues to identify the correct continuation, labeling the skeleton edge
that crosses the gap with an appropriate confidence value to express our degree of
certainty in the decision. These low-confidence edges enter into the visualization
and analytical tools for further evaluation. Generally, the direction, caliber and
cytoplasmic characteristics of the neuron and its neighboring neurons suffices to
identify the corresponding continuation on the other side of the gap. The larger the
gap and smaller the neurite, typically the lower the confidence in the identification
of the correct continuation.

Locally, gaps up to 500 nanometers (e.g. 10 serial sections) are crossable using
microtubules. The number, direction and spatial arrangement of microtubules in a
neurite are constant over lengths of micrometers, making them reliable structures
over many sections (Supplemental Fig. 2.8). Similarly, mitochondria take tubular
shapes inside neurites, and their sparseness and relatively constant dimensions
identify a neurite across consecutive serial sections (Supplemental Fig. 2.8). Other
cues can include the smooth endoplasmatic reticulum that lines large and mid-size
neurites; the presence of vesicles of a specific kind (e.g. dark, 50-nm diameter
neuropeptide vesicles, or clear large unevenly shaped vesicles, or small, packed clear-
core cholinergic vesicles, and others); or other distinctive characteristics such as the
presence of microtubules on a specific side of the neurite, or membrane-associated
structures, or distinctive cytoplasm texture, such as relative darkness compared to
neighboring neurites.

Globally, the properties of a neuronal arbor help to identify continuations across
gaps. For example, an axonal neurite tends to continue being axonal in nature within
the gap-sized span of a few hundred nanometers; same for dendrites. An obvious
feature is that differentiated neurons present a single soma; continuations that lead
to a second soma are therefore most likely incorrect.

Dynamically generated and annotated wiring diagrams guide circuit reconstruction and
highlight errors

Interactive, partial wiring diagrams calculated on demand during neuron reconstruc-
tion guide circuit mapping and the identification of errors. Connectivity-dependent
coloring schemes highlight desired features of the circuit, sorting neurons into
groups.

A common case is the inspection one or more orders of synaptic neighborhoods.
Given one or more neurons of interest (such as RP2), we load all synaptic partners
into the graph. For small circuits, visual comparisons between the neighborhoods of
left and right homologs can identify similar neurons (e.g. by coloring by stereotyped
properties such as the ratio of inputs and outputs, or by their graph centrality; see
below) and highlights missing or differently connected neurons, prompting focused
review. Coloring the circuit graph relative to a central neuron highlights the relative
synaptic order of all other neurons.
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Given two neurons, an important circuit question is if there are any paths between
them and, if so, through what neurons. This can be queried and added to the graph
from within the graph widget, with filters for how many synapses an edge must be.

Other coloring modes include by betweenness centrality (Brandes 2001) of the
wiring diagram (calculated as a directed graph), which stresses the role of a neuron
within a circuit; and by the percentage of review of the neuronal arbor, indicating at
a glance the approximate level of completeness within a group.

When reconstructing neuronal arbors with skeletons, the nodes of the skeletons
are annotated with a confidence value signifying the degree of certainty in the
continuation of the axon or dendrite. We carry on this confidence into the dynamic
wiring diagram representation by splitting the skeleton that models a neuronal arbor
at the low-confidence edges, resulting in independent graph nodes. The connectivity
of these fragments aids in evaluating their impact on the wiring diagram and their
potential correctness.

Contributor-centric neuron annotations

With many expert contributors come many points of view on how to describe neurons.
Boundaries between multiple possible classifications are ill-defined, and therefore
instead of enforcing a controlled ontology, we allow the annotation of any neuron
with a number of arbitrary text snippets. These annotations can express a variety of
potentially overlapping concepts, from body regions to cell types, gene expression
patterns, genetic driver lines and neurotransmitter profiles, among many others.

The combination of multiple annotations on the same neuron enables powerful
queries, in particular when further constraining search with the wiring diagram.
For example to find the list of neurons annotated with ’GABA’, ’left’ and ’segment
A3’ that synapse onto a specific set of neurons present in another, existing list.
Constraining even further by contributor, by time of annotation or by review status
of the neuron magnifies the power of annotation search.

Annotations also enable the co-existence of multiple nomenclatures for naming
neurons. These could be for example by GAL4 line, by developmental grouping (a
name composed of region, segment, lineage and birth order), or by gene expression.
In CATMAID, many widgets lists neurons by name. These displayed names are
customizable, so that each contributor can see his or her own names, even if the
neurons in question were created by others. To this end, each contributor chooses a
setting for neuron display names among multiple possibilities, including skeleton
IDs, own annotations, all annotations, or most usefully, annotations that are them-
selves annotated with, for example, ”GMR GAL4 lines” or ”Truman nomenclature”
to indicate naming schemes.

Annotations, neurons and contributors are related via the co-annotation of neurons
and the contributor authorship of an annotation. To make annotations discoverable,
we construct an ever-expanding recursive hierarchical tree structure that starts off
with three entries: the list of all annotations, the list of all neurons, and the list of all
contributors, with each paginated list reducible by regular expression matching. For
each annotation we list five lists: neurons annotated with it, annotations annotated
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with it (which act as meta-annotations), annotations that it annotates (acting itself as
a meta-annotation), the list of contributors that have used it to annotate an entity (a
neuron or an annotation), and the list of co-annotations (other annotations onto the
neurons that it annotates). Each annotation, neuron and contributor is expandable,
letting the user navigate a graph of relations. For co-annotations, further expansions
constrain the listing of neurons to those that share all chosen annotations. For
example, starting at annotation ’segment A3’, continuing with the co-annotation
’left’, and then the co-annotation ’GABA’, leads to the listing of all GABAergic
neurons on the left hemisegment of abdominal segment A3. Similarly, starting from
’GABA’ could lead to ’A3’ and ’left’ as well, resulting in the same list of neurons. This
approach enables the co-existence of many contributor-centric representations of
the same neuronal circuits, and therefore, the cross-pollination of information from
different fields, e.g. development, genetic tools, anatomy and physiology.

In summary, the flexibility afforded by the annotation system supports from
long-term, contributor-centric publication-ready naming schemes that embody es-
tablished nomenclatures, to single-use lists helping personal data organization or
team collaboration.

Quantification of the quality of a contributor’s work over time

Collaborative reconstructions require that users be able to trust the work of others.
It is therefore important for a project manager to be able to track the work of each
contributor. To estimate an individual’s speed and quality, we consider only contri-
butions that have been reviewed by others, within a specific time period. We quantify
the number of edits performed by the reviewer, in particular splits (cutting away an
incorrect branch), merges (appending a missing branch) and the addition or removal
of synapses. While speed and quality are independent, we typically see that better
contributors are also faster.

After an initial period, lasting anywhere from a couple of days to about two
weeks of continuous work, a contributor typically becomes acquainted with the
reconstruction task and stops adding erroneous synapses or merging branches from
different neurons into one. Remaining errors are typically missing branches or
synapses, which are far easier to resolve and have a less significant impact on
interpretation of the wiring diagram.

We observe that different areas of the nervous system exhibit profound differences
in arbor and synapse morphology, from extensively branching trees in some ventral
nerve cord neurons to cloistered self-contacting axons like A02l or in the olfactory
lobes (data not shown). Subjectively, contributors that reconstructed neurons in
diverse areas of the nervous system experienced a larger variety of shapes and
morphologies, which correlated with the acquisition of greater skill.
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L A RVA L M O T O R S Y S T E M C I R C U I T RY

The data volume used was described in Ohyama et al. 2015. It is comprised of 462
sections, each 45 nm thick and imaged at 4x4 nm per pixel resolution. It is bounded
anteriorly approximately at the intersegmental nerve entry point in segment A2
and posteriorly near the segmental nerve entry of segment A3. Cutting occured
approximately 8◦ angle relative to a true transverse, resulting in the left side including
a region slightly posterior to the right.

Using their characteristic morphology we identified and reconstructed motor neu-
rons U1, U2, the three VUM motor neurons, aCC, RP5 and RP2 and sensory neurons
dbd, dmd1, ddaD, ddaE, and vbd for segment A3. Because dbd, ddaD and ddaE
axon terminals also project into anterior and posterior segments we used segmental
repetition to identify the projections of these neurons from adjacent segments that
participate in the local circuitry of A3. We chose to focus on dbd, aCC, and RP2
and continued to reconstruct all arbors synaptically connected to the pair of sensory
axons and two pairs of motor neuron dendrites for these cells in A3.

We found 425 arbors spanning 51.8 millimeters of cable, with a total of 24,068
presynaptic and 50,927 postsynaptic relations. We named each of the arbors and an-
notated them as an identifiable neuron (198), an ascending or descending projection
that spans the imaged volume (107), a neuron spilling over from adjacent segments
beyond the imaged volume (84), or an unresolvable fragment (36) (Supplemental
Fig. 2.10, Supplemental Fig. 2.11). The 198 identifiable neurons amount to 83% of
all cable, 88% of all inputs and 62% of all outputs, with ascending or descending
projections contributing 29% of all outputs. Interestingly, they included some of
the few larval central neurons previously described, including members of a glu-
tamatergic premotor class (Kohsaka et al. 2014) (named here as various members
of the A02 lineage, e.g. A02b) and the two seratonergic cells found in larval nerve
cord (Chen et al. 2008) (named here as A26d and A26e) which can modulate locomo-
tor activity (Okusawa et al. 2014). Numerous other previously unreported cell types
are included as well.
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Supplemental Figure 2.7.: Synapses of neurons with different neurotransmitters
For all examples, white arrow points at the most promi-
nent slice of the T-bar. Each panel measures 1024 nanome-
ters on the side. a) Two examples of synapses in the glu-
tamatergic neuron A02b (a ”looper” or ”PMSI” neuron;
Kohsaka et al. 2014) spanning twelve and six 50 nm sec-
tions respectively. Glutamatergic synapses vary consider-
ably in size and number of postsynaptic partners (from
3 to over 15). b) An example of a cholinergic synapse
(a sensory axon, dbd; Yasuyama and Salvaterra, 1999)
spanning 12 sections. c) An example of a synapse from a
GABA immunoreactive cell type, A31k, spanning 9 sec-
tions. The arrowhead annotates the T-bar at panel 6 for the
GABAergic synapse. The black thick line crossing panel 9
in A31k is the shadow of a fold in the support film. d) Two
examples of the typically small, dyadic synapses found
in serotonergic neurons like A26d (Chen and Condron,
2008). Synapses in the serotonergic neurons typically span
only 2 sections (100 nm) and contact 2 or occasionally 3
postsynaptic partners.

63



Q U A N T I TAT I V E N E U R O A N AT O M Y F O R C O N N E C T O M I C S I N D R O S O P H I L A

T1 T2 T3 A1 A8/9. . .

brain cortex

neuropil

SOG

VNC

20 µm
A02l L

A31k R

volume boundary

A

P

A02l R

A31k L

in volume

out of volume

a b c

Supplemental Figure 2.8.: Serial section electron microscopy of abdominal seg-
ment 3 of the Drosophila larval central nervous system.
Sections are 45 nm thick. a) Cartoon depicting the CNS
(adapted from Ito et al. 1995) with a blue rectangle indi-
cating the volume sectioned and imaged. Vertical discon-
tinuous lines in the cartoon are neurohemal organs for
reference of segmental boundaries. b) Sagittal view (side
view of the EM series of sections) through the midline,
intersecting neurohemal organs (white diagonal broad
bands). By reconstruction of the various arbors, including
RP2, that have unique branches only present in A3 (data
not shown), we were able to correctly localize the series
to the A2 and A3 segments. c) Sections were cut approx-
imately 8 degrees from transverse. Due to the volume
limits, observed circuitry could be asymmetric as in the
case of A02l synapsing onto 31k (see Fig. 2.3). The region
where the contact occurs (red circle) is present on one side
of the data but not the other.
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Supplemental Figure 2.9.: Microtubules are visible in EM and span multiple sec-
tions. a) Defining the backbone of neuronal arbors in the
fly, microtubules are visible in EM sections whether cut
transverse (top inset, red arrowheads) or obliquely (bot-
tom inset, red arrowheads). b) Microtubules in a given
neuronal process span several sections (3 shown here; mi-
crotubules were traced over 16 sections) and maintain
their relative orientations. This slow change across sec-
tions makes them a useful guide for crossing small am-
biguities in image data. Microtubules are color coded as
in the processes in a and were traced and viewed in the
software TrakEM2.
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Supplemental Figure 2.10.: Counts of reconstructed neuronal arbors. We recon-
structed 425 arbors which fall into 4 groups: ”identified
neurons” (arbors that could be associated with a single
neuron name or at least with a lineage of origin, even
if the whole arbor is not present within the imaged EM
volume), ”intersegmental neurites” (neurites that cross
the volume from anterior to posterior, the majority of
which are an unbranched axon that synapses onto mo-
torneurons), ”spillovers” (partial arbors that are not rec-
ognizable and which originate in neurons in the anterior
or posterior segments) and ”ambiguous fragments” (very
small arbors with few inputs or outputs and which termi-
nate within the boundaries of the volume; most of them
terminate at a 3-section gap between sections 348 and
352). Identified neurons are either synaptic partners of
dbd, aCC or RP2, or are any of the other 16 propriocep-
tive axons (the left and right ddaD in segments 3 and 4;
ddaE in segments 2 and 3; dmd1 and vbd in segment 3;
and dbd in segments 2 and 4) or 9 motorneurons (the left
and right RP5, U1, U2 and the unpaired VUMs in abdomi-
nal segment 3). While arbors in the intersegmental group
could not be identified, in numerous occasions the left
and right homologs are recognizable, given idiosyncratic
characteristics (not shown).
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Supplemental Figure 2.11.: Bundles of premotor axons that run the length of the
imaged volume. These axons originate in neurons whose so-
mas are located in areas of the central nervous system beyond
the limits of the imaged EM volume. We distinguish 5 bundles:
dorsolateral (blue), low intermediate bundle (yellow), middle
intermediate bundle (green), dorsal intermediate bundle (ma-
genta; only present on the left side and weakly connected to
motoneurons), and medial bundle (cyan). The dotted lines
delimit the imaged volume, which had a tilt of about 8 degrees
relative to the transversal plane. Arbors, particularly the most
dorsal ones (magenta) may appear outside the plane or short
of the imaged limits due to the perspective projection. Below,
wiring diagram bundle-wise onto the motoneurons RP2, RP5
and aCC. The name of each bundle includes the number of
member neurons in brackets; asymmetries between left and
right originate in the fact that some members contribute a sin-
gle synapse onto motoneurons and may not appear on the
other side. Intrabundle edges are not shown. Notice how the
only large source of inputs onto RP5 is from the dorsolateral
bundle, which also places many synapses onto RP2. Note that
we did not reconstruct all synaptic partners of RP5.
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Supplemental Figure 2.12.: Numerically high synapse edges are distributed over
many twigs in adult Tm3 neurons. Each input onto the
Tm3s analyzed in Fig. 2.1 is a data point (see legend). The
x-axis is the number of synapses this edge is comprised
of, the y-axis is the number of distinct twigs this edge
spans. As in the larval motoneuron data, edges with
multiple synapses are almost always distributed across
multiple twigs. Points are jittered to avoid overlap.
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Supplemental Figure 2.13.: Relationship between mitochondria, synapses and ar-
bor compartments. Two groups are considered: the left
and right aCC and RP2 motoneurons, and the left and
right homologs for interneurons A02k, A31k and A27j.
a), c) Relative content of mitochondria in backbones, den-
dritic twigs and axonic twigs. b), d) Distances from pre-
and postsynaptic sites to the nearest mitochondrion. We
found that, for both motoneurons and their synaptic part-
ners, 97% of input synapses are evenly distributed within
0–10 µm of a mitochondrion (maximum distance: 15 µm).
96.1% of presynaptic sites on interneurons lay within
3 µm of a mitochondrion (88.6% within 2 µm; maximum
distance: 5 µm). In interneurons, the backbone contains
79.2% of all mitochondria, axonic twigs 14.6% and den-
dritic twigs only 4.6%. motoneuron backbones (the part
within the CNS) contain 90.3% of all mitochondria and
their twigs the remaining 9.7%.
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Supplemental Figure 2.14.: Multiple representations of neurons in CATMAID.
The CATMAID interface is designed to let the user interact
with multiple aspects of neurons. Shown here is an annotated
screenshot. Other than the image view, all other widgets are
pulled up on demand by the user. a) An image pane shows
the EM data, all reconstructed nodes in the view (purple dots),
synapse connector nodes (orange dots), and the active node
(green dot, indicated by solid white arrowhead). The current
active node belongs to an A02k neuron (name indicated in
upper right) and is presynaptic to a node from motoneuron
RP2 indicated by the thin arrowhead. b) Graph representation
of a collection of six neurons, including the selected pair. c)
Homologous A02k cells shown in a 3d viewer. The active node
in the image pane is shown by a green dot in the viewer (indi-
cated by solid arrowhead). Presynaptic and postsynaptic sites
are clickable and center the image viewer on that point. d) List
of synapses between A02k and RP2, represented in the graph
widget by an edge (red arrowhead). These sites are clickable,
letting the user jump to that location and permit fast review-
ing of specific connections. e–f) Plots of various properties of
the six neurons shown in b). Features that can be calculated
on demand include morphological quantities (e) and graph
theoretic quantities of the network between displayed neurons
(f). This allows rapid comparison of different properties of
homologous neurons and circuits.
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Supplemental Figure 2.15.: Developmental deviants. Four pairs of left and right ho-
mologs in posterior view, where one of the pairs (canonical)
conforms with the arbor shape found in light microscopy (not
shown) and the other presents deviations. There are two cases
of an early split of the axon (A02d a3l and dbd a3r; dotted
circle marks the split); normally the split would occur at the
proprioceptive domain (where the output synapses are, in
red). A10a a3r presents a misrouted axon that reaches the
correct target area (and connects to the same neuron types
as the canonical homolog does) but sprouts an ectopic, su-
pernumerary dendrite along the way (which accounts for 14
input synapses out of 178 total). A23a a3l presents a correct
arbor but the path to the soma is different. Connectivity-wise,
deviant neurons are very similar to their canonical homologs.
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Supplemental Figure 2.16.: GABAergic interneurons. a-o Dorsal views. a, d, g, j, m
Projections of fluorescently labeled single-cell clones of
identified neurons (courtesy of James W. Truman, HHMI
Janelia Research Campus). b, e, h, k, n Dorsal views of
projections of parent lines used to generate single-cell
clones, expressing myr::GFP. c, f, i, l, o Single z-plane
at high magnification of cell indicated by arrowhead in
(b, e, h, k, n) showing immunoreactivity to anti-GABA
(magenta) and GFP (green). c’, f’, i’, l’, o’ Same view
as (c, f, i, l, o) only showing the anti-GABA channel in
grayscale.
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Supplemental Figure 2.17.: Neurons are distributed throughout the complete
range of possible segregation indices. Top, plot of seg-
regation index vs. cable length for the 39 pairs of identified
neurons. Neurons span the full range of the segregation index.
Some neurons present completely unsegregated arbors like
the serotonergic neurons A26d, with large arbors that present
a mixture of inputs and outputs throughout; or compact neu-
rons that are also fully mixed like A27e. Other neurons present
intermediate segregation index, which generally takes one of
two forms: purely postsynaptic dendrites with mixed axons
(i.e. axons that receive a number of inputs) like A08a, and
neurons that additionally present a small amount of dendro-
dendritic output synapses (e.g. A23a). Finally, some neurons
present purely segregated arbors, with dendrites with only
postsynaptic sites and axons with only presynaptic sites, like
A19l. At bottom left of the chart, the majority of neurons are
intersegmental premotoneurons (partial axonic arbors from
neurons present in segments not in the imaged EM volume).
Note that neurons A27e (both sides) and A08 a3r have their
soma outside the imaged EM volume. SI, segregation index;
red dots: neurons presynaptic to aCC or RP2; cyan dots: neu-
rons postsynaptic to dbd; violet dots: neurons both postsy-
naptic to dbd and presynaptic to aCC or RP2; yellow dots:
motoneurons, proprioceptive axons or serotonergic neurons
not downstream of dbd. The complete set of measurements is
available in Supplemental Measurements in CSV format.
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Supplemental Figure 2.18.: Four independent reconstructions of a six neuron cir-
cuit. a) Morphology of the six neurons used for the com-
parison. The arbors of these neurons were reconstructed
independently four times, and used for generating a con-
sensus skeleton for each arbor using the RESCOP method.
Branches found only on the consensus and only in the
CATMAID approaches are indicated. Neurons 1 and 2
are A02k, 3 and 4 are A31k, and 5 and 6 are A27l. b)
Graphs of each of the four independent reconstructions.
Notice that all four individuals agree on almost all edges
with similar amounts of synapses per edge, except in
a missing edge for two tracers between A02k a3l and
A31k a3r.
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Supplemental Figure 2.19.: Observed errors are distributed similarly to randomly
sampled points. We look for clustering in the spatial
distribution of errors found by comparison with multiple
independent reconstructions. For each of the 89 missed
branches, we computed the distance to the nearest other
error. The cumulative distribution of such distances is
shown in red. We compared this distribution to that
obtained by randomly sampling 89 nodes from twigs
across all six neurons, disallowing two nodes from the
same twig. Distributions for each of the 1000 samples are
shown in gray. Only 65/1000 differ from the observed
distribution in a two-sample Komologorov-Smirnov test
with a p-value < 0.05. We thus conclude that spatial
clustering of errors is minimal.
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A B S T R A C T

How do neural circuits change when their neurons grow in size and complexity?
Here, we investigated this question using the Drosophila melanogaster as a model
system that provides the unique advantage of a nervous system with identifiable
neurons. Single neurons are trackable over time and across animals, thus allowing
to compare identified circuits througout multiple stages of larval development. We
have chosen the nociceptive neural circuit in the larva ventral nerve cord as a model.
We used large-scale serial-section transmission electron microscopy to generate EM
volumes of the earliest stage (2 hours post hatching first instar) and latest stage (wan-
dering third instar). In all volumes, we reconstructed the identifiable axon terminals
of multi-dendritic class IV polymodal nociceptors and mapped all the neurons that
are postsynaptic to these sensory axonal terminal within the ventral nerve cord. We
found that at both stages, nociceptors connect centrally to sets of local, ascending
and descending interneurons. The synaptic organization of the network appears
to be established at the earliest stage and persists to the latest stage with 3-4-fold
increase in synaptic numbers with only a few differences. Despite cell-type-specific
differences in growth, dendrites of postsynaptic interneurons maintain an almost
constant proportion of nociceptive inputs throughout development. The circuits of
two early stage individuals displayed a high-degree of similarity in morphological
and synaptic properties. Additionally, dendritic arbors of local interneurons show
preferred synaptic connectivity to different subsets of the somatotopically organized
nociceptors. This preference is cell-type-specific and is more refined at late stages,
suggesting the emergence of receptive-field-like postsynaptic integration of noxious
signals.
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3.1 I N T R O D U C T I O N

As animals mature and develop, their brain needs to support increasingly complex
sensory and motor capabilities. With the increase in body size, most organs grow
in size by adding more of their elementary cell types in order to keep fulfilling
their functional role. An exception is the brain where the connectivity patterns of
neurons, their number, size and complexity may need to change according to new
information-processing requirements of the organism (Purves 1988).

Considerable diversity exists across animals in how neural circuits scale in de-
velopment. One strategy is to increase the size and complexity of neuronal arbors.
These structural changes are accompanied by the regulation of formation, elimi-
nation and maintenance of synapses between neuron types. For instance, larger
postsynaptic arbors need to receive more presynaptic inputs to maintain sufficient
synaptic drive to effect larger muscles (Zwart et al. 2013). Another circuit scaling
strategy is proliferate neurons of a particular type while the size and complexity of
arbors and synaptic numbers may remain similar (Wittenberg et al. 2007). In both
strategies, synaptic connectivity patterns need to be modified in development for
new behaviors to emerge without compromising existing functional circuitry.

In many invertebrate neural systems, the number of neurons remains fixed through-
out larval development. Single neurons derive from stereotyped cell lineages and
are uniquely identified in individuals based on their morphology and cell body
location (Skeath et al. 2003). These systems, such as Drosophila larva used here,
provide an unique opportunity to study the changes in synaptic circuits throughout
development.

Recent approaches measure synaptic connectivity using novel genetic or viral-
based methods to label specific neurons and their putative synapses (Feinberg et al.
2008). Interindividual variability and developmental changes of putative synapses
was measured between identified neurons in motor networks of Drosophila larva
(Couton et al. 2015), and between two identified neurons in C. elegans across sev-
eral days (Desbois et al. 2015). Results of both studies found increased numbers of
putative synapses in identified connections of the wiring diagram across larval devel-
opment. These studies revealed an unexpected degree of interindividual variability
for supposedly hard-wired circuits.

However, volumetric electron microscopy (EM) is the only method that can capture
the synaptic connectivity of entire neural circuits. So far, we are not aware of any
study that mapped the development of synaptic circuits with complete neurons
using EM. Recently developed circuit mapping tools for Drosophila connectomics
enable targeted reconstruction of circuits of interests in very large EM volumes
(Schneider-Mizell et al. 2015). Here, we have used serial-section transmission electron
microscopy (ssTEM) to generate a volume of Drosophila larva ventral nerve cord
(VNC) at late, third-instar developmental stage. We further reused existing EM
volumes of larval VNC at early, first-instar stages (Ohyama et al. 2015; Schneider-
Mizell et al. 2015).

As a model of a developing circuit with identified neurons, we sparsely mapped
the identifiable polymodal nociceptors axon terminals (class IV md) and their postsy-
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naptic synaptic networks at both early and late developmental stages. The class IV
nociceptors have been extensively used as targets for molecular, morphological and
behavioral studies (Grueber et al. 2002; Tracey et al. 2003; Hwang et al. 2007; Grueber
et al. 2007; Jan et al. 2010). However, little is known about their postsynaptic target
interneurons within the central nervous system. We describe here for the first time
the complete structure of the circuit and its identified neurons, and then compare
the neuroanatomical and connectivity properties of the postsynaptic network across
developmental stages. We found that despite considerable quantitative difference
in arbor size and synapse counts the overall structure and key properties of the
networks are preserved throughout development.

3.2 R E S U LT S

Wiring diagram of nociceptive neural circuits

We mapped nociceptive neural circuits in three volumetric ssTEM datasets. Two
datasets were acquired at first-instar stage (0-24 hr after larval hatching): Dataset
L1a covers the whole central nervous system, and dataset L1b covers abdominal
segments A2-A3 of the ventral nerve cord (VNC). The third dataset L3 was acquired
at the third-instar stage (48-96+ hr after larval hatching) and covers VNC segments
A2-A5. We focused the reconstruction of nociceptive circuitry to segment A1 in L1a,
and A3 in both L1b and L3 (Supplementary Fig. 3.1).

Larva nociceptors
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Figure 3.1.: Nociceptive system of Drosophila melanogaster larva a) Three types of
nociceptor sensory cells, the multi-dendritic class IV cells, cover the larva body-
wall with their dendritic arborization without overlap. In each hemisegment,
nociceptor types are organized somatotopically from dorsal with ddaC, to lateral
with v’ada to ventral with vdaB. b) Nociceptors project to the central nervous
system to a vento-medial domain in the ventral nerve cord. Body wall segments
correspond to segmental subdivisions in the ventral nerve cord. The three types
of nociceptors have distinguishable axonal termination profiles which allows to
identify them uniquely. Sensory axons of ddaC project posteriorly and crosses
the midline, v’ada projects both anteriorly and posteriorly without crossing the
midline, and vdaB crosses the midline and projects anteriorly.

We first mapped the axonal terminals of the class IV multi-dendritic nociceptors
in each hemisegment and dataset (Figure 3.1 and 3.2). The morphology of each
of the three somatotopically-organized nociceptors subtypes has been described
peripherally and centrally at light-microscopy levels (Merritt et al. 1995; Grueber
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et al. 2007). The described morphology and projection nerves were sufficient to
unambiguously distinguish dorsal ddaC, lateral v’ada, and ventral vdaB nociceptors
in all datasets (Figure 3.1).

We then mapped the postsynaptic interneurons of the set of six nociceptors in
each abdominal segment in each dataset according to the methodology described
in Schneider-Mizell et al. 2015. The overall projection patterns of postsynaptic
interneurons groups them into three classes: local interneurons extent their dendritic
arbors in one or two VNC segments. Ascending projection interneurons integrate
inputs from more than two segments and project beyond the local segment. And
descending interneurons have distant dendritic arbors beyond the VNC and both
pre- and postsynaptic connections to nociceptors in local segments in the VNC. The
proportion of nociceptor synaptic outputs diverges with 60% into local, 35% into
ascending and 5% into descending pathways (Figure 3.2).

Using the light-microscopy-based neuron catalog of identified ventral nerve cord
interneurons (Jim Truman et al., unpublished, also see Method in Section 3.4), we
identified in each dataset the interneurons of these pathways by matching their
distinct arbor morphology, primary neurite bundle, synaptic distribution and cell
body location. In total, we identified across all datasets the local interneurons Down-
and-back-1 (A09l), Chair-1 (A10a), Basin-2 (A09a), Basin-4 (A09c), Basin-1 (A09b),
Pseudolooper-3 (A02m), Pseudolooper-4 (A02n), A01l (Figure 3.3); the ascending
interneurons A08n, TePn19, A02o, A09e, A09o, TePn05 (Supplementary Fig. 3.10-
3.15); and one type of descending interneuron SelN138 (Supplementary Fig. 3.16).

Comparison of network architecture between developmental stages

We found that the network topology, i.e. the connectivity to identified postsynap-
tic interneurons, is preserved between early and late stage nociceptive networks.
The synaptic connections to local, ascending and descending interneurons in the
first-instar dataset L1a could be recovered in third-instar dataset L3 circuitry (Sup-
plementary Fig. 3.6 - 3.9). There was one exception, namely local interneuron A01l in
dataset L3 was not found to be connected to nociceptors in the first-instar dataset.

In both first-instar datasets, the same set of postsynaptic interneurons were repro-
ducibly found in dataset L1a (segment A1) and L1b (segment A3) with one exception.
Due to the limited nerve cord volume in dataset L1b, the ascending interneuron
TePn05 could not be unambiguously identified. Several short intersegmental pro-
cesses that remained unidentified are candidate fragments for TePn05. Otherwise,
the network topology was highly reproducible between the two first-instar stage
networks (Supplementary Fig. 3.7,3.8). The cell-type-based connectivity between
nociceptor axon terminals and their postsynaptic interneurons appears to be estab-
lished at an early larval stage and persists to late stages without major changes of
the presence of identified connections.

In order to quantitatively characterize the changes of synaptic connectivity in
these networks, we confined our further analysis to a set of six local cell types.
The dendritic arborization of these local interneurons are fully contained in all
three datasets, and thus allow to quantify synaptic counts with nociceptors in an
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Figure 3.2.: First-order network mapped in three datsets a) Reconstructed nocicep-
tor axons in the three datasets. Gray background shows extent of the EM
volumes covering the central nervous system. b) Mapped first-order net-
work downstream of nociceptor. Local interneurons in blue, ascending
and descending interneurons in grey.

unbiased way (Supplementary Fig. 3.1). We selected Down-and-back-1 (blue), Chair-
1 (purple), Basin-2 (bright green), Basin-4 (dark green), Pseudolooper-3 (red) and
Pseudolooper-4 (red) (Figure 3.3). The majority of synapses in this small subcircuit
are the axo-dendritic connections from nociceptors on which we focus our analysis
first. Additional axo-dendritic and dendro-dendritic synaptic connections are present
in this subcircuit that are also analyzed in more detail below.
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Down-and-back-1 A09l
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R79H02
R51C05
R47E12
R11H10

EM Reconstruction LM Neuron Catalog

Basin-2 A09a

R38H09
R29B04

Chair-1 A10a

R71E03
R89G07
R22E06
R71E06

Pseudolooper-3 and -4 A02m and A02n

R84B09
R13E04

Basin-4 A09c

R57F07
R72F11
R25F10

input output

Figure 3.3.: Identified local interneurons connected to nociceptors shown in EM
and LM a) Morphology of the selected five local cell types b) Single
neuron morphology based on FLP-out approach for stochastic single-cell
labeling (Neuron Catalog of Jim Truman, unpublished; Nern et al. 2015).
c) GAL4 lines which contain expression of local interneurons (Jenett et al.
2012)

We quantitatively assessed the synaptic connection strength, measured as the
absolute number of synapses, of the axo-dendritic connections from nociceptors to
local interneurons. Despite the limited sample size, trends in the variability and
scaling of synaptic counts are readily apparent. We found some level of variability in
the absolute synaptic counts between homologous neurons in all datasets as well as
between both first-instar datasets L1a and L1b (Figure 3.4). The observed variability
seems to be consistent with the variability observed in identified connections in the
larval motor networks at early larval stage (Couton et al. 2015). Our data suggests
no drastic reduction of the left-right difference of synaptic counts in homologous
neurons in the late stage network consistent across all considered cell types.

The synaptic counts scale from early to late stage across all cell types. The scaling of
synaptic count from L1 to L3 is generally about 3-fold, with 50 or less synapses in L1,
and 150 or more synapses in L3 (Figure 3.4). With an expection of the Pseudoloopers
who receive on the order of 15 synapses from any of the nociceptors at early stage
and scale 4-fold to about 60 synapses in L3. This level scaling of synaptic counts
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across development is consistent with the scaling in the number of putative synapses
found in the study by Couton et al. 2015.

Synaptic count

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 20 40 60 80 100

L1a

L1b

L3

Down-and-back-1 Chair-1 Basin-2 Basin-4 Pseudolooper-3/4

Figure 3.4.: Absolute synaptic count of axo-dendritic connections from nocicep-
tors to local interneurons Individual data points represent individual
instances of local interneuron types in two first-instar datasets (L1a and
L1b) and one third-instar dataset (L3). For better visibility, the upper
points denote the left instance, the lower point the right instance for each
dataset. Dashed line represents the change in the mean synaptic count
for each pair of cells. The more vertical the orientation of the dashed line,
the more consistent are the synaptic counts. Counts between L1a and
L1b are very similar and scale in number in the L3 dataset.

The local interneurons receive nociceptor inputs not only from the nociceptors
of the same segment. The overlap of the dendritic fields with axonal terminals of
nociceptors from adjacent segments suggests that these also contribute synapses
to the dendritic arbors of local interneurons (Figure 3.1). In order to quantify their
contribution, we reconstructed adjacent nociceptors axonal terminal in L1a (thoracic
segment T3, abdominal segment A2) and L3 (abdominal segments A2 and A3).
The ddaC nociceptor has a posterior projection, so ddaCs in the anterior segment
connect to posterior local interneurons (e.g. ddaC in A2 in dataset L3 connects
to A3 local interneurons, see Supplementary Fig. 3.6). The vdaB nociceptor has
anterior projections, and so the vdaB in the posterior segment connects to anterior
local interneurons (e.g. vdaB in A4 in dataset L3 connects to A3 local interneurons,
see Supplementary Fig. 3.6). The v’ada nociceptors arborize in both anterior and
posterior segments.

We found that anterior and posterior nociceptors also connect to local interneurons
consistent with their overlap. The axonal arbors of nociceptors in adjacent segments
are generally smaller compared to the arbor in the local part of the segment and
therefore contain fewer presynaptic sites. Considering these nociceptive inputs to
dendritic arbors of local interneurons, we also did not find that the synaptic counts
of connections on the left and right sides becomes more symmetric at late stages
compared to the early stage (Supplementary Fig. 3.6 - 3.8). The particular overlap
and midline crossing patterns of nociceptors causes a particular synaptic innervation
pattern to the spatially-confined dendritic arbors of local interneurons. We continue
to analyze these patterns from the vantage point of the dendritic arbors.
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Comparison of cell-type-specific dendritic convergence patterns

The Basin-2 and Basin-4 neurons have been shown to exhibit a preference in the
connectivity from dorsal and ventral nociceptors at early stage (Ohyama et al. 2015).
Here, we analyze the relative contribution of nociceptors and their subtypes, for
the local and adjacent segments, to inputs of dendritic arbors of local interneurons.
Since we have reconstructed the full dendritic arbors and all input synapses, we were
able to quantify in detail the proportion of synapses that nociceptors contribute. We
extend this analysis here to the six local interneuron cell types at two developmental
time points.

We found the relative amount of identified input to be characteristic for each
cell-type and to be well preserved between individuals of the same stage (Figure 3.5).
Local interneurons such as Down-and-back-1, Chair-1 or the Pseudoloopers receive
between 30-50% nociceptor input. Basin-2 and Basin-4 neurons only 10% and 30%
respectively. Inputs from local interneurons contributes to 20% of the total dendritic
inputs in Chair-1 and Pseudoloopers. All local interneurons also receive inputs
from adjacent nociceptors with a smaller proportion than from the local segment,
consistent with the smaller overlap described above.

Remarkably, after considerable neuronal arbor growth and formation of synapses
from early to late stage, the proportion of dendritic convergence remains very similar
at both developmental stages (Figure 3.5). The amount of axo-dendritic and dendro-
dendritic between local interneurons decreases slightly and consistently from early to
late stage. We found that the maximal difference of the convergence fraction between
left and right homologous neurons in L3 is smaller compared to the maximum
difference in L1.

This suggests that over development the synaptic count normalized by the total
amount of input of the postsynaptic neuron becomes symmetric, and not absolute
synaptic count between identified neurons.

Nociceptor subtype-specific targeting of dendritic arbors

We evaluated to what degree the dendrites of local interneurons connect to spe-
cific subtypes of nociceptors, and if so, how these patterns change in development.
The peripheral dendritic fields of nociceptors tile the whole larval body wall non-
overlappingly (Grueber et al. 2002), and the position of a single nociceptor along
the dorso-ventral extent of the body wall determines its type (Schrader et al. 2000;
Grueber et al. 2007). This somatotopic organization distinguishes dorsal ddaC, lateral
v’ada and ventral vdaB nociceptor types.

Type-specific connectivity to postsynaptic local interneurons may thus indicate
selectivity to the spatial origin of noxious stimuli. Additionally, both ddaC and vdaB
cross the VNC midline and connect contralaterally to interneurons which might
confer signals of the lateralized origin of noxious stimuli. For further analysis, we
therefore separated nociceptor-type specific connectivity to local interneurons into
their ipsilateral and their contralateral contribution.
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Figure 3.5.: Convergence of identified inputs onto the dendrites of local interneu-
rons. The plots show the percentage amount of total dendritic inputs
from specificy types of neurons for each local interneuron in the left and
right hemisegments of each dataset. Input fraction is from nociceptors of
the same, local segments (dark red), from anterior and posterior segments
(bright red) or other local interneurons (blue). Despite a large increase in
the number of synapses in neurons at the third-instar stage, the relative
contribution of synapses from nociceptors remains similar.

We found that each local interneuron type receives preferred inputs from a specific
set of nociceptor types at late stage (Figure 3.6). The Down-and-back-1 neurons
receive ipsilateral input from all three nociceptor types in similar amounts. Down-
and-back-1 dendrites do not cross the midline, so connections with both contralateral
ddaC and vdaB are made through their midline-crossing arbors. No synapses are
made with the contralateral v’ada which is explained by it not crossing the VNC
midline. The Chair-1 neurons receive mostly input from ddaC and vdaB, with more
inputs on the contralateral than on the ipsilateral side (note that the cell body is op-
posite to the main dendritic arbor). Chair-1 also receives inputs from v’ada, but fewer
compared to ddaC and vdaB. The Basin-2 neurons receive mostly from ipsilateral ddaC
and v’ada, and to a lesser degree from contralateral ddaC. Basin-2 does not receive
inputs from contralateral v’ada also because its dendrites do not cross the midline.
The Basin-4 neurons receive mostly from ipsilateral v’ada and vdaB, and due to its
midline crossing-dendrite, also from both contralateral v’ada and vdaB , however to
a lesser extent. These biases should be seen as preferences and are exclusive, as for
instance both neurons also receive inputs from vdaB and ddaC respectively. Finally,
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both Pseudoloopers receive very symmetric ipsilateral (cell body is on the same
side/hemisegment as the class IV axonal terminals) and contralateral (cell body is on
the other hemisegment as the class IV axonal terminals) inputs mostly from dorsal
ddaC and to a lesser degree also from v’ada and vdaB on both sides.
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Figure 3.6.: Dendritic nociceptor-type specific input distribution to local interneu-
rons The three rows (datasets L1a, L1b, L3) show the input distribution
from the three nociceptor types to local interneurons. Distribution from
both local interneurons in one abdominal segment are shown summed
together. Nociceptor inputs are distinguished into ipsilateral and con-
tralateral depending on the location of the local interneuron cell body.
The number below the plot denote the total amount of synapses made
from either ipsi- or contralateral nociceptors. The amount of synapses
from specific nociceptors (ddaC, v’ada, vdaB) is represented as the area in
the plot. Relative contributes are readily apparent. L3 plots are scale in
size to reflect the larger amount of total synaptic inputs.

How does this connectivity patterning compare to the first-instar network with
fewer nociceptive inputs per dendrite? We may expect that the increased synapse
counts at late stage has reduced spurious synapses arising due to developmen-
tal noise. Is the signal-to-noise level at an early stage already sufficiently high to
distinguish these patterns?

We found that, despite the lower absolute synapse counts at early stage, similar
connectivity preferences are discernible in both L1 datasets. Overall, these prefer-
ences are consistent with the patterning found in L3. In the L1 datasets, both Basin-2
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and Basin-4 neurons exhibit dorso-lateral and ventro-lateral preferences in their
nociceptive inputs. Pseudoloopers show a preference to ddaC. Down-and-back-1
receive equal amounts inputs from ipsilateral nociceptors. Only Chair-1 is slightly
exceptional, because its contralateral inputs are equally distributed across all noci-
ceptors. The lower contribution of synapses from v’ada is not seen consistently in the
L1 datasets.

Overall, we found a good agreement of synaptic patterning of individuals at
the same stage. However, at the lower absolute synaptic counts at early stage,
the signal-to-noise level is lower and thus the preferences is not as pronounced.
Our data suggests that an increase in signal-to-noise level is possible by averaging
synaptic counts for the same neuron types across multiple same-stage datasets.
The reproducibility of these patterns in abdominal segment A1 (L1a) and segment
A3 (L1b) further suggest that averaging synaptic counts across ventral nerve cord
segments in the same individual can also be used to increase signal-to-noise levels.
This is also suggested by the small segment-specific variation, at least in abdominal
VNC segments, found in the recent study of Couton et al. 2015.

Nociceptor-type-specific connectivity of dendritic compartments

We asked to what extent the nociceptor-specific synaptic inputs are distributed across
different dendritic compartments, in particular across backbone and twig. We were
interested to see whether the 10%-20% of total synapses on the dendritic backbone is
sufficient to exhibit the found connectivity patterning in early and late stages. During
the growth of dendritic processes, actin-rich filopodia become dynamically invaded
by microtubuli to stabilize neuronal arbors (Hu et al. 2008). At the EM level, we
can distinguish microtubuli-filled (backbone) and microtubuli-free, distal dendritic
processes (twigs). Recently, we have shown that Drosophila neuron’s dendrites receive
most of their synaptic inputs (80%-90%) on distal twigs (Schneider-Mizell et al. 2015).
The remaining inputs are made onto the backbone of the dendrites. Here, we have
manually annotated backbone and twig processes of all local interneurons in all
datasets.

Figure 3.7 shows the nociceptor-specific connectivity segregated into twig and
backbone synapses. Considering backbone synapses at first-instar stage, we find
almost no consistency in the patterning (Figure 3.7a). Remarkably, the Basin-2 den-
dritic arbor backbone with only 3 synapses in L1a and L1b (less than 10% of its total
dendritic input) exhibits the characteristic dorso-lateral connection preference. Simi-
larly, both Pseudoloopers dendritic backbones in L1b receive their only 3 synaptic
inputs from ddaC . For other neuron types, the backbone connectivity in L1 does not
clearly recapitulate the characteristic specificity patterns. In L3, however, the back-
bone connectivity recapitulates the nociceptor-type-specific connectivity patterns
very well with its 10% of the total dendritic synapses (Figure 3.7a). Since most of the
synaptic inputs are onto twigs, the overall nociceptor-type-specific patterning we
found across the whole arbor is recapitulated in twig synapses in L1, as well as in L3
(Figure 3.7b).
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Our data suggests that L3 dendritic backbones are sufficient to recapitulate synap-
tic patterning. Moreover, this indicates that synaptic circuitry confined to only
backbones might be a good recapitulation of the complete circuit diagram including
synapses made on twigs.
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a) Connectivity from nociceptors to dendritic backbones
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b) Connectivity from nociceptors to dendritic twigs
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Figure 3.7.: Dendritic nociceptor-type specific connectivity segregated by back-
bone and twig inputs The three rows (L1a, L1b and L3) show the input
distribution from the three nociceptor types to local interneurons considering
only backbone synapses or twig synapses. a) Synaptic connections exists be-
tween nociceptors and local interneuron dendritic backbones for all cell types
(except Pseudolooper-3 in L1a). Despite the lower synaptic count, the pattern of
selectivity is well preserved in the L3 dataset for all interneurons. The pattern is
less obvious in the L1 datasets, and not consistent between L1a and L1b (except
for Basin-2). b) Synaptic connections between nociceptor and local interneuron
dendritic microtubuli-free processes (twigs). The pattern of nociceptor-type
selectivity is better visible in the L1 datasets compared to the backbone, and is
very clear in the L3 dataset.
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Distribution of identified synapses across dendritic arbors

Cell-type-specific distribution of synapses on postsynaptic subarbors have been
shown to be important for neuronal function (Branco et al. 2010; Briggman et al.
2011b). Here, we investigated whether nociceptor-type-specific preferences could
arise from synapses being preferentially clustered to specific postsynaptic dendritic
subarbors. For many neuron types with complex arbor geometry, it is difficult to
directly appreciate the cell-type-specific synaptic input distribution from visualizing
synapses and their dendritic (skeletonized) morphology in 3D.

We devised a simple visualization method which collapses 3D arbor morphologies
to 2D network graphs that preserve arbor topology and points-of-interests such as
pre- and postsynaptic locations (see Method in Section 3.4). This 2D presentation
of a neuron allows to readily depict the distribution of cell-type-specific synaptic
inputs by color-coding respective presynaptic cell-types. For instance, Pseudolooper-
3 receives inputs from Basin-2 and all other nociceptors, with a preference in inputs
from ddaC (Figure 3.8). In this case, two ipsilateral subarbors receive mostly inputs
from Basin-2 but no nociceptors, consistent with the spatial segregation of different
presynaptic domains. Ipsilateral subarbors with nociceptor inputs show a mixture
of nociceptor-types with the expected preference for synapses from ddaC. A larger
contralateral subarbor, however, extends to both Basin-2 and nociceptor domains
and receives mixed inputs without clear segregation.

We found very similar mixing and preference of nociceptor-type inputs by visual-
izing the 2D graphs of all other local interneurons in all datasets. However, we found
no clear subarbor-wise segregation of input types (Supplementary Fig. 3.18 - 3.21).
This indicates that postsynaptic neurons do not differentiate distinct presynaptic
input types in segregated subarbor levels. The nociceptor-type-specific preferences
of postsynaptic cell-types arise from mixing of synaptic input types across whole
dendritic arbors and biasing their counts.
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Figure 3.8.: Arbor morpholgy and synaptic distribution represented topologically
a) The arbor morphology of Pseudolooper-3L embedded in 3D. Zoomed in
version of the dendritic input field with input sites color-coded by known cell
type. Topological relationships of subarbors are difficult to see in 3D. b) The
same arbor represented as 2D graph. The visualization preserves the topology
of points of interest: input sites (circles) in different colors corresponding to
the input cell type; output sites (triangles). Grey edges denote twigs. Input
sites color-coded by cell type reveal distinct subarbors on ipsi- and contralat-
eral sides. Ordering of major subarbors from close to the cell body towards
the axonal output arbors is readily apparent. This topological representation
might give hints about dendritic integration properties. Edges could be scaled
by electrotonic distance, varying lengths are a consequence of the layouting
algorithm (Cytoscape Organic).
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Microcircuit motifs and their development

The relevance of microcircuit motifs has long been recognized to contribute impor-
tantly to neural signal processing (Shepherd 1978). We found a few microcircuit
motifs in the nociceptive circuitry that we elucidate and compare in the following.

One such motif is the axo-dendritic, feedforward connection from Basin-2 axons
to Pseudolooper dendrites. Pseudolooper dendrites receive inputs directly from
nociceptors and indirectly though the Basin-2 connection. This feedforward connec-
tion is present in both L1 and L3 (Figure 3.9a). In terms of absolute synaptic count,
the Basin-2 axon to Pseudolooper dendrite connection increases less than two-fold
from L1 to L3. With the increase of Pseudolooper dendritic arbor size and number
of synaptic inputs, the relative contribution of the Basin-2 axonal input decreases
considerably. The axo-dendritic synapses contribute 15% of a total of 224 dendritic
inputs summed across all four Pseudoloopers in L1a, 10% across 211 inputs in L1b,
and 4% across 1122 inputs in L3 (Figure 3.5).

We observe that the Basin-2 axonal arbors, unlike nociceptor axonal arbors, do not
grow much more in L3 compared to L1. The limited availability of presynaptic axonic
sites could explain the reduced potential for novel synapse formation, despite consid-
erable growth of Pseudolooper dendrites. This indicates that differences in scaling of
synaptic counts could be explained by differences in scaling of arborizations and the
resulting variation in their overlap and potential for synapse formation.

Dendro-dendritic connections have been well-studied in the past decades. They
have been found to be involved in microcircuit motifs that mediate processes such as
lateral inhibition (Shepherd 2009). We also found two dendro-dendritic connections
between identified neurons in the nociceptive network. The Chair-1 dendrites receive
dendro-dendritic synaptic input from both Down-and-back-1 and Basin-4 dendrites.
Both dendrites host a number of presynaptic sites on their dendritic arbors.

We first visualized the locations of these presynaptic sites using our 2D arbor
layouting method to better understand their dendritic distribution (Figure 3.10). In
both neurons, we find that presynaptic sites localize to the base of subarbors with
exclusive postsynaptic inputs. The localization to the base of subarbors is consistent
between left and right homologous neurons in L3, as well as in the homologous
neurons in L1 (Supplementary Fig. 3.18, 3.21). The distribution of presynaptic
sites suggests local dendritic processing where inputs on dendritic subarbors in the
vicinity are integrated and drive local dendritic outputs.
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Figure 3.9.: Axo-dendritic connections from Basin-2 to Pseudoloopers a) Network
diagrams show the axo-dendritic connection from the left and right instances of
Basin-2 axons (green) to the Pseudolooper-3 and -4 neuron dendrites (bright red).
Synaptic count for each edge is shown. The increase in the synaptic count of any
edge from L1 to L3 is less than two-fold. b) The axo-dendritic connection from
Basin-2 to Pseudolooper is embedded in a feed-forward connection (dashed
lines) that links a global with a local pathway. In Schneider-Mizell et al. 2015,
Pseudolooper-3 and -4 were found to target premotor and motor neurons (in
particular U1, U2, RP2) within an abdominal ventral nerve cord segment. Pseu-
doloopers, therefore, establish a direct local pathway from sensory (nociceptive)
signals to motor circuitry while also integrating signals, via Basin-2, destined to
ascend in a global pathway.
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Figure 3.10.: Distribution of presynaptic sites on two dendritic arbors Presynaptic
sites are clustered at the base of subarbors on the dendritic arbors of a)
Down-and-back-1 and b) Basin-4 interneurons. The location of these
presynaptic sites at the base of subarbors is reproducible in early stage
larva (data not shown).
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The dendro-dendritic connections contribute only a small fraction of the total
amount of synapses in the nociceptive network. However, they were reproducibly
found in both early and late stage circuits.

From L1 to L3, Down-and-back-1 increases the number of dendritic outputs more
than 4-fold, and Basin-4 dendritic outputs increase about 3-fold (Figure 3.11a,b).
However, only a small fraction of the total number of dendritic outputs is made from
Down-and-back-1 and Basin-4 onto Chair-1. In L3, Down-and-back-1 connects with
less than 5%, and Basin-4 with less than 15%, of its dendritic outputs onto Chair-1
dendrites. Both Down-and-back-1 and Basin-4 connections to Chair-1 scale less than
two-fold in terms of absolute synaptic counts from L1 to L3 (Figure 3.11c). When
accounting for the increased size and postsynaptic counts in the Chair-1 dendrites in
L3, this amounts to less than 2% dendritic inputs from Down-and-back-1, and less
than 4% from Basin-4.
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Figure 3.11.: Dendro-dendritic connections of three local interneurons a) Total
number of dendritic outputs of Down-and-back-1 and Basin-4. The
amount is consistent in L1a and L1b, and then increases severalfold
in L3. b) Dendritic number of outputs as a function of total dendritic
cable length. Down-and-back-1 increases its total cable length less than
Basin-4 from L1 to L3. Its increase in the number of dendritic outputs
is larger. c) Absolute synaptic counts of dendro-dendritic edges for the
left and right instances of the local interneuron. Compared to the total
increase in dendritic cable length and synapse number from L1 to L3,
the increase in dendro-dendritic synapse count is modest.
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Reciprocal connectivity motif

We found a reciprocal connectivity motif between nociceptors and the descending
interneuron SelN138 (Supplementary Fig. 3.16). The pair of SelN138 interneurons
connect with their descending arbors to all three types of nociceptive axonal terminals
along the whole length of the ventral nerve cord. The descending arbor targets
nociceptors in each segment and also receive reciprocal input from all types of
nociceptors. In addition to these axo-axonic connections, the extensive dendritic
arborizations of SelN138 in the subesophageal zone SEZ receives other synaptic
inputs (Supplementary Fig. 3.16). The axo-axonic connections are reproducibly
found in both early and late stage larvae (Figure 3.12c).

We analyzed how postsynaptic sites distribute on nociceptor axons and found
that SelN138 synapses are made across the whole presynaptic axonal arbors without
particular clustering in both L1 and L3 datasets (Figure 3.12a). In terms of abso-
lute synaptic counts, we find on average that every synaptic contact made between
nociceptor and SelN138 is reciprocated with about two contacts from SelN138. Re-
markably, this 2:1 ratio of reciprocal connectivity persists from L1 to L3, with five- to
six-fold increase in absolute synaptic counts (Figure 3.12d). A particular feature of
SelN138 neurons at presynaptic sites are the co-occurences of small vesicles together
with larger, dense-core vesicles (Figure 3.12b). This further suggests a modulatory
role of the SelN138 interneuron with regard to nociceptor axon terminals.
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Figure 3.12.: Nociceptive axon terminals reciprocally connected to descending
SelN138 interneuron a) Sensory axon terminals receive inputs from
descending SelN138 interneuron. Topological 2D representation of
ddaC shown in L1 and L3. SelN138 postsynaptic sites shown in yellow
circle, presynaptic sites shown with red cycles. Other postsynaptic sites
shown as circles. b) EM image in L3 depicting presynaptic site (*) of
SelN138 interneuron, targeting two ddaC neurons. Dense-core vesicles
are visible at both presynaptic and postsynaptic locations. c) Schematic
diagram depicting reciprocal connectivity of nociceptors with descend-
ing interneuron in consecutive segments. The SelN138 has an additional
dendrite in the subesophageal zone (SEZ). d) Reciprocal synaptic con-
nectivity between SelN138 and individual nociceptors in datasets L1a
and L3.
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3.3 D I S C U S S I O N

We have mapped three Drosophila larva nociceptive synaptic circuits in the ventral
nerve cord and found that the overall circuit architecture is preserved from early to
late stage. Two circuits at the same stage exhibit high stereotypy at the early stage
with similar numbers of synaptic counts. The polymodal multi-dendritic nociceptors
connect at both stages to a set of at least fourteen neuron types segregated into distinct
local, ascending and descending pathways. We found neuron-type-specific variation
in arbor growth reflected in differences in scaling of synaptic counts of identified
network connections. Although synapse counts increases considerably from early
to late stage, the proportion of nociceptive inputs converging onto postsynaptic
dendrites of local interneurons is well preserved at both considered stages.

Behaviors mediated by the nociceptive circuit change from early, first-instar to late,
third-instar developmental stages. These distinct larval nocifensive behaviors were
quantitatively assessed using thermal and optogenetic assays across development
(Sulkowski et al. 2011). The authors have found that early stage larvae do not perform
the stereotypical corkscrew-like roll which is a characteristic escape behavior in late
stage larvae. This escape-roll behavior is mediated by polymodal nociceptors through
transient noxious thermal or mechanical stimuli (Tracey et al. 2003; Zhong et al. 2010).
The lack of rolling behaviors at early stage was hypothesized to be due to imature
sensory or motor systems. Our connectivity data suggests that on the sensory side,
all major elements of the nociceptive circuit and their relative connection strengths
are already in place early in the larval life cycle. From a purely structural standpoint,
the nociceptive circuitry should be able to transduce nociceptive signals and activate
downstream circuits. Therefore, downstream circuits or motor systems might not
be able to generate the stereotyped motor activation patterns required for rolling at
an early, first-instar stage. An alternative hypothesis is that the body wall muscles
and the neuromuscular junction might to be fully matured to adequately transform
motor neuron activation into this behavioral escape response.

The study by Ohyama et al. 2015 has provided evidence that mapping ultrastruc-
tural circuitry at an early stage is sufficient to inform the study of late stage behavioral
phenotypes. The authors focused on an ascending pathway where nociceptor stimu-
lation increases the likelihood of escape rolling when chordotonal sensory organs are
co-activated. The early stage circuit suggested Basin neurons as convergence point
of both nociceptor and chordotonal signals in this pathway. Neurogenetic behavioral
and optical imaging experiments carried out in late stage larvae were consistent
with the early stage circuit maps. Here, we confirmed that the nociceptor targets
of this pathway, the Basin-2 and Basin-4 neurons, remain strongly connected in the
late stage circuitry. Our data also suggests that early stage circuits at the cell-type
level are adequate to imply late stage connectivity patterns, and can thus serve as
a proxy to inform functional and behavioral experiments at late stage. Practically,
laborious manual circuit mapping can be performed at early stage when neurons
have a smaller arbor and fewer synapses to reconstruct.

However, the signal-to-noise level of synaptic counts at early stage can be low and
might hamper the interpretation of connection strength between identified neuron
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types. For instance, the connection from nociceptors to Basin-1 local interneurons is
weak at early stage (< 3 synapses) in relation to its total dendritic input and com-
pared to synaptic counts of other connections in the circuit. Optogenetic activation
of nociceptors did not induce a Calcium response in Basin-1 neuron cell bodies at
late stage (Ohyama et al. 2015) which could be explained by the low synaptic count
at early stage. However, the authors find that co-activation of Basin-1 with Basin-4
increased the likelihood of rolling from 45% to 70% in third-instar larvae. Electro-
physiological experiments show that Basin-1 can spike when only nociceptor axonal
terminals are activated optogentically in third-instar larvae (Mei Shao, personal com-
munication). Ohyama et al. 2015 suggest a facilitatory, modulatory role of Basin-1 in
triggering rolling responses. In our data, we see a ten-fold increase in synaptic count
of the nociceptor to Basin-1 connection from early to late stage that might account
for this differences. Therefore, caution is advisable when interpreting low synaptic
counts at early stages, as they can, as in the case for Basin-1, scale disproportionally
strong. This could lead to different interpretations of their roles in the overall wiring
diagram.

In Sulkowski et al. 2011, a possible functional role of the nociceptive circuit at early
stage was further probed by quantifying distinct nocifensive behaviors using an
optogenetic assay. The authors showed that larvae exhibit an aversive, long-lasting
withdrawal behavior at early stage when nociceptors were continuously activated
at low intensity levels. Therefore, nociceptors not only transduce transient, high-
intensity noxious stimuli but also signals that cause avoidance responses on longer
time scales. Also, such an ecologically-relevant type behavior has been shown to
depend on nociceptors at late stage. Wandering larvae exhibit avoidance of dry
surface for which multi-modal nociceptors are necessary (Johnson et al. 2012).

These long-lasting stimuli are hypothesized to increase the firing rate of nocicep-
tors across the whole body wall simultaneously. In our circuit maps, the ascending
interneurons would be particularly good candidates to integrate such body-wide
aversive signals as they receive nociceptor inputs from each body wall segment.
Targets of these ascending interneurons within the SEZ or brain could mediate biases
in turn and crawl behavior that could result in avoidance phenotypes observed
experimentally. The identification of these interneurons in this study, and the avail-
ability of GAL4 lines, allows for further studies to dissect their involvement in such
long-lasting avoidance behaviors.

The organization of sensory receptors into topographic maps is fundamental
for central processing in all sensory modalities (Weinberg 1997). Here, the non-
overlapping tiling of nociceptor dendrites in the body wall provided an unique
opportunity to study somatotopic aspects of sensory processing and circuit orga-
nization (Grueber et al. 2002). We demonstrated that specific local interneurons
selectively receive synaptic input from the somatotopically organized nociceptor
subtypes. In analogy to the developmental emergence of topographic maps in many
sensory systems (Kaas 1997), we found that the synaptic preference between iden-
tified cell types is already present at early stages, and subsequently becomes more
refined at the late larval stage. The preference to form connections from distinct
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subtypes of nociceptors might have important consequences for central processing
of stimuli transduced by class IV multi-dendritic neurons.

For instance, the late refinement of somatotopic organization might coincide with
an ecologically-relevant requirement to detect localized noxious stimuli. In their
natural habitats, late stage larvae might encounter the localized sting of parasitoid
wasps which induces the vigorous escape-roll behavior (Tracey et al. 2003; Hwang et
al. 2007). The possibility of directional biases of the escape-roll and other segmentally-
specific nocifensive behaviors indicate that nociceptive circuits indeed process the
somatotopic origin of noxious stimuli (Robertson et al. 2013; Tracey et al. 2003). Al-
though other sensory modalities contribute to localize stimuli (Ohyama et al. 2015) in
downstream circuitry, the segmental, left-right and dorso-ventral location of noxious
stimuli sources might also be transduced directly by the activation of specific sets of
nociceptors. Thus, the selective sampling of these signals by downstream interneu-
rons might directly contribute to activate circuitry for location-dependent behavioral
outputs. The high degree of synaptic preference observed in late stage circuits may
further indicate increased functional relevance for such fine-scale discrimination of
stimulus location in more exposed, late-stage wandering larvae.

A recent study showed functionally that largely cropped dendritic arbors can still
produce robust motor neuron outputs (Ryglewski et al. 2014). This study found
deficits in sophisticated motor behaviors that scaled with the degree of dendritic
defect. Our analysis of the distribution of synapses on the dendritic backbone
and twigs could be interpreted in this functional context. We have demonstrated
that synaptic connectivity patterns recovered from synapses made only on the core
dendritic backbones exhibits similar connectivity patterns as considering the total
dendritic arbor as a whole. Assuming that backbone synapses are sufficient to drive
postsynaptic response, the network could still perform adequately without synapses
on distal dendritic twigs. In the study, the induced dendritic defects likely remove
first these synapses in distal twigs, and thus the robust network output they observed
could be due to the backbone connectivity. Since the twig synapses account mostly
for the connection preference to specific interneurons, their removal might hamper
more sophisticated, fine-grained behaviors.

Decades of work have elucidate a number of mechanism that work synergisti-
cally to control neurite guidance and synaptogenesis to produce cell-type specific
connectivity patterns (extensively reviewed in Sanes et al. 2009). In Drosophila, the
molecular diversity of Dscam receptors has been implicated for establishing wiring
specificity between cell types (Chen et al. 2006; Millard et al. 2010). The patterns
of synaptic preference in the nociceptive circuit could be established by similar
developmental mechanisms. Due to the absence of a clear spatial segregation of
distinct presynaptic axonal terminals of different nociceptor types, postsynaptic
dendritic may selectively increase the probability to maintain synapses formed with
preferred input partners based on their molecular identity. The cell-cell recognition
mechanism at synaptic locations may require the postsynaptic neuron process to
detect the identity of the presynaptic cell type via the expression of specific receptors
(Zipursky et al. 2010). Subsequently, the probability for synapse maintenance could
then be modulated locally by intracellular signaling cascades, and thus give rise to
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the observed pattern of synaptic preference and specificity. The genetically-tractable
nociceptive system could be used to further test the molecular basis of these synaptic
specificity-producing processes. The unique opportunity for volumetric EM in this
system would allow investigations of the results of genetic alterations on patterns of
synaptic and circuit level differences.

In pain processing circuits in vertebrate systems, endogenous modulation of pain
perception has been shown to be mediated by pathways originating in the brainstem
and descending within the spinal cord (Mason 2012). Descending pathways can act
to both facilitate or inhibit transmission of nociceptive signals (Ossipov et al. 2010;
Zeilhofer et al. 2012). One mechanism by which inhibition is achieved is through
presynaptic inhibition of sensory terminals (Hedwig et al. 1996; Rudomin et al. 1999).

Analogically in the Drosophila larvae, we found the SelN138 descending interneu-
ron to be a candidate interneuron that could mediate such presynaptic inhibition.
Through the segmentally-local reciprocal connectivity, the activation of nociceptive
terminals could be counter-balanced by local feedback inhibition. Additionally, the
activation of the SelN138 dendrites in the subesophageal zone could simultaneously
inhibit all nociceptors in the VNC to completely inhibit or reduce nociceptive signal
transmission.

We speculate that a similar pattern of reciprocal inhibition may occur in the axonal
output arbors of local interneurons. In six local interneuron types at both early and
late stage, we found that each axonal output arbor receives inputs from unknown
presynaptic neurons (Supplementary Fig. 3.23). These presynaptic inputs could
modulate the efficacy of axonal outputs, similar to the SelN138 for nociceptors,
through an inhibitory action. Further circuit dissection will be necessary to test this
hypothesis.
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3.4 M E T H O D S

Serial section Transmission Electron Microscopy

The central nervous systems from feeding 3rd instar wild-type larvae were dissected
in PBS and immediately transferred to 125 ul of 2% glutaraldehyde in 0.1 M Na
cacodylate buffer, pH 7.4 in a 0.5 dram glass vial (Electron Microscopy Sciences,
cat. no. 72630-05) on ice. 125 ul of 2% OsO4 in 0.1 M Na-cacodylate buffer, pH 7.4
was then added and briefly mixed immediately before microwave assisted fixation
conducted with a Pelco BioWave PRO microwave oven (Ted Pella, Inc.) at 350W,
375 W and 400 W pulses for 30 sec each, separated by 60 sec intervals. Samples
were rinsed 3 x 30 sec at 350 W with 0.1 M Na-cacodylate buffer, separated by 60 sec
intervals, and post-fixed with 1% OsO4 in 0.1 M Na-cacodylate buffer at 350W, 375W
and 400W pulses for 30 sec each, separated by 60 sec pauses. After rinsing with
distilled water 3 x 30 sec at 350W with 60 sec pauses between pulses, the samples
were stained en bloc with 7.5% uranyl acetate in water overnight at 4 degree C.
Samples were then rinsed 3 x 5 min with distilled water, dehydrated in an ethanol
series followed by propylene oxide, infiltrated and finally embedded in Epon resin.
Serial 50 nm sections were cut using a Diatome diamond knife and a Leica UC6
ultramicrotome, and picked up on Pioloform support films with 2 nm C on Synaptek
slot grids. Sections were stained with uranyl acetate followed by Sato’s lead (Sato
1968) prior to imaging. An FEI Spirit TEM operated at 80 kV was used to image the
serial sections at 2.3 x 2.3 nm pixel resolution using Leginon (Suloway et al. 2005) to
produce the L3 dataset.

The sample preparation and imaging procedure for the L1a and L1b datasets
were similar and are described in (Schneider-Mizell et al. 2015; Ohyama et al. 2015)
respectively. Briefly, dataset L1a covers the whole CNS of a first-instar larva. The
pixel resolution is 3.8 x 3.8 nm, section thickness is approximately 50 nm, and a
total of 4841 sections (56 lost) were collected, and 187048 images were taken with
4k x 4k pixel dimension. Dataset L1b covers half of the abdominal segment A2 and
the segment A3 of the ventral nerve cord (VNC) of a first-instar larva. The pixel
resolution is 4.4 x 4.4 nm, section thickness is approximately 50 nm, and a total of
462 sections (4 lost) were collected.

Image montaging and alignment

The approximately 300’000 images of the L3 dataset (4k x 4k pixel for each imaged
tile) were montaged and aligned using linear and nonlinear methods described in
(Saalfeld et al. 2012) and implemented in TrakEM2 (Cardona et al. 2012). In partic-
ular, filters for brightness and contrast correction were applied before montaging
(Default min and max, normalized local contrast, enhance contrast). Images were
first montaged in a section with two passes of linear montaging, first targeting only
a translation transformation (correspondence weight 1.0), and in the second pass
targeting an affine transformation. This was followed by an elastic, non-linear mon-
taging pass. For alignment between sections, parameter exploration was performed
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on a scaled down substack (scale factor 10) of 5 sections, targeting extraction of
approximately 2000+ features, 100+ correspondences and an average displacement
of 10 pixel. Linear alignment was applied to all the sections using an affine transfor-
mation model. The block matching test plugin in Fiji (Schindelin et al. 2012) was used
on 5 adjacent sections to find optimal parameters for the elastic registration pass.
Elastic alignment was applied with local smoothness filter approximating an affine
local transformation. The resulting aligned image stack was exported to an image
tile pyramid with six scale levels for browsing and reconstruction in CATMAID
(Schneider-Mizell et al. 2015). The datasets L1a and L1b were aligned with the same
methods (Schneider-Mizell et al. 2015; Ohyama et al. 2015) and optimal parameter
settings specific to their respective image quality.

Neuronal circuit mapping

The nociceptive neural circuits were reconstructed manually from the aligned EM
image volumes using the collaborative circuit reconstruction tools in CATMAID
(Schneider-Mizell et al. 2015). Briefly, neurons of interest were reconstructed man-
ually by following their neuronal processes and annotating a 3d skeleton on their
centerline. While reconstrucing neuronal processes, presynaptic active zones and
postsynaptic partners were annotated following the criteria described in (Schneider-
Mizell et al. 2015).

In all three datasets, the identification of the class IV multi-dendritic sensory
axons (mdIV) followed the same approach. Central axonal projection patterns of
all three mdIV ddaC, v’ada and vdaB in one hemisegment were previously described
(Grueber et al. 2007), and their morphology, projecting nerve and target projection
zone allows to distinguish them from other classes of sensory axons and into their
specific cell-type. Only the dorsal ddaC projects in the intersegmental nerve (ISN),
whereas v’ada and vdaB project in the segmental nerve (SN). The projection zone
of the mdIVs in a cross-section of the ventral nerve cord is located medially and
ventrally. Individual fibers in both nerve bundles were followed and abandoned
if their trajectory was inconsistent with their expected termination zone for mdIVs.
The texture of sensory axons appears in the EM preparation darker compared to
adjacent dendritic processes, revealing bundles of mdIVs. These bundles highlighted
potential mdIV candidates form anterior and posterior segments. By following back
out to the nerve these candidate mdIVs were readily identified as belonging to the
mdIVs. The vdaB does cross the midline axis, whereas v’ada does not, thus allowing
to distinguish those cells which both project in the SN.

The synaptic partners of the complement of the 6 sensory axons in an abdominal
segment (three in each hemisegment) were then used to seed the reconstruction of
the upstream and downstream interneurons of the mdIVs. Using the connectivity
widget in CATMAID, each placeholder skeleton node associated with the mdIVs
was used to start seed the reconstruction of a neuron. Generally, these reconstruction
terminate in a cell body and the neuron can be identified. However, a fraction of
synaptically connected processes leave the EM volume, run into a gap of sections,
or have no apparent connection to a larger neuronal arbor. We call these processes
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fragments to which a fraction of nociceptors outputs connect (Supplementary Fig.
3.6). These fragments are usually short processes with few postsynaptic sites. They
usually do not contain microtubuli, which makes finding the connection point to the
processes of a larger neuron difficult.

A number of output connections from nociceptors connect to other nociceptors.
The annotation of postsynaptic sites to other nociceptors were consistent with our
synapse annotation criteria. However, we have no evidence that these are real
synaptic connections in the functional sense. We excluded these synaptic edges in
the present analysis, although we annotated such connections in all three datasets.

Identification and naming of interneurons

We classified the full complement of identified neurons synaptically adjacent to the
multi-dendritic class IV sensory axons into three categories: a) local interneurons, b)
ascending projection neurons, c) descending neurons. Each identified interneuron
type is given a name based on the Jim Truman’s neuron catalog nomenclature. This
neuron catalog is based on labeling of individual cells from a collection of GAL4
lines based on a flp-out method (Jim Truman, Nern et al. 2015). For ventral nerve
cord interneurons of the catalog, the name is composed of segment (A: abdominal, T:
thoracic), two digit number denoting the cell lineage (e.g. 08), and an enumeration
character (e.g. b), for instance A08b. In addition to these standardized names, we
use a naming scheme for ease of reference that is usually based on an overall shape
feature. For in-depth comparative analysis, six local interneuron that are local within
a segment were selected: a) A02m: Pseudolooper-3; b) A02n: Pseudolooper-4; c)
A10a: Chair-1; d) A09a: Basin-2; e) A09c: Basin-4; f) A09l: Down-and-back-1. The
dendritic arborization of these neurons is confined mostly to the segment where their
cell body is located. These six interneurons were given extensive review in order to
complete the reconstruction of their arbors in non-mdIV dendritic domains as well
as their axonal output domains.

Other local, ascending and descending interneurons downstream of nociceptors
were reconstructed to the degree where their identity could be determined but not
reviewed. Postsynaptic and presynaptic sites were annotated. Interneurons were
matched to morphologies in the neuron catalog and named. It was required that
both left and right homologous are consistently found in all three datasets. We
identified additional local (A09b: Basin-1), ascending (A08n; TePn19; A02o; A09e;
A09o; TePn05) and descending (SelN138) interneurons. In dataset L3 but not in L1,
we additionally identified local interneuron A01l postsynaptic of nociceptors.

Annotation of neuronal compartments

The quantitative analysis on the subarbor levels requires the annotation of compart-
ment boundaries on nodes of the skeleton morphology. The skeleton representations
are directed tree structures with their root nodes at cell body locations for interneu-
rons and at nerve entry location for sensory neurons by convention. Thus, by way of

104



3.4 M E T H O D S

using the tagging system in CATMAID to label individual skeleton nodes by a string,
we can implicitly classify all the skeleton nodes downstream of this tagged node, i.e.
a subtree rooted at the tagged node, as belonging to the subcompartment denoted
by the string. By combining subtrees demarked using this scheme, we can flexibly
segregate any subcompartment that might be of interest for detailed quantitative
analysis.

We applied this scheme to demark the dendritic and the axonal parts of the
preferred local interneurons. We choose highly stereotyped locations on the arbors
that are consistently definable in first- and third-instar interneurons. Generally, the
entry point of a neuronal process into the neuropil is a very stereotyped location not
impacted by variations of exact cell body location. Furthermore, we found the last
postsynaptic site (or branch point with a postsynaptic site) on the primary process
between dendritic and axonal arborization to be a good termination point to contain
the dendrite, and the location of the first presynaptic site on the very same primary
process to begin the axonal part of the neuron.

Furthermore, we segregated neurons into backbone and twigs compartments using
the same method. We iterate over the skeleton nodes starting from the leaf nodes and
add tags at the boundary locations where microtubuli terminate. This annotation
is tremendously simplified by the dendrogram widget in CATMAID that presents
an interactive radial layout of the skeleton structure collapsed into branch nodes
with associated tags. Subtrees rooted by a selected tag are highlighted in red and
allow to readily see what part has already been annotated. The dendrogram allows
to interactively navigate to points on the arbor.

Minigraph neuron visualization

The 2D graph visualization of neuronal arbors (Supplementary Fig. 3.17 - 3.21)
were generated using Cytoscape Version 3.2.1 and the Organic Layouting. The
3D skeleton morphologies were postprocessed using custom scripts so that only
points of interest and the arbor topology were kept. Points of interest are the cell
body location, presynaptic and postsynaptic locations, branch and leaf nodes. All
the other skeleton nodes were removed, such as continuation nodes, to preserve
the arbor topology. Postsynaptic sites are color-coded according to the cell-type
of the presynaptic neurons. Color-codes are as used throughout this paper. This
visualization method highlights the distribution of cell-type-specific synaptic input
across neuronal arborizations. For instance, clusters of nociceptive input on a specific
subarbors may correspond to inputs from specific spatial domains, and are readily
visible in 2D. Furthermore, presynaptic site locations, for instance at the base of
subarbors, are readily visible.
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Supplemental Figure 3.1.: Dataset limitations and their impact for circuit compari-
son A set of lost sections in abdominal segment A3 in the whole
CNS volume (L1a) limited completeness of reconstruction of
local interneuron arbors. Especially, thin dendritic processes
are hard to follow across gap large gaps (spanning 10 sections,
about 500nm) and are lost. A second first-instar dataset (L1b)
containing an almost complete abdominal segment A3 was used
to establish similarity of cell-types features and connectivity
with neurons in abdominal segment A1 in L1b. Developmental
comparison of third-instar neurons in segment A3 was then
made with both segment A1 in L1b and A3 in L1b.
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a) Datasets L1 b) Datasets L1 c) Datasets L1
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Supplemental Figure 3.2.: Correlation of dendritic cable length, number of inputs
in total and from any nociceptor Upper panel shows data
for first-instar laervae (average of dataset L1a and L1b),
and lower panel shows data for third-instar larvae (dataset
L3). Color-code corresponds to the different local interneu-
ron cell-types. a) The number of dendritic inputs is linearly
correlated with the amount of dendritic cable. As neurons
grow from L1 to L3, the total amount of dendritic arbor
increases but the ordering of the cell-types remains the
same which is indicative of similar growth rates. b) and c)
Absolute number of synapses from any nociceptor onto lo-
cal interneurons as a function of total dendritic inputs and
total cable length. The overall pattern stays remarkably
similar, with some more variation of Down-and-back-1
(blue) and Basin-2 (bright green).
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Supplemental Figure 3.3.: 3D visualization of morphology of nociceptors and first-
order network in L1a Central nervous system mesh is
shown for context. Local interneurons in abdominal seg-
ment A1 are shown in colors. Nociceptors are in black
colors. Ascending and descending interneurons in blue.

L1a L1b L3 scale linear scale

body length early (mm) 0.7 0.7 2.7
neuropil area at A3 (µm2) 1000 1000 3375 3.4 1.8

neuropil height at A3 (µm) 25 25 45 1.8 1.8
neuropil width at A3 (µm) 40 40 75 1.9 1.9

VNC width at A3 (µm) 90 70 120 1.5 1.5
VNC height at A3 (µm) 50 45 70 1.5 1.5

intersegmental distance (µm) 15 - 23 1.5 1.5
local volumetric mdIV domain (µm3) 24 22 184 8.0 2.0

Table 3.1.: Scaling of anatomical features in first- and third-instar (wandering)
larva.
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L1a

L3

noci domain

a b

L1b

Dorsal

Ventral

Anterior

Posterior

non-canonical
branch

Microtubuli split locationd

to noci

non-canonical

7 MT

2 MT

Section 1 Section 2 Section 3 Section 4

GMR59C05

A09b - Basin-1

c

Supplemental Figure 3.4.: Asymmetry of microtubuli number in the Basin-1 noci-
ceptive subarbor a) Reconstruction from three EM datasets.
Dendritic arborization of Basin-1 cells avoid the nociceptive
mdIV domain except for one microtubuli-filled backbone
branch. This branch is already present in L1 datasets, and
is much more elaborate in the L3 datset. b) Confocal image
of a fluorescently labeled Basin-1 neuron shows a weak signal
of the nociceptive subarbor in third-instar larvae. c) Stereo-
typed location of presynaptic site across all 3 datasets. Close-up
view within the nociceptive domain of the left and right Basin-1
subarbors in the L3 dataset. The right subarbor contains nine
microtubuli, whereas the left subarbor contains only two. The
location of a non-canonical microtubuli split for the right Basin-
1 is marked with a green circle. d) Series of EM images at
the microtubuli split location. The upwards branch contains
seven microtubuli, whereas the branch to the nociceptive do-
main contains only two, like at its contralateral location. The
non-canonical branch hosts a number of presynaptic sites in
addition to additional postsynaptic sites which are not present
on the contralateral side.
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sensors
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SelN138

Ventral nerve cordSEZ
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... ...

Supplemental Figure 3.5.: Circuit motif of the descending SelN138 interneuron
Nociceptive signals are integrated across the nerve cord by
two types of ascending projection neurons (A08N, TePn19).
These two neuron types target the dendritic arbors of the
descending neuron SelN138 in the subesophageal zone
(SEZ).
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ddaC_a2l 36 4 2 15 50 8 2 2 7 6 8 9 149
ddaC_a2r 7 18 5 3 4 39 0 1 6 12 12 6 113
ddaC_a3l 43 14 12 37 84 19 13 2 26 23 19 17 309
ddaC_a3r 10 40 43 24 24 81 1 6 18 36 27 24 334
ddaC_a4l 8 0 1 9 4 0 0 0 0 0 0 0 22
ddaC_a4r 0 2 1 0 0 6 0 0 0 0 0 1 10
v'ada_a2l 15 0 0 5 9 0 10 1 0 0 0 1 41
v'ada_a2r 0 13 3 1 0 10 0 4 0 0 0 1 32
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v'ada_a3r 0 47 6 1 0 62 13 63 5 6 6 1 210
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vdaB_a3l 59 16 23 58 10 1 59 22 1 1 0 1 251
vdaB_a3r 26 48 43 39 0 4 46 59 3 3 1 3 275
vdaB_a4l 17 1 4 20 5 0 17 4 0 0 0 2 70
vdaB_a4r 0 13 20 7 0 3 10 28 1 0 1 0 83
Sum 287 235 171 238 277 253 253 215 75 91 76 68 2239

Supplemental Figure 3.6.: Connectivity matrix from local and adjacent nociceptors
to local interneuron in L3
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ddaC_t3l 14 0 1 2 8 0 5 0 3 1 5 4 43
ddaC_t3r 0 8 2 0 0 5 0 2 0 0 0 1 18
ddaC_a1l 6 2 2 5 4 0 5 0 4 1 7 3 39
ddaC_a1r 1 16 5 0 0 7 0 3 1 2 2 7 44
ddaC_a2l 1 0 0 2 0 0 1 0 0 0 0 0 4
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vdaB_a1l 18 4 2 11 2 0 15 2 3 0 3 1 61
vdaB_a1r 7 18 5 2 0 1 4 14 0 0 0 0 51
vdaB_a2l 7 0 0 4 1 0 4 1 0 1 0 0 18
vdaB_a2r 0 5 4 0 0 0 0 3 0 0 0 0 12
Sum 88 102 33 36 35 31 55 57 15 6 24 21 503

Supplemental Figure 3.7.: Connectivity matrix from local and adjacent nociceptors
to local interneuron in L1a
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ddaC_a2l 6 0 3 2 7 0 1 0 2 2 1 0 24
ddaC_a2r 0 4 1 0 0 7 0 0 0 0 0 0 12
ddaC_a3l 10 2 2 4 5 1 2 1 3 2 2 2 36
ddaC_a3r 3 7 6 2 1 8 2 2 11 10 6 2 60
v'ada_a2l 6 0 0 0 1 0 0 0 0 0 0 0 7
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vdaB_a3l 9 11 10 15 0 0 14 2 0 0 0 1 62
vdaB_a3r 4 13 8 1 3 9 5 9 3 0 1 0 56
Sum 67 47 43 29 30 28 45 18 20 15 13 5 360

Supplemental Figure 3.8.: Connectivity matrix from local and adjacent nociceptors
to local interneuron in L1b
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a) Dataset L3
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b) Dataset L1a
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Supplemental Figure 3.9.: Synaptic connectivity from local nociceptors to identi-
fied ascending and descending interneurons
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Supplemental Figure 3.10.: Ascending projection neuron: A08n The ascending pro-
jection neuron is strongly connected to nociceptors. Notice the
absence of any presynaptic sites on the dendritic arbor in the
noiceptor domain, and presynaptic site clustering between the
segments on the main anterior projecting process. The axonal
output arbor with presynaptic sites is located most anteriorly
in the SEZ. Thick varicosities with presynaptic sites are nicely
visible on the projecting process in the dorsal view of a single
cell labeled at third-instar stage (This and the following Neuron
Catalog LM images courtesy of Jim Truman, HHMI JRC)
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Supplemental Figure 3.11.: Ascending neuron: A02o. The Wave-1 cell projects ante-
riorly on the ipsilateral side without mideline crossing
and innervates the class IV domains of multiple ventral
nerve cord segments. Unlike other ascending projection
neurons, the output arbors project dorsally and spans
multiple anterior segments. Notice the presynaptic sites
on the dendritic arbors, and postsynaptic sites on the
axonal arbors.
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Supplemental Figure 3.12.: Ascending projection neuron: TePn19 The confined
dendritic arborization per segment are nicely visible in
L3 and the LM images. In L1a, these arborizations are
starting to emerge. Intermixed presynaptic sites along
the main anteriorly projecting process, and a terminal
axonal branch in the SEZ.
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Supplemental Figure 3.13.: Ascending projection neuron: TePn05 Due to the lim-
ited volume size in L3, left and right partial arbors likely
belong to the bilaterally projection TePn05 neuron. No-
tice the mideline crossing of arborization, and distribu-
tion of presynaptic sites to intersegmental regions.
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Supplemental Figure 3.14.: Ascending projection neuron: A09o
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Supplemental Figure 3.15.: Ascending projection neuron: A09e
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Supplemental Figure 3.16.: Descending neuron: SelN138

122



3.5 S U P P L E M E N TA RY FI G U R E S

a) Dataset L1a

b) Dataset L1b

c) Dataset L3

Supplemental Figure 3.17.: Toplogical representation of Pseudolooper-3 and
Pseudolooper-4. 3D morphologies of neuronal arbors
are shown in 2D. Red triangle show presynaptic sites,
colored circles show postsynaptic sites. The color-code
corresponds to the cell-type-specific colors previously
used.
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a) Dataset L1a

b) Dataset L1b

c) Dataset L3

Supplemental Figure 3.18.: Toplogical representation of Down-and-back-1
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a) Dataset L1a

b) Dataset L1b

c) Dataset L3

Supplemental Figure 3.19.: Toplogical representation of Chair-1

125



Q U A N T I TAT I V E D I FF E R E N C E S O F W I R I N G D I A G R A M S A C R O S S D E V E L O P M E N T O F D R O S O P H I L A

a) Dataset L1a

b) Dataset L1b

c) Dataset L3

Supplemental Figure 3.20.: Toplogical representation of Basin-2
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a) Dataset L1a

b) Dataset L1b

c) Dataset L3

Supplemental Figure 3.21.: Toplogical representation of Basin-4
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a) Fraction of synaptic outputs from nociceptors
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b) Nociceptor - Nociceptor connectivity
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Supplemental Figure 3.22.: Connectivity from nociceptors to different groups of
downstream neurons a) Fraction of synapses from noci-
ceptors to different groups of interneurons (local, ascend-
ing, descending), as well as to other nociceptors (mdIV)
and fragments (fragments that leave the volume or at a
gap, ambiguous fragments). b) Inputs from other noci-
ceptors displays no specificity to subsets of nociceptor
types.
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Basin-2Down-and-back-1

Basin-4

Chair-1

Pseudolooper-3 Pseudolooper-4

a) c)

d)

b)

e) f)

Supplemental Figure 3.23.: Postsynaptic site distributed on axonal output arbors
All six local interneuron types show occurences of post-
synaptic sites on their axonal output arbors.
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SkeletonID Upstream neuron Class Count Class Sum
1717121 A09a_a3l Basin-2 LocalIN 20

174

1771441 A09a_a3r Basin-2 LocalIN 24
1570360 A09a_a4l Basin-2 LocalIN 6

405384 A09b_a3l Basin-1 LocalIN 31
1735814 A09b_a3r Basin-1 LocalIN 38
1725730 A09c_a3l Basin-4 LocalIN 16
1868541 A09c_a3r Basin-4 LocalIN 16
1591495 A09l_a3l Down-and-back-1 LocalIN 5
1591487 A09l_a3r Down-and-back-1 LocalIN 13
1631566 A09l_a4r Down-and-back-1 LocalIN 5
1629316 ddaC_a2l mdIV 95

1752

1606096 ddaC_a2r mdIV 68
189519 ddaC_a3l mdIV 253

1591472 ddaC_a3r mdIV 280
1748751 ddaC_a4l mdIV 24
1755633 ddaC_a4r mdIV 7

478181 v'ada_a2l mdIV 22
184591 v'ada_a2r mdIV 23

1591464 v'ada_a3l mdIV 152
1591477 v'ada_a3r mdIV 156
1748756 v'ada_a4l mdIV 53
1813877 v'ada_a4r mdIV 58
1591468 vdaB_a3l mdIV 207
1870224 vdaB_a3r mdIV 237
1757231 vdaB_a4l mdIV 49
1755250 vdaB_a4r mdIV 68

935736 A02o_a3r Wave-1 OtherIN 6

204

389760 A02o_a4l Wave-1 OtherIN 9
1573859 A02o_a4r Wave-1 OtherIN 9

368291 A09q? classIII-related projection left OtherIN 51
407348 A09q? classIII-related projection right OtherIN 48
487018 classIII-related descending sog left OtherIN 6

1522894 classIV-related descending sog left OtherIN 7
387817 TePn05 classIV-related projection C left OtherIN 36

21291 TePn05 classIV-related projection C right OtherIN 32
1579257 putative class I otherMd 27

900

39008 putative class II otherMd 74
1673960 putative class II otherMd 72

37587 putative class II otherMd 50
443702 putative class II otherMd 18
200465 putative class III otherMd 123

1585339 putative class III otherMd 87
602968 putative class III otherMd 85

1570917 putative class III otherMd 82
1682251 putative class III otherMd 72

441941 putative class III otherMd 55
42746 putative class III otherMd 30

1571883 putative class III otherMd 11
1425228 putative md class IV otherMd 15
1629549 putative md sensory otherMd 37
1580065 putative md sensory otherMd 26
1618945 putative md sensory otherMd 24
1629555 putative md sensory otherMd 12

Others 2958

Sum 5988

Supplemental Figure 3.24.: Upstream neurons of the set of 12 local interneurons
in the abdominal segment A3 in third-instar larva. Up-
stream neurons other than localIN and mdIV classes are
not reviewed and synaptic count numbers are prelimi-
nary. However, a relative strong contribution of inputs
from other multi-dendritic sensory neurons onto pre-
ferred, such as class II and class III, are apparent. These
suggest a partially shared central circuitry of local in-
terneurons downstream of nociceptive sensory neurons
with other sensory neurons found to be necessary and
sufficient for eliciting behavioural touch responses (Tsub-
ouchi et al. 2012).
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C O M PA R AT I V E C O N N E C T O M I C S O F N E U R O N A L A N D
S Y N A P T I C P R O P E RT I E S

4.1 A B S T R A C T

Over the course of animal development, neural circuits change by virtue of neu-
ronal morphogenesis and synaptogenesis. The growth of neuronal arbors and the
formation of new synapses is a carefully regulated process subject to various de-
velopmental and metabolic constraints. At any specific time point, the exact arbor
geometry and the distribution of synapses results from these constrained, regulated
processes. Moreover, the neuronal cytoskeleton composed of microtubules is es-
sential for the stabilization of growing arbor geometries. Using recent advances
in volumetric electron microscopy and neural circuit mapping, we mapped whole
neurons in the small nervous system of Drosophila melanogaster larva and quantified
morphological and synaptic properties at the ultrastructural level. In order to com-
pare a variety of properties, we reconstructed and annotated six different neuronal
cell types at early and late stages of the larval development lifecycle.

We show that the scaling of dendritic interneuron arbors is consistent with a
previously described power law. Our data suggests that the power law relationship
also holds for scaling of synaptic inputs per dendritic cable length. We demonstrate
how to achieve robust cell-type clustering that is independent of developmental
stage by considering a population-based normalization using only the number of
synaptic inputs and outputs. We found cell-type-specific differences in arbor growth
rate, but a number of morphological and synaptic features remain invariant across
development. Dendritic twigs are microtubule free, distal arbor processes that were
found to host between 80% and 90% of interneuron dendritic inputs at both stages
and across different cell types. The proportion of twig cable to non-twig cables
increases from 60% to 70% at late stage consistently for all cell types, while the
density of twigs per cable, or the input density on twigs or backbone remains similar.
We found the Strahler Index at the cell body location to assume a highly robust value
for all considered interneurons, and increase by only one order from early to late
stages.

Our dataset provides important constraints for detailed computational models
of neuronal development and synaptogenesis. Furthermore, automated circuit
reconstruction methods can employ the annotated neurons and synapses as a training
and test datasets for automated whole circuit mapping. The quantitative distributions
of morphological and synaptic features can further serve to guide proofreading.
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4.2 I N T R O D U C T I O N

The development of neural circuits is a process of great complexity. The self-assembly
of neural circuits is specified by genetic programs and unfolds through various stages
influenced by intra- and extracellular environments. Cells proliferate, migrate and
differentiate into neurons; neurites extend from the cell body and are specified
as axons and dendrites; axons are guided to their target regions where they form
synapses with other neuron’s dendrites. The growth and properties of dendritic
arbors has been extensively described and compared between neuronal cell types
(Wittenberg et al. 2007). Derived from such studies, mathematical and computational
modeling approaches have contributed to our understanding of how cellular and
molecular processes determine global morphological features such as arbor geometry
(Ooyen 2011).

Dendritic development involves a complex interplay between intracellular and ex-
tracellular signals. Both of these signals are integrated at the dendritic growth cones
and modulate growth trajectories and branching events, resulting in specific dendritic
shapes and sizes. These processes have been investigated using phenomenological,
computational models of growth cone dynamics and their branching probabilities
(Van Pelt et al. 1997; Pelt et al. 2002). Branching probabilities are determined by three
main factors: a factor that decreases with developmental time, a factor that changes
with the growth cone’s topological distance to the soma, and a factor that decreases
with the total number of growth cones of the neuron. To estimate parameters for such
models, most approaches rely on reconstructions of neuronal morphology performed
at light microscopic resolution. However, at electron microscopic resolution, intracel-
lular structures of neurons, such as microtubules, can be visualized and mapped in
the context of circuit development and neuronal growth.

The major structural components of dendritic morphogenesis are actin and mi-
crotubules (Jan et al. 2010). The distal filopodia-like growth cones are rich in actin
and are essential to guide neurite growth based on extracellular cues (Smith 1988).
Tubulin is produced in the cell body and is transported to growth cones where it is
assembled into microtubules (Bamburg et al. 1986). Intracellular calcium concentra-
tion influences microtubules assembly and contributes to either neurite elongation
or branching (Audesirk et al. 1997; Hely et al. 2001). Microtubules have been shown
to invade the actin-based filopodia and thereby stabilize dendritic arbor shape (Hu
et al. 2008; Jaworski et al. 2009). In addition to their structural support function, they
were also implicated in long-term memory storage (Smythies 2015). Dendritic spines
in vertebrate have recently been linked to the filopodia-like, actin-based structures in
Drosophila (Leiss et al. 2009b). Thus, the study of Drosophila dendritic morphogenesis
and microtubules compartmentalization could provide important insights into the
constraints of neuronal development and their cell type-specific differences.

In this study, we map the morphology, synaptic distribution and microtubuli-
skeleton of single, identified neurons of Drosophila larvae using volumetric serial
section transmission electron microscopy. We reconstructed six pairs of left and right
homologous neurons of different type in the Drosophila abdominal ventral nerve
cord at two developmental stages, both in early, first-instar and late, third-instar
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developmental stages. The unique identifiability of single neurons in an individual
allowed matching of neurons between developmental stages for comparison. With
resolution afforded by EM, we could distinguish the microtubules cytoskeleton of
each neuron and annotate their microtubuli termination points in each of 36 interneu-
rons (N=3500). The cytoskeleton annotation allows to extensively characterize a
variety of neuronal and synaptic properties across development. We aimed at com-
paring similarities and differences of these features between developmental stages to
uncover details of circuit development with relevance for models of neuronal and
circuit development.

4.3 R E S U LT S

We reconstructed six different neuron types which are downstream of nociceptive
sensory axons: Down-and-back-1, Chair-1, Basin-2, Basin-4, Pseudolooper-3 and
Pseudolooper-4. In these neurons, all presynaptic and postsynaptic sites were also
annotated. Additionally, we annotated different types of compartments in these neu-
rons. Neuronal arbors were segregated into axonal compartments that host mostly
presynaptic sites, and dendritic compartments with mostly host postsynaptic sites.
A second, orthogonal compartmentalization of Drosophila neurons distinguishes
neurites into microtubules containing processes (backbone), and distal, microtubules-
free processes (twigs). Both axonal and dendritic compartments comprise backbone
and twig processes. For each distinct neuronal compartment and their combination
(e.g. dendritic backbone, dendritic twigs, etc.), we measured a number of features
(Table 4.1).

The body length of larvae increases from less than a milimeter in first-instar (L1)
to several milimeter in third-instar (L3) larvae in a period of less than 48 hours.
During this time, neurons in the central nervous system grow considerably. We
found neuron-type-specific differences in growth rate from L1 to L3 with scaling of
total cable length of neurons by 3.75x Pseudolooper-3/4; 3.9x Basin-2; 3.73x Basin-4;
3.47x Down-and-back-1; 3.45x Chair-1. The length of arbor cable increases with the
amount of synaptic inputs and outputs of the neurons. Across all neurons, the total
amount of inputs scales linearly as a function of total cable length with slope 0.77
(R2=0.97, p=2.8e-22). The total amount of outputs as a function of cable length scales
linearly with slope 0.57 (R2=0.94, p=2.13e-17) (Fig. 4.1).

For optimal dendritic branching, Cuntz et al. 2012 proposed that dendritic scaling
is predicted by a 2/3 power-law that relates total cable length to the number of
dendritic branch points. Cuntz et al. 2012 showed that such a power-law scaling
indeed holds for a large number of neurons across a large number of species. We
tested whether our data is consistent with this power-law scaling for measures of
dendritic complexity involving total cable length and the number of branch points. A
power-law scaling was already found for Drosophila larva peripheral multi-dendritic
classIV nociceptor dendrites (Iyer et al. 2013). We also found our data to be consistent
with a power-law scaling for dendritic arbors (Fig. 4.2a,b).

We then measured global neuronal properties which are independent of the abso-
lute size of neurons and compared them across development. Previous studies found
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feature description

Raw cable length The total cable length as the sum of distances
of individual sections of the compartment
skeleton. Unit is in microns

Nr. of inputs The total number of postsynaptic sites on the
compartment

Nr. of presynaptic sites Total number of annotated T-bars (vesicles
release sites)

Nr. of outputs Single presynaptic sites target multiple post-
synaptic sites. The total number of outputs is
the total number of target postsynaptic sites

Nr. of branch points The total number of branch points of the skele-
ton

Volume of arbor extent The volume of the convex hull around all com-
partment skeleton nodes

Volume of input site extent The volume of the convex hull around all post-
synaptic sites

Volume of presynaptic site extent The volume of the convex hull around all
presynaptic sites

Soma size The radius of the cell body

Table 4.1.: Set of features measured for each compartment For each neuronal com-
partment, a set of neuroanatomical features were computed.
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Figure 4.1.: Scaling of inputs and outputs as a function of total cable length
a,b) Scaling of the left and right instances of local interneuron types.
The number of inputs and outputs as a function of total cable length.
Pseudolooper-3/4 (bright red); Chair-1 (purple); Down-and-back-1
(blue); Basin-4 (dark green); Basin-2 (bright green).

that the centrifugal order of dendritic segments may influence the probability of
dendritic branching (Ooyen 2011). The centrifugal order counts the number of branch
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a) b)
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Figure 4.2.: Neuronal scaling consistent with power-law Scaling law of neuronal
properties across development is consistent with previously described
power-law scaling across a large range of neurons in a variety of species
(Cuntz et al. 2013). A power-law relationship holds for both a) total cable
length and b) the number of dendritic inputs.

points along the path from a dendritic segment to the cell body. The mean centrifugal
order has been shown to be related to the mode of growth of tree structures (Pelt et al.
1989) and has also been applied to characterize dendritic arborizations (Uylings et al.
2002). Here, we compute the Strahler number, a similar measure of tree complexity,
for neurons at the cell body location. We found this index to be a reliable measure that
is highly consistent across the variety of neuron-types with differing morphologies at
a specific developmental stage (Fig. 4.3). The Strahler number increases on average
by one order, from 6 in L1 to 7 in L3, across the considered population of neurons.
For comparison, we also show that the Strahler number computed for six nociceptor
sensory axons at the neuropil nerve entry point. The values remain at 5 in both 1st
and 3rd instar stages.

Another size-independent measure considers only the input-output structure of a
neuron. The ratio of the number of synaptic inputs vs. outputs may be a simple proxy
to characterize a neuron type independent of its connectivity to other neurons. By a
normalization of dendritic input and axon output counts with the population mean
and standard deviation, we found an embedding space that clusters the studied
neuron types well. It has the additionally property of clustering neurons independent
of their developmental stage (Fig. 4.4a). This clustering becomes more discriminative
if we consider the number dendritic outputs instead of axon outputs (Fig. 4.4b). The
results suggest that the normalization based on a neuronal population measure can
subtract the effect of developmental stage and assignment each neuron to its type by
using a simple measures based only on neuronal synaptic input-output counts.
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Figure 4.3.: Strahler number as robust global neuron feature The Horton-Strahler
number is computed at the cell body location for interneuron, and at
neuropil entry points for nociceptive sensory axon.
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Figure 4.4.: Clusters of local interneurons based on normalized synaptic input-
output relationship a) A low-dimensional feature space independent of
absolute neuronal size segregates cell types in two developmental stages
into clusters. The normalization of the number of inputs and outputs is
computed by subtracting the population mean divided by the population
standard deviation of the respective feature. b) The clusters based on the
number of dendritic outputs appears to segregate cell types better than
using the number of axonal outputs.
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Comparison of twig and backbone features across development

We then characterize the changes of neuronal compartments across development. We
recently showed that the amount of backbone and twig cable in Drosophila neurons
is well preserved between neurons in different regions of the larva nervous systems,
as well as in adult Drosophila (Schneider-Mizell et al. 2015). The absolute number of
twigs increases from L1 to L3 for all neuron types, as well as the absolute amount
of cable length, both for backbone and twig compartments (Fig. 4.5a,b). Consistent
with the idea of microtubules invasion of twigs during development, we found that
the number of branch points in the dendritic backbone increases in development
(Fig. 4.5c).
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Figure 4.5.: Absolute neuronal measures with respect to backbone and twig com-
partments Left bars denote the left instance of the neuron within one
abdominal ventral nerve cord segment, the right bar the right neuron
instance. For each cell type, the plots show data from three datasets, from
both early (L1a, L1b) and late (L3) developmental stages.
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A number of backbone-twig features were found to be invariant across develop-
mental stages and consistent between individuals of the same stage. If the amount of
dendritic twig cable is normalized by the total amount of dendritic cable, we found
that twig cable contributes about 60% of the total dendritic cable length in L1, and
about 70% in L3 to the dendritic arbors. This proportion is consistent across different
neuron types (Fig. 4.6a). Considering the number of dendritic twigs per dendritic
backbone cable, we found this measure of twig density to vary between neuron types,
but to be very consistent across developmental stages (Fig. 4.6b). The majority of
dendritic inputs in Drosophila neurons was found to be onto twigs (Schneider-Mizell
et al. 2015). We found this to be the case also across developmental stages with 90%
of dendritic synaptic inputs onto twigs for Pseudolooper-3 and -4, and at about 80%
in the other neurons (Fig. 4.6c).

a) Normalized dendritic twig cable length
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b) Number of dendritic twigs per dendritic backbone
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c) Percentage of dendritic inputs into twigs
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Figure 4.6.: Normalized backbone and twig measures

We have shown that the total number of inputs of a neuron scales with its total
cable length. If we confine the same analysis to only the dendritic arbor of the neuron,
we found that neuron-type-specific differences are more apparent (Fig. 4.7a). For
instance, Basin-2 neurons have on average a higher number of inputs per dendritic
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cable length than Pseudoloopers. These type-specific differences translate also to
synaptic input density differences on twigs and backbones for different neuron
types. We found a remarkable constancy in input density onto twigs (Fig. 4.7b).
The synaptic input density on the backbone compared is lower to twigs (Fig. 4.7c).
This difference can be explained by the fact that most inputs are onto twigs, but the
amount of twig cable is about 60% (Fig. 4.6a). The difference in backbone input
density are again cell type-specific and preserved across development to a high
degree.
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Figure 4.7.: Constancy of density of dendritic input sites per cable. a) Cell-type-
specific differences in scaling of inputs as a function of total cable length b)
Input density only on dendritic twigs. c) Input density only on dendritic
backbone. All units are inputs/um cable length.
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Quantitative comparison at the individual twig level

Interestingly, we found that the filopodia-like twigs not only occur in dendritic
compartments of neurons, but also on the axonic output terminals, although with
a lower frequency. Axonic twigs were found in all neuron types considered, and
they differ in a number of characteristics. They are shorter, exhibit a lower branching
complexity and receive fewer inputs than their dendritic counterparts. Although
axonic twigs occurred in all studied interneurons, they are not a general feature
of axonic terminals. The nociceptive sensory axon terminals receive substantial
amount of inputs, but directly onto the presynaptic varicosities. They exhibit no twig
processes. In the following analysis of twig properties, we have focused mostly on
the more abundant dendritic twigs.

The question arises whether dendritic twigs are stereotyped entities with shared
structural and synaptic features across development. The relationship of the number
of synaptic inputs to twigs relative to its total cable length was proposed to be
stereotyped (Schneider-Mizell et al. 2015). Here, we compared this relationship
across all cell types segregated by developmental stage. We found a strong linear
correlation between number of inputs and cable length of twigs at both early L1 and
late L3 stages (Fig. 4.8).
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Figure 4.8.: Linear relationship between number of inputs and twig cable length
is preserved between L1 and L3. a) Each individual points denotes a
twig, and the number of synaptic inputs per twig of different sizes is
shown for all twigs in L1, and for the twigs in L3 in b).

This linear trend is also consistent for dendritic twigs analyzed independently
for different cell types and developmental stages (Fig. 4.9). Differences exist in the
slopes of the regression models. The slopes are an indication of average input density
on the twigs. For instance, Basin-2 or Basin-4 twigs have on average a higher input
density (close to 1 input/µm) than Pseudoloopers with lower input density. In the
first-instar datasets (L1a and L1b), most of the twigs have a total cable length smaller
than 10 µm, whereas in the third-instar L3 dataset, more larger twigs exist across all
cell-types.
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Figure 4.9.: Cell-type-specific linear regression of number of inputs vs. twig cable
length for dendritic twigs. Confidence interval of 95% plotted with the
regression line. Dashed line represents slope of value 1.0 corresponding
to 1 twig input/µm cable length.

Next, we compared both absolute and topological twig features as well as charac-
teristic synaptic input distributions between early and late stage interneurons. For
each feature, cell type and dataset, we plot the cumulative distribution function
(CDF). The shape of the CDF is a characteristic measure of the distribution of a
particular feature across all the twigs independent of the absolute number of twigs.
We use the two-sample Kolmogorov-Smirnov (KS) statistic to test whether we can
reject the null hypothesis that both distributions are identical.

In Schneider-Mizell et al. 2015, the authors analyzed the distance of twig inputs
from the twig root node, i.e. the location where the twig connects to the neuron’s
backbone. They found that for a set of motor and premotor neuron twigs, more than
91.4% of all input synapses lay within 5 um of the twig base and backbone. Here, we
found differences between L1 and L3 datasets in the CDF of twig input depth from
twig base for all dendritic twigs across cell types considered (Fig. 4.10). In dataset
L3, about 80% of inputs lay within 5 um of the twig base, and in the L1 dataset 93.8%
of inputs. We can reject the null hypothesis that both distributions are identical (KS
statistic: 0.216, p<0.0001), and thus the difference is significant.
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Figure 4.10.: Cumulative density function for the distance of twig input sites from
twig root in L1 and L3. In L3, approximately 80% of all synaptic inputs
are within 5µm of the twig root, whereas for all L1 dendritic twigs, the
fraction of inputs within the first 5µm from the twig root is larger.
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Figure 4.11.: Comparison of distance of input site from twig root in L1 and L3 seg-
regated by cell type. Dashed lines correspond to L1a and L1b datasets,
continuous line to the L3 dataset.

We found slight differences between cell types in the distance of twig inputs from
the twig root (Fig. 4.11). For all cell types, the differences of the distributions between
L1 and L3 are significantly different (KS tests with all p<0.001). However, we observe
that the differences are not as pronounced for Basin-2 and Basin-4 as for the other
cell types.

We further compare other twig features between two developmental stages (Fig.
4.12). In particular we compare the total raw cable length of the twig, the total
number of inputs per twig, the Strahler Index at the twig root (a measure of branch-
ing complexity) and the input density (the number of inputs per cable per twig).
For the total cable length of individual twigs, both Basin-2 and Basin-4 cell types
are not significantly different between developmental stages (Fig. 4.12a). For the
other cell types, Chair-1, Down-and-back-1 and Pseudoloopers, the total size differs
significantly between L1 and L3 (KS test, p<0.001). There exists a larger fraction of
larger twigs in L3 than in L1. The number of inputs per twig changes significantly
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from L1 to L3 at the 5% level except for Basin-2 (p<0.03, p<0.24 for Basin-2) (Fig.
4.12b). The Strahler Index at the twig root shows a high degree of similarity across
cell types in both L1 and L3 datasets (Fig. 4.12c). Across all cell types, more than 90%
of all twig root nodes have Strahler Index 1 or 2. The CDF plots show that in L3, the
fraction of twigs with Strahler index 3 at the root node increases slightly. In terms
of input density, no significant differences could be found between cell types and
between datasets L1 and L3 at the 5% level (Fig. 4.12d).
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Figure 4.12.: Comparison of dendritic twig features in L1 and L3 A number of fea-
tures of dendritic twigs shown as cumulative distribution plots. The
dashed lines refer to the first-instar datasets, the solid line to the third-
instar dataset.

We found the input density per twig to be highly preserved, yet there is a variation
of absolute twig sizes. Patterns in the specific location of inputs might therefore be
masked by the different sizes of twigs. We therefore calculated the maximum depth
of a twig as the maximum cable distance from twig root to any of its leaf nodes. We
then used this twig depth to normalize the distance of input sites from the twig base.

We found, consistent with our experience from reconstructing twigs, that the distal
termination location at twig leaf nodes shows a higher number of inputs. In Figure
4.13, we plot the input location normalized by twig depth (between 0 and 1) for all
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the twigs separately for dataset L1 and L3. The increase of inputs at distal twig input
sites is visible in the plot. In agreement with the constant input density across the rest
of the twig arbors, the histogram shows similar levels of inputs across the rest of the
twigs. Visualized as a cumulative distribution function, the patterning is consistent
for each cell type (Fig. 4.14).
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Figure 4.13.: Input distribution on normalized dendritic twigs in L1 and L3. When
normalizing for the twig length, we observe a close to uniform distribu-
tion of input sites and a strong accumulation of input sites at the twig
terminal.
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Figure 4.14.: Comparison of the normalized distance of input site from twig base
in L1 and L3 across cell types. A high degree of similarity is found
between first-instar and third-instar larvae.

We have only analyzed twigs with inputs, but we also found a small number of
dendritic twigs without inputs. Across all the twigs annotated for all cell types, both
early and late stage neurons have zero-input twigs (L1a, L1b, L3 with N=119, N=118,
N=143). We found that twigs without inputs are considerably shorter than twigs
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with inputs in both L1 and L3 datasets (Fig. 4.15). We observed that Pseudlooper
zero-input twigs are in both L1 and L3 datasets larger than zero-input twigs of the
other cell types considered.
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Figure 4.15.: Cumulative distribution function of twigs without input synapses a)
Twigs without input synapses are considerable shorter than twigs with
at least one or more input. Zero-input twig size is not different from
L1 and L3. The Pseudolooper cell type shows considerably larger zero-
input twigs than the other cell-types considered. b) When considering
the maximum twig depth of twigs, the results are consistent with a).
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4.4 D I S C U S S I O N

What insights can the analogy of dendritic spines in vertebrate neurons and twigs
in invertebrate neurons provide? The function of dendritic spines is still debated
today (Malanowski et al. 2014), so it is difficult to try to establish exact functional
equivalences. However, dendritic spines as well as twig processes are related to a
neuron’s balance between stability and flexibility. A representation of stability is
the neuronal cytoskeleton which is energetically more costly to build and maintain,
but is essential to ensure that the overall shape of neurons remains stable over
time. This stability in shape confers stability to the overall wiring diagram by
maintaining spatial proximity of neuronal processes that can form and maintain
synaptic contacts within confined spatial domains. The exact number of synapses and
synaptic contacts between neurons, however, might need to change as a consequence
of development and experience. It is therefore important to maintain flexibility by
which synaptic weights can be changed on faster time scales than is required for
building cytoskeletonally-stabilized neuronal processes. The well-known dynamics
of dendritic spines that extend and retract on short time scale might thus have an
analogon in invertebrate twigs, whose dynamics has not been extensively studied in
vivo.

A common viewpoint is that dendritic spines allow both biochemical as well as elec-
trical compartmentalization within neurons (Shepherd 1996). Similarly, Drosophila
twigs present a compartmentalization of neurons that could be biochemically rele-
vant. Intracellular Ca2+ levels have been shown to modulate dendritic growth and
the initiation of filopodia protrusions (Mattson et al. 1987; Lau et al. 1999; Duch et al.
2002). Twigs could act as a spatial constraints for the diffusion of Ca2+, thereby
locally increase Ca2+ levels and contribute to the modulation and constraining of
growth dynamics. Additionally, the observation of the bias of input synapses to-
wards the tips of twigs may play a role in the stabilization and orientation of twig
processes. Similarly, in growing zebrafish dendrites, dendritic filopodia have been
shown to be stabilized by synapses (Niell et al. 2004). Through this fixation at the
tip locations, twigs can remain oriented which could be important for subsequent
microtubuli and appropriate dendritic backbone growth.

Our data suggests that dendritic growth proceeds by adding more stereotyped
twigs to the dendritic backbone, while keeping the ratio of twig vs. backbone cable
at a constant level of 60%-70%. The measurement of other twig features show a
high-level of similarity across cell types, for instance with regards to twig size and
branching complexity. The developmental process appears to target cell-type specific
differences while maintaining an equal density of twigs per backbone arbor.

The morphology and electric properties of dendritic spines have been shown
to influence dendritic integration and processing (Harnett et al. 2012). Similarly,
Drosophila twigs could have a filtering role for synaptic inputs due to their compart-
mental nature and small neurite process diameter (data not shown). Coincident
synaptic inputs could be necessary to activate a twig in order for postsynaptic poten-
tials to propagate to the dendritic backbone for subsequent integration. Spontaneous
postsynaptic potentials, however, occurring at random at single postsynaptic sites of
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twigs could attenuate rapidly due to the small diameter of twigs. Therefore, twigs
could act to filter spontaneous activity and confer increased robustness for backbone
integration of synchronized synaptic inputs.

Beyond these biological results, the relationships and distributions we uncovered
may provide useful heuristics and biological features to improve automated ap-
proaches to neural circuit reconstruction. The deviation from experimentally defined
baseline distributions can be used to highlight errors in the results of automated
neuron reconstruction algorithms and thus serve as a quality control measure and
to guide proofreading. The presented features can be computed efficiently, once
information on synaptic locations and microtubuli termination points are available.

As an example, the ratio of twig and backbone cable could be computed for an
automatically reconstructed Drosophila larva neuron, and its value is expected to be
within a confined range of values. Statistically significant deviations from this range
indicate whether twig or backbone cable is missing in the reconstruction. Additional
parameters, such as the densities of twigs per backbone or inputs per cable can
provide further cues for proofreading and to find the locations of missing twigs. The
usage of characteristic distributions to provide indications of deviations from expec-
tations are a posteriori and allow to filter results and to guide proofreading. These
features could also directly be integrated as prior knowledge into the optimization
procedures of reconstruction algorithms.

Importantly, we have shown that for many of these baseline distributions, variation
between cell types exist. Some features are very similar across developmental stage,
and some vary linearly with developmental time. These constraints and variations
have to be taken into account when utilizing these measures. The distributions may
need to be calibrated for specific cell types and specific developmental stages.

As an example, we have considered the Strahler Index computed at the cell body
location. We have shown that this index differs between sensory neurons and in-
terneurons, but is highly stereotyped for different neuron types with a variety of
shapes. With such robust measures that hold for a larger number of interneurons,
they can serve as a simple heuristic to check the quality of a neuron reconstructions
once basic parameters are known. Outliers that differ from the expected Strahler In-
dex for a class of neuron types at a particular developmental stage can be highlighted
for further proofreading. When automated neuron reconstructions can produce
thousands of neurons, automated quality control and outlier finding will be of great
utility.
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5.1 I N T R O D U C T I O N

The challenges of automating the task of neural circuit mapping are not only algorith-
mic. The computer vision and machine learning communities focus on developing
novel algorithms that aim at improving over state-of-the-art results in neuron recon-
struction and synapse detection. These algorithms, however, are mostly tested and
compared within these communities, and in the majority of cases with only small
test dataset. There is no immediate incentive to make these algorithms work at scale
for large EM datasets, for different types of EM datasets, or to integrate them into
existing frameworks to make them useful to neuroscientists. Therefore, it is crucial
to build bridges between research communities and provide sufficient amount of
software engineering resources to implement solutions so that novel algorithmic
developments can maximally impact the practice of neural circuit mapping.

Here, our motivation was to make a few contributions to these underattended
areas. Over the long term, investments in these areas will be an important driver for
progress in semi-automated neural circuit mapping at large scales.

PA R A M E T E R T U N I N G F O R S P E C I FI C D ATA S E T S The parameters of reconstruc-
tion algorithms need to be tuned for specific EM datasets to accurately evaluate
their performance. For this evaluation, it is necessary to train algorithms on
ground truth datasets that were produced by experts. Obtaining high-quality
ground truth datasets is tedious and laborious, but it is of utmost necessity,
as supervised learning algorithms need a large amount of examples to be
trained. We have produced such a pixel-based ground truth dataset in one
of our high-quality EM volumes that includes labels for different classes of
objects (membrane, synapses, mitochondria, glia). We used this to train and
tune state-of-the-art image classifiers.

S O F T WA R E I N F R A S T R U C T U R E A N D P I P E L I N E Due to the nature of neural cir-
cuit data, currently existing reconstruction algorithms can not be trivially
parallelized from small to large datasets. Neurons extend their axonal and
dendritic processes over large distances in volumes that can not be maintained
in memory of normal desktop computers (>1TB). One approach to solve this
problem is to split volumes into smaller chunks, segment these chunks individ-
ually and merge segmentation results to rebuild whole neurons. To successfully
implement such a scalable, distributed system, expertise in distributed systems
design, databases and high-performance computing is required. Here, we
demonstrate the results of a prototype segmentation pipeline for large EM
volumes that use existing, state-of-the-art algorithms.
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D E S I G N O F U S E R I N T E R FA C E S A segmentation pipeline provides partially cor-
rect results of volumetrically reconstructed neurons in an EM volume. These
results only become biologically useful to the extent that researchers can inspect
and correct them before quantitative analysis. This necessitates the develop-
ment of appropriate user interfaces for proofreading and error correction. We
have developed two user interfaces for this purpose. The first is geared to-
wards researchers who need accurate volumetric segmentations of neurons or
other segmented structures. The second interface allows to correct so-called
topological errors committed by reconstruction algorithms. This includes false
splits or false merges of neuronal processes. The interface was made as sim-
ple and easy-to-use as possible with the potential for deployment in a public,
crowd-sourced setting with minimal requirements on user training.

5.2 R E S U LT S

Multi-label pixel classification

A high-quality, sufficiently large ground truth dataset is essential for training com-
puter vision algorithms and validating their performance. The current generation
of computer vision algorithms rely on pixel labeled datasets as training data. The
manually generated skeletonized reconstructions of neurons can at the moment not
be used for training, therefore we needed to generated pixel-based image ground
truth directly. We selected a substack of size 1024 x 1024 pixels with 20 sections from
the large, high-quality third-instar volume L3 (see Appendix A). We then labeled
each pixel in this stack according to the ultrastructural element it represents. In
particular, we densely labeled membranes, synapses, mitochondria, cell interior and
glia cells (Figure 5.1). We made the dataset available to the computer vision research
community by publishing it on FigShare (Gerhard et al. 2013).
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Figure 5.1.: Ground truth dataset for training. Three consecutive sections are shown
in each column. Raw image data (top row), ground truth labeling (middle
row), and ground truth overlayed on top of the raw images (bottom row).
The displayed labels are cell interior (black), membranes (blue), synapses
(red) and mitochondria (green).
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We then collaborated with the winners of the ISBI 2012 Challenge for EM classifica-
tion 1 to train deep convolutional neural networks. Their winning networks (Ciresan
et al. 2012) were extended to work with our multi-label ground truth datasets. Figure
5.2 shows classification results on a test stack for multiple labels. Recent evaluations
of the accuracy of neuron reconstructions using these probability maps with novel
error measures indicated on the order of 20 false-merge and 10 false-split errors on a
1024 x 1024 pixel image (Funke et al. 2015).

Figure 5.2.: Teststack2 - Classification results of Convolutional Neural Network.
The results of the CNN from the Schmidhuber group. Multi-label clas-
sification including membranes (blue), mitochondria (green), synapses
(red) and glia cells (bright blue). For the full series of 20 sections, see
Appendix E.

In order to inspect the quality of classification in a larger volumes, we applied their
networks to the entire neuropil region of the whole L3 dataset of Drosophila larva

1 http://brainiac2.mit.edu/isbi_challenge/
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ventral nerve cord (Appendix A). We confined image classification to the subregion
of left and right neuropils which hosts all the neuronal arborizations and synapses,
thereby leaving out the surrounding cortex of cell bodies. This amounted to a
volume of 370k Gigapixels (16k x 11k x 2100 sections, 73.6x50.6x105 µm). Exporting
the resulting probability maps to CATMAID image stacks allowed us overlay them
on the raw image data and visually inspect the classification accuracy in different
regions of neuropil (Figure 5.3). We found that the results were qualitatively similar
in different regions of the neuropil, for instance in sensory and motor regions.

Figure 5.3.: Membrane probability map of a large EM section of Drosophila ven-
tral nerve cord One EM section of L3 dataset classified with the convolu-
tional neural network by Ciresan et al. 2012 showing the probability of a
membrane (probability 1.0, black; probability 0.0, white). Inset shows a
zoomed-in version of the membrane map.

We then qualitatively tested the degree with which the trained classifier learned
filters that could generalize to other datasets with slightly different tissue properties.
Richard Fetter at Janelia Research Campus provided us with a short series of an
adulty fly brain preparation with similar tissue contrast as the L3 dataset. We applied
the trained networks from the larva dataset to these adult EM images (Figure 5.4).
Visual inspection revealed that particular neuropil regions, e.g. large numbers of
parallel running fibers with good membrane contrast, were classified well. This
indicates that the trained convolutional networks learned filters that can generalize
to other datasets. However, training the networks using ground truth data for specific
neuropil regions should provide improved classification results.
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The generalizability hints at the fact that deep convolutional neural networks learn
to discriminate features which are invariant between neuropils. For instance, the
diameter of the lipid bilayer of membranes is a conserved quantity across cell types
measuring about 4 nanometer. The same membrane composition and thickness in
neurons in different types of tissue can account for some of the generalizability and
learned invariant features of trained convolutional networks. This tests suggests
that deep convolutional neural networks are powerful learning machines to classify
different types of EM datasets.
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Figure 5.4.: Membrane classification of adult fly brain tissue. Membrane classifica-
tion performed with convolutional neural networks (Ciresan et al. 2012)
that were trained on neural tissue of another Drosophila larva dataset.
The results appear surprisingly good qualitatively . Image courtesy of
Richard Fetter, HHMI Janelia Research Campus FlyEM Project.

Neuron segmentation pipeline

Our next goal was to use the generated probability maps for the whole L3 dataset and
apply the neuron reconstruction pipeline SOPNET (Funke et al. 2012). The original
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implementation of SOPNET 2 relies on the assumption that a complete image stack
and results from computations fit into a computer’s main memory. The size of the
whole L3 dataset precluded running the original SOPNET implementation, so we
aimed at modifying the SOPNET neuron segmentation pipeline to process large
image volumes on standalone desktop computers. We achieved this by modifying
SOPNET to process pairs of large 2D sections that can fit in normal desktop’s main
memory. The segmentation results were then stored persistently to hard disk and
into a database 3.

SOPNET extracts candidate neuron slices (the cross-sectional profile of a neuronal
process) from the probability maps, and produces possible pairings between slices
in adjacent sections called segments (see the inset of Figure 5.5 for an example
neuron slice). These segments have associated feature vectors that are later used to
find a good reconstruction in a given volume. So the minimal requirement of our
modified SOPNET version demanded to process at least two sections at any given
time. The slices and segments data were then inserted into an extended version of
the CATMAID data model for persistent storage, and the slice masks for neurons
were stored as PNG image on disk. The run of the whole L3 dataset produced
approximately 227 million slice candidates and 363 million segments (continuation
or branch segments), which resulted in a database with 355 GB that also included
segment features and indices for fast data lookup.
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Figure 5.5.: Histogram of neuron slice sizes in a single section for a 16’000 x 11’000
pixel neuropil region of interest. Inset shows an example slice of ap-
proximately 100k pixels.

2 https://github.com/funkey/sopnet
3 Source code of the prototype in the neurocity branch on http://github.com/catmaid/CATMAID/
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The distribution of slice sizes follows an exponential decay (Figure 5.5). The same
distribution was found for several tested sections. The distribution has a long tail,
and we found slices up to a total of 500’000 pixels. More than 86% of the slices are
less than 2000 pixels. A large fraction of the larger slices are spuriously connected
to smaller slices due to the inaccuracy of the membrane probability maps given the
selected extraction parameters (Figure 5.6).

Figure 5.6.: Spurious large neuron slice resulting from wrongly connected small
slices. The red circle indicate locations where small slices have been
wrongly merged to produce a large slice candidate.

Due to artefacts in EM images such as folds or tears, larger section to section
variation exists in terms of number of slices and segments extracted. On average, we
extracted 107’710 slices per section of size 16’000 x 11’000 pixel (Figure 5.7). If we
consider only continuation and branch segments, we extracted on average 172’272
segments per section (Figure 5.8). For each neuron slices, additional end segments
on either side are stored in the database. This yields an average of 3.6 segments per
individual slice. Note that due to overlap of slices from the extraction procedure,
these numbers overestimate the effective number of slices in a section.
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Figure 5.7.: Number of neuron slices of a single z section of size 16’000 x 11’000
pixel. Membrane quality, EM artefacts and differences in the actual
number of slices in a section lead to variation in the number of extracted
slices. The reason for the lower number of slices in the first 144 sections
is unknown.
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Figure 5.8.: Number of neuron segments for a pair of z sections of size 16’000 x
11’000 pixel. An average of approximately 180’000 segments is found
throughout the stack. The variation in the number of segments can be
due to image noise or artefacts in the samples.

The database containing neuron slices and segments allowed us then to start build-
ing user interfaces for volumetric neuron reconstruction. The development of a user
interface based on a small test stack would have been possible. However, building
an interface with a sufficiently large data volume has important advantages. Also,
working directly with a larger dataset can reveal problems earlier in the development
process. For instance, some neuron slices are very large on the order of many thou-
sand pixel in width, demanding special treatment to display quickly. The challenge
that might arise from following neuronal processes over long distances could be
overlooked when only focusing on small test datasets where neuronal processes are
very short.

User Interface 1: Volumetric neuron reconstruction in CATMAID

We designed and implemented a user interface for reconstructing single neurons
volumetrically. Volumetric segmentation of processes in existing software requires
painting each individual pixels or contours that then are filled (e.g. VAST see Kasthuri
et al. 2015). A much faster option is possible with the existing database of generated
neuron slices. The user just needs to select the correct slices from a small set of
possible candidates. In our prototype interface (Figure 5.9), the user can click on
an arbitrary location in the image stack to start the reconstruction of a neuron. The
neuron slice with the minimal size at this location is displayed, and neuron slice
candidates can chosen using the mouse scroll wheel. If the neuron slice fits the
expectation, the user can press a key and move to the next section. In the next section,
the slice is already displayed that has a minimal cost connected through a segment
with the previous slice. This cost was defined in the SOPNET process that extracted
the segment features. If the slice is suitable, the user can press a key again to move
to the next section and neuron slice, and so forth. Whenever a slice does not match
the underlying EM data, another slices from the possible set can be selected. This
allows to quickly move through the stack along continuation and branch segments to
generate a volumetric segmentation of a neuron. However, in this prototype interface
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the reconstruction of a single neuron takes longer than manual skeletonization. It is
therefore better suited for targeted volumetric reconstructions of single neurons than
for the extraction of the topology of complete circuits.

Figure 5.9.: User interface prototype of interactive volumetric neuron reconstruc-
tion interface in CATMAID From top-left to bottom-right, individual
images show consecutive candidate slices (green) of a specific neuron
of interests. If individual candidates do not match the expected neu-
ron outline, a different candidate can be selected from a set of extracted
candidates manually using the mouse-wheel.

User Interface 2: Crowd-sourceable interface to correct topological errors

We implemented a second user interface to quickly fix topological errors from the
reconstruction pipeline (Figure 5.10). The upper row shows the current section, and
the lower row the possible continuations in the next section (which could include
ends, branches or continuations). The users then clicks on one of the possible images
in the lower row to mark it as the correct continuation of the neuron process. It is
possible to toggle the slice overlays to better see the raw image data for context, and
to discard the decision if there is uncertainty associated with it. A larger number
of such decisions can be made in a short time, and the logic behind can be quickly
grasped by novice annotators. Importantly, the bandwidth requirements is minimal,
and only a small amount of image data has to be transferred to clients, namely a
small number of compressed images for the raw image data and the slice overlays.

159



T O WA R D S S E M I - A U T O M AT E D N E U R A L C I R C U I T M A P P I N G

Figure 5.10.: User interface prototype to link neuron slices between sections The
selection of the correct continuation segment from a small number of
alternatives is posisble in the interface. The top row shows a selected
neuron slices from one section, and the bottom row displays two al-
ternatives for the continuation of this slice in the consecutive section.
Selecting the left slice/image is the correct choice in this case.

Different options exist to provide motivation and incentives to users that may want
to contribute topological error corrections or decisions. Beyond the idealistic prospect
of contributing to the quest to map the brain, more competitive aspects could be
introduced in the workflow. We implemented a simple leader board that shows the
number of decisions made in a give time frame (Figure 5.11). Revealing particular
types of information about users such as the amount of annotations performed
might further incentivize competitive motivation. Such a simple interface might not
only work in a public, game-like setting, but could also be employed in a setting
where users are payed for making decisions. Users of micro jobbing platforms
(such as Amazon Mechanical Turk) may provide a large workforce to contribute to
reconstruction via such an interface. Users of such platforms could be monetarily
compensated for individual decision, for instance as a function of their expertise and
training. Alternatively, dedicated neuron reconstruction services such as Ariadne
Service 4 could provide demand-driven expert proofreading man-power for large
reconstruction projects.

4 e.g. www.ariadne-service.ch
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Figure 5.11.: Leaderboard Overview of contributors with the number of contributed
annotation decisions (votes).

The order of presentation of such segment decisions could be prioritized by differ-
ent criteria. For instance, high priority could be given to decisions that are part of
a neuron of interest in a large volume, thereby effectively guiding proofreading to
biologically relevant locations. In another scheme, segments could be selected that
are in an ambiguous region of the segment cost function (Klein 2014). Segments with
a very high or very low cost are presumably more likely to be classified as correct
or wrong segment than segments in the intermediate region. The generation of
manually classified segments can serve as ground truth data to implement an online
learning scheme at large scales. Such targeted user feedback would permit ongoing
improvements to the classifier that selects the best neuron slice and segments.

5.3 D I S C U S S I O N

In the future, a circuit mapping approach along the lines presented could leverage
computational segmentation pipelines and most effectively uses human proofread-
ing time in a closed feedback loop. The sparse, targeted circuit mapping approach
introduced in Chapter 2 already reduced reconstruction time over redundant ap-
proaches. Optimally, such a sparse, targeted approach could be combined with a
densely segmented volume containing a limited number of errors, and thus could
further speedup reconstruction time. Such a targeted, semi-automated reconstruction
approach for proofreading would guide human attention to error locations that are
most relevant for a particular circuit of interest.

Attempts have been made in this direction at large scales, but to our knowledge,
none explicitly implemented targeted proofreading to circuits of interest (e.g. Plaza
et al. 2014; Kaynig et al. 2015). The advantages of keeping the human in a tight
feedback loop have been demonstrated by image classification and segmentation
tools such as Ilastik (Sommer et al. 2011). By inspecting the classification results and
iteratively adding new training data to improve the pixel classifier, the resulting
classification can quickly improved to useful segmentations. The importance of
immediate feedback with a short delay is crucial to guide new annotations and for
evaluating the results.
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For large-scale EM image stacks, a similar iterative approach to circuit mapping
could be envisioned. Individual proofreading decisions can be used in a feedback
loop to immediately and iteratively improve the accuracy of the underlying seg-
mentation algorithms. If used by annotators in parallel, this online learning scheme
implemented by such a loop would become beneficial to every single contributor in
their self-contained circuit mapping projects. The more people use the system, the
more training data becomes available to improve the underlying learning system.
With retraining, it can thus quickly converge to the maximal accuracy. With further
optimization of the system, human proofreading time can be allocated to resolve
only the most difficult errors.

With the system presented here, an assumption is made that the probability maps
are sufficiently accurate to extract at least one neuron slices that is in good correspon-
dence with the ground truth. This assumption is not generally true, but with this
assumption a major advantage arises. Unlike other systems that require pixel-based
splitting of neuron slices or merging them together (e.g. Haehn et al. 2014), the
complexity of proofreading decisions could be reduce to only select an appropriate
neuron slice. It is thus not required to change the pixel-based geometry of individual
slices, an operation which takes longer than a simple selection.

Furthermore, the feedback provided to users after a decision could include the
impact of the decision on neuronal morphology or the circuit diagram. For instance,
after selecting an alternative neuron slices or a different continuation, the resulting
neuronal morphology after this decision could be displayed to the user. This is one
example of a number of high-level cues, such as described in the previous Chapters
of this thesis, that can be employed to evaluate proofreading decisions. The metrics
that implement some of these higher-level features could be displayed alongside the
different proofreading decisions to provide additional information. Eventually, such
high-level features could be integrated into reconstruction algorithms themselves as
hard or soft constraints.

For further development of automated reconstruction algorithms at the circuit
level, good training and benchmark datasets are required. The neurons and synapses
that we mapped and annotated in Chapter 3 and Chapter 4 could serve as a bench-
mark dataset. In addition to the pixel-based ground truth provided here for the
third-instar EM volume, these skeletons and synapse annotations can be used to
train algorithms that aim at reconstructing whole neurons and circuits within a
large image volume. For instance, the left set of neurons can be used as training
dataset, whereas the right set of neurons can be used to validate and evaluate the
performance of the algorithm. Additionally, the mapped neurons can serve as test
data to evaluate how much of the topology of a circuit can be reliably recovered with
automated methods.

The main focus of automated EM reconstruction algorithm development is on
extracting the topology of neural circuits, but a wealth of additional data is present
in EM images. Volumetric information about synapses, mitochondria or glia cells
add valuable quantitative information to existing wiring diagrams. For instance, the
size and distribution of mitochondria is important for presynaptic and postsynaptic
synapse function (Li et al. 2004; Stowers et al. 2002). The amount of mitochondria
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volume has been implicated in discriminating excitatory and inhibitory neuron
due to their differing energetic demands (Kasthuri et al. 2015). Also, the size of
presynaptic sites and synaptic contact areas might be a better proxy for synaptic
strength than an integer count. Furthermore, volumetric information of neuronal
processes is critical information when building biophysically-accurate electrotonic
models of single neurons. Glia cells have been difficult to characterize volumetrically
at the ultrastructural level due to their intricate, fine-scale structure. Automated
morphological measurements could provide interesting new avenues for glial study
such as their relation to synaptogenesis (Molofsky et al. 2012). The association of
glial cell with synapses has been shown to significantly interact with neural circuits
and therefore would be a valuable target to volumetrically reconstruct (Araque et al.
2010; Yoon et al. 2014).

5.4 O U T L O O K

Using some of the experiences gained in this project, we have embarked on building
the scalable, distributed segmentation pipeline CATSOP 5. This new pipeline aims
at providing an effective way to scale SOPNET to large image volumes by a block-
wise processing approach, and seamlessly integrate into the existing CATMAID
framework for semi-automated circuit reconstruction (hence the name CATSOP).
The long-term goal is to iteratively replace the manual process of circuit mapping.
With the modular architecture of CATSOP, individual modules of the pipeline can be
replaced as they improve (e.g. image classification, segment cost computation etc.).
An important requirement of this approach is to ensure that resulting segmentations
remain compatible with CATMAID so all the existing tools for circuit review, analysis,
organization and visualization can be used.

5 github.com/catsop
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The goals to accomplish cost-effective, high-throughput EM connectome mapping
have been considerably challenged and criticized (Morgan et al. 2013). These chal-
lenges and criticisms are reminiscent of those that high-throughput full genome
sequencing faced at early technological phases. Full genome sequencing was initially
perceived as too costly and time-consuming to become practically useful. Incen-
tivized by its utility for basic and clinical research, and its promises for medical
applications, new sequencing technologies developed and evolved rapidly. The
initial sequencing of the whole human genome got underway in 1990 and took more
than 13 years to complete with a cost of more than 3 billion US dollars. In the year
2015, technological advances reduced the cost to sequence a whole human genome
to less than 5000 dollars, and the genome map can be completed in a few days
(Check-Hayden 2014).

Similarly, the currently ongoing large-scale connectomics projects are very costly,
involve a large number of people and take many years to completion (e.g. Take-
mura et al. 2013). With ongoing technological advances and automation, however,
generating large and many EM volumes is becoming more cost-effective and can
be performed in an increasingly high-throughput fashion. Improvements involve,
for instance, better staining protocols (Mikula et al. 2015; Hua et al. 2015), the devel-
opment of automated and robust methods for sectioning EM tissue (e.g. Denk et al.
2004, iTome developed in the Hess lab at Janelia Research Campus), parallelization
of acquisition by parallel electron beams and camera arrays to increase field-of-view
(e.g. Eberle et al. 2015 or Bock et al. 2011 respectively), faster CCD cameras, faster
sample stages and a host of algorithms to control and optimize the throughput of
these instrumentations.

Additionally, image processing pipelines are required to further process raw EM
images into aligned 3D image volumes. To handle the large volumes of data, align-
ment algorithms need to be parallelized and operate on large compute cluster (e.g.
Burns et al. 2013; Scheffer et al. 2013). With these active and ongoing developments, I
anticipate a growth trajectory for EM connectomics in the coming decades with simi-
lar acceleration potential like genome sequencing technology. A key success factor
will be in convincingly demonstrating the scientific, clinical or neurotechnological
merits that justify such large-scale efforts to public and private funding bodies.

Recently, a number of objections have been raised that challenged the scientific
merit of large-scale connectomics projects (reviewed in Lichtman et al. 2008). From
the pioneering project that mapped the connectome of C. elegans, we have some
insights about the possible limitations and opportunities of connectomic datasets.
Clearly, structural maps of neural circuits will not immediately reveal the functioning
of neural circuits, as genomes have not revealed completely the working of the
interior of cells. They are, however, deemed necessary - although not sufficient for

165



D I S C U S S I O N

understanding brain function (Bargmann et al. 2013). As we continue to associate
structural with functional circuit data in quantitative behavioral assays, we will be
increasingly better at defining the usefulness and limits of connectome datasets.

Integrating connectome data in small model organisms

As a case in point, the availability of the C. elegans connectome has certainly con-
tributed significantly to the development of an entire research field (Emmons 2015).
It allowed to generate new hypotheses about neuron and circuit function and guide
experiments to test, validate or falsify conflicting models. There are all reasons to
expect that connectomes of other species and circuits can similarly contribute to
generating new hypotheses and guide experiments.

The focus on circuits in a genetically-tractable model species with a small nervous
systems, such as Drosophila, has many advantages (Simpson 2009). In a recent
large-scale study which was facilitated by the contribution of this thesis project
exemplifies these advantages (Ohyama et al. 2015). This work integrated large scale
screening of behaviors, functional imaging with the manipulation of neural activity,
and large-scale electron microscopy and circuit mapping (Dierick et al. 2015). All
these techniques needed to be integrated to reveal a more comprehensive picture
of the functioning of a subset of neurons in a well-defined behavioral phenotype in
Drosophila.

The integration of anatomy, physiology and behavior by means of neuroinformat-
ics platforms and pipelines will significantly inform brain theories, computational
neuronal models and circuit simulations, and has the potential to drive new neu-
rotechnology developments (Figure 6.1).

Small organisms and circuits are further a perfect testbed to integrate anatomical,
physiological and behavioral data. The data from different modalities can often be ob-
tained at the same resolution, thereby minimizing the resolution mismatch between
data generation technologies (Meinertzhagen et al. 2012). A mismatch occurs when
the resolution of data obtained by different imaging modalities can not be matched.
For instance, volumetric EM provides data about the detailed distribution of single
synapses on a neuronal arbors and their neuron-neuron connectivity. If physiological
data of the activity of neurons is limited in spatial resolutions to clusters of cells, it is
not straightforward to match these clusters to single neuron connectivity derived
from EM. Similarly, the spatial and temporal resolution of quantitative, behavioral
measurements of an organism’s activity need to match the resolution of physiological
recordings to relate these different data types conclusively, for instance via muscular
activation dynamics. In small circuits in small animals, such as Drosophila, C. elegans
or larval zebrafish, the trend is to continuously reduce this mismatch by means of
newly emerging large-scale imaging technology (Ahrens et al. 2015). Quantitative,
high-throughput pipelines for imaging the temporal dimension (e.g. Amat et al.
2014) or behavioral analysis (e.g. Ohyama et al. 2013) have to be established and
integrated with ultrastructural data of synaptic connectivity for a comprehensive
understanding of the operation of neural circuits.
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Figure 6.1.: Neuroscience subdisciplines and their relationships A comprehensive
understanding of neural circuit operation requires knowledge of its anatomy
(structure), its physiology (dynamics) and its function (sensory inputs, motor
outputs). The genetic toolkit from molecular biology allows to manipulate
neuronal cell types to monitor and interfere with activity. In large-scale projects,
neuroinformatics tools provide means to process data streams in automated
computational pipelines, and analyze, visualize and manage their results. The
role of theory is to parsimoniously explain data by building mathematical
models, thereby transforming data to knowledge. These models can then be
used to implement neural simulations which is useful for testing hypotheses in
silico. Importantly, simulations might provide a framework to systematically
determine what the right questions to ask are, and thereby guiding novel exper-
imental work effectively to validate, extend or falsify models. The theoretical
understanding of neural circuit function will facilitate the recapitulation of prin-
ciples in neuromorphic hardware and allow for building better brain-computer
interfaces.

Scaling circuit mapping to large brains and statistical connectomes

The framework and method presented in Chapter 2 represents a particular instance
of a neuroinformatics tool for neuroanatomy that naturally bridges small lab efforts
(e.g. those interested in mapping small circuits of interest) and large-scale projects
(e.g. mapping the nervous system of an entire organism). Vice versa, mapped
circuits can be made available to uninvolved labs working in physiology, behavior
or in theoretical and computational fields. To achieve this, large-scale projects and
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consortia are likely to become increasingly common in neuroscience in the future
complementing research in independent, smaller labs.

Scaling up EM circuit mapping approaches to larger circuits and brains, for in-
stance to an entire mammalian brain, will need to overcome even bigger challenges
(Lichtman et al. 2014; Mikula et al. 2015). At the moment, it is not yet completely
clear to what degree the cost of producing mammalian-brain level EM circuit maps
can be justified by its benefits (Marblestone et al. 2013). Therefore, creative alterna-
tive approaches are being envisioned, such as molecularly annotated neurons and
their connections that are subsequently sequenced (Marblestone et al. 2014). Other
approaches using light microscopy may provide circuit mapping strategies from
micro-scale to meso-scale level with relatively high throughput (Rah et al. 2015).
For such light-based approaches to become useful at large-scales, they need to be
developed and deployed in an industrial-scale settings, optimally focusing on a
small set of brain regions with the aim of comprehensive mapping.

The Allen Brain Institute pursues such a strategy of comprehensively mapping
all the cell types in the visual cortex of the mouse using fully automated pipelines.
The resulting datasets are made publicly available1. This cell type database contains
neuron reconstructions derived from light microscopy images, and includes informa-
tion on arbor morphology and localization to cortical layers together with associated
physiological data. Such neuronal reconstructions can be employed as the basis
to predict connectivity information between neurons to build so-called statistical
connectomes (Li et al. 2007; Reimann et al. 2015).

Such statistical connectomes have been proposed to be sufficient to build accurate
computational models of neural function (Hill et al. 2012; Egger et al. 2014). At
the moment, these approaches are the only viable strategy to obtain more realistic
representations of neural circuit organization at both local and long-range scales.
However, it will be crucial to eventually validate such statistical maps with informa-
tion obtained from ultrastructural studies using EM (Costa et al. 2013; Morgan et al.
2013; Kasthuri et al. 2015). This is also a long-term strategic goal of the Allen Brain
Institute (Koch 2014).

Centralized Infrastructure and Collaborative Connectomics

Depending on the size of the brain under scrutiny, investment cost into volumetric
EM data generation infrastructure can be tremendous (Marblestone et al. 2013). Simi-
lar to the astronomy or particle physics communities, with its expensive telescopes
or particle accelerators, a pooling and centralization of data generation, processing
and storage infrastructure could be envisioned for EM connectomics (Burns et al.
2014). Many research labs would tremendously benefit from the availability of such
a public connectomics infrastructure. This would allow small labs access to connec-
tomic datasets without requirements to setup a costly infrastructure, workflow and
expertise on their own.

1 http://celltypes.brain-map.org/

168

http://celltypes.brain-map.org/


D I S C U S S I O N

Proposal for such Collaborative Connectomics efforts and infrastructures have already
been made (Burns et al. 2013; Hayworth et al. 2014). A centralized system with
appropriate regulations on data access and incentive structures would provide entire
research communities with access to circuit data in their favored model organism
or system. In the long-term, such research community resources could significantly
contribute in accelerating progress in understanding brain function at the cellular
and circuit level.

Building large-scale EM connectomics infrastructure is already underway in sev-
eral research institutions, such as the Harvard University, the Allen Brain Institute,
the Max-Planck Institutes or HHMI Janelia Research Campus. Each institution has
so far focused their efforts on different EM acquisition methods in particular model
systems and brain regions. As the acquired EM volumes in these efforts are incredi-
bly large, they are likely going to attract researchers that can collaboratively mine
their richness for years. Furthermore, once pipelines are setup and work reliably,
they can be applied to many different brains.

In the spirit of such a Collaborative Connectomics approach, I hope the contributions
made in this thesis increased the awareness of the potential impact of mapping and
analyzing neural circuit structure collaboratively by researchers world-wide.
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6.1 F R A M E W O R K F O R C I R C U I T M A P P I N G , A N A LY S I S A N D V I S U A L I Z AT I O N

The goals of the Brain Research through Advancing Innovative Neurotechnologies
(BRAIN) Initiative launched in 2013 in the United States are to develop novel tools
for the comprehensive mapping of the nervous system at multiple temporal and
spatial scales (Jorgenson et al. 2015). In addition to generating new tools, the impor-
tance of creating organizational frameworks to store, distribute and share data in a
meaningful and practical way have been recognized and emphasized (Yuste 2015).
In line with this, our framework provides a timely contribution to not only map, but
also to organize, analyze, and visualize the structure of neural circuits.

Here, we briefly discuss three high-level aspects of this contribution to the emerg-
ing field of large-scale EM connectomics, complementing the discussion in Chapter
2: First, how image and circuit data can be shared with other researchers more easily
by providing an easy-to-use web interface and a programmable interfaces for data
access. Second, how our tool suite can be extended and promotes the integration
of novel connectomic data analysis and visualization techniques. Third, how the
framework can foster new ways of scientific collaboration and integration, especially
between different research communities.

(1) Data sharing and data access

Improving practices for data sharing has advantages for both the scientific commu-
nity and individual scientists (Foster et al. 2007). For instance, the reproducibility
of results can improve by releasing code and data together with the associated
publications. Recent years show a trend towards requirements of data release with
publication by journals and funding agencies (Nat Neurosci Editorial 2007; Kaye et al.
2009). The genomics community is at the forefront in driving the development of
best practices and policies for data sharing. Many of the lessons learned in genomics
are very likely transferable to the emerging field of EM connectomics.

The funding bodies in the genomics community generally require sequenced
genomes to be made available in centralized databases. These datasets can then
be retrieved through standardized web API calls from these databases or browsed
through online web interfaces. Our framework already supports a variety of these
standardized data access patterns for connectome datasets together with its web-
based interface for image and circuit data access (e.g. see Appendix B and Sup-
plementary Text in Chapter 2). The Open Connectome Project2 is the first effort to
make published connectomics datasets available to the public through a variety of
interfaces (Burns et al. 2013). The project also uses the CATMAID framework to
make terabyte-sized image stacks accessible for browsing and follow-up analysis to
the public both for EM data as well as data generated by array tomography (Weiler
et al. 2014).

2 openconnectomeproject.org
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(2) Extensibility, data analysis, annotation and visualization

Analyzing and visualizing connectomic datasets is challenging due to their inherent
complexity and size. Experts in statistics, network science and machine learning
will need to develop novel analysis methods to extract meaningful patterns from
large, mapped neuronal networks (Bullmore et al. 2009). Existing graph-theoretical
methods might be adequate to help an individual neuroscientist answer specific
questions (Rubinov et al. 2010). It is likely that non-standard types of analyses tailored
towards connectomics will require expert knowledge to develop and implement.

Our framework is designed to allow integration of novel analysis methods de-
veloped by experts. These methods can be integrated within the framework, for
example as a plug-in or widget implemented in the JavaScript programming lan-
guage (see Appendix B). Subsequently, these contributions can be deployed to large
groups of researcher. They can become immediately accessible as part of the frame-
work toolkit once the server hosting the CATMAID instance is updated, and users
only need to refresh the tool web page in their web browser. Complex, large-scale
network analysis methods, such as network motif finding algorithms or cell-type
classification methods (e.g. Jonas et al. 2015), can also execute in the back-end. The
framework architecture allows to start long-running computational processes on
compute cluster infrastructure. Once the results of these processes are available,
they can be presented to users in the web front-end. Therefore, novel connectomic
analysis algorithms can be quickly deployed within the framework with benefits for
both users and analysis methods developers.

Alternatively, neuron and circuit data can be retrieved to the local computer
for analysis. For instance, skeletons representations, synaptic connectivity data or
connectivity matrices can be retrieved for selected sets of neurons via a web API. The
data can be directly retrieved into interactive programming environments, such as
Python3 or R4. In these environments, a large number of libraries are available for
scientific computing for follow-up analysis (e.g. Pérez et al. 2011).

For instance, I performed the data analysis for Chapter 3 and Chapter 4 by retriev-
ing nociceptive circuits from early and late stage Drosophila from three independent
CATMAID projects. The data was then analyzed inside Interactive Python Note-
books5. IPython notebooks combine code execution, rich texts and plots (Pérez et al.
2007; Rossant 2013; Rossant 2014), and can provide a basis for building reproducible,
collaborative data analysis workflows online (Ragan-Kelley et al. 2013). The IPython
notebook infrastructure has been recently extended into the Jupyter project and
forms the foundation for a newly emerging paradigm of interactive computation and
collaborative, computational narratives (Perez 2015). Such ’data analysis notebooks’
could provide novel opportunities to share connectomics analysis workflows online
(e.g. see associated Python scripts of Jonas et al. 2015) and help to introduce new
students to the field.

3 github.com/catmaid/CAT
4 github.com/jefferis/rcatmaid
5 ipython.org/notebook.html
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Our framework also provides methods to manage and organize neurons and
circuits by a flexible annotation system. The importance of standardized nomencla-
tures and ontologies has been recognized as an important requirement to organize
knowledge and improve scientific communication (Rubin et al. 2006). It is pursued
already in many model system at both brain region level (e.g. Reiner et al. 2004; Ito
et al. 2014) and cellular levels (e.g. Ascoli et al. 2008). Large-scale volumetric EM has
the potential to make such neuronal classification systems complete because it can
comprehensively map all the neurons within a given neuropil or brain region.

In our framework, the annotation system allows to organize neurons according
to user-defined classification schemes. Neuron annotation tags can also express, for
instance, information about a neuron’s associated genetic line or neurotransmitter
profile. With this metadata employed in search queries, connectomes can be explored
flexibly via the filtering of subsets of neurons that are then further analyzed (e.g.
show all GABAergic interneuron in brain region X and their connections). Eventually,
annotations of neurons should be curated to build community-agreed ontologies
with unique identifiers that facilitate database interoperability and linking of across
data modalities.

Circuit visualization

To advance our understanding of brain networks, the ability to visualize complex
datasets will be crucial. For exploratory connectomic data analysis, the visualization
of 3D neuronal morphology data with its associated connectivity information is of
great importance. Insights from cognitive science help to better understand how
to leverage the powerful pattern detection capabilities of the human visual system
and build tools that are most appropriate for the tasks (Goldstone et al. 2015). While
designing and implementing our suite of visualization tools, we were strongly driven
by the needs to look at specific aspects of neuronal morphology and circuits.

Large-scale connectome datasets are very complex and span multiple levels from
image pixels to 3D skeletons of neurons to high-level graph representations of
networks. Each level has its own challenges for visualization and user interactions.
Moreover, for exploratory data analysis it is crucial to be able to transition seamlessly
between very different types of data representations. Additionally, due to the large
size of these datasets - even when reduced to network graphs - the many elements and
relations are difficult to comprehend simultaneously. It is crucial to form piecemeal
mental representations of the network complexity. This is facilitated by our tools
to selectively slice out subsets of the data, flexibly add and remove irrelevant and
relevant parts or collapse sets of elements to simpler elements.

The 3D viewer is a central element for interactively visualizing arbor morphologies
and synapses. The 3D representation of neurons as skeletons and the distribution
of synaptic input and outputs, together with connectivity information with other
neurons, provides important cues to generate hypotheses about their functional roles.
A variety of shading and coloring options help to emphasize different aspects of a
neuron’s morphology (see Supplementary Material in Chapter 2).
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Figure 6.2.: Wiring diagram of the Drosophila larva in CATMAID. About 30% of
the wiring diagram is reconstructed for a serial section Transmission
Electron Microscopy dataset of the whole central nervous system of a
Drosophila larva. Collaborative mapping of neural circuitry is hosted by
the Cardona lab at Janelia Research Campus. A number of contributing
labs performed circuit mapping locally and remotely using CATMAID in
a period of about 2 years. Image from twitter.com/albertcardona

For a set of neurons shown in 3D, different representations of the same neuron set
can be created in other widgets. For instance, a set of neurons visualized in 3D can
be used to populate the graph widget that shows the same set of neurons as a 2D
network with associated connectivity. Another often used widget is the connectivity
widget where all postsynaptic and presynaptic partner neurons can be displayed
in tabular form. As these examples show, each widget offers different options to
select, group and visualize data. This can create powerful and flexible workflows to
interactively explore subsets of large neural circuits in real-time.

Research into visualization of large-scale, multi-scale network graphs continues to
be an active and growing field of research. Our architecture is designed in a modular,
extensible way to be able to accommodate new developments from this research
(e.g. Beyer et al. 2013). New widgets offering novel visualization methods can be
implemented independently and added to the framework. With this plugin-like
architecture, network visualization researchers can make their results applicable
to neuroscience and useful to a large number of users with minimal additional
implementation effort.
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(3) Virtual scientific collaboration

The virtual collaborative space created by our framework promotes novel forms of
scientific collaboration. For instance, synergies between research labs are created
when neurons only need to be mapped once, but can be analyzed in the context of
different research questions. A shared framework thereby reduces the overall map-
ping efforts and over time, insights of the involvement of particular sets of neurons
in different functional or behavioral contexts grows. As subcircuits are mapped in
parallel within one EM volume, the resulting circuit maps can be eventually analyzed
together, and thereby offer the potential for new insights not obtainable from single
subcircuit analysis alone. With this setup, the mapping of distinct subcircuits by
individual labs world-wide can converge towards whole connectome maps of an
EM volume. In the Drosophila larva, such a whole CNS mapping effort based in the
Cardona lab at Janelia Research Campus has already generated more than 30% of
the complete larva wiring diagram (Figure 6.2).

In such large-scale efforts, it is important to track individual annotation contri-
butions. In our framework, every annotation is time stamped and associated with
the users who created or modified it. Therefore, it is possible to recapitulate the
contributions made for the initial reconstructions, synapse annotations, reviews,
annotation or tagging events. On one hand, this allows for detailed contributor
analytics and evaluation of performance and improvements of annotation skill over
time. On the other hand, credit can be properly given to individuals and labs who
contributed in the mapping efforts.

The tracking of contributions is also important when published circuits have to
be revisited. This situation might arise when additionally data needs to be mapped
that was originally not annotated because it was not relevant for the addressed
questions. It is expected that published circuits will be extended or that issues in an
existing circuit map may need additional reviews. In the C. elegans connectome, after
its first publication (White et al. 1986), investigators have subsequently improved
the accuracy, completeness and self-consistency of the maps (Varshney et al. 2009).
Functional data that suggests connections between neurons or neurons and mus-
cles that were not found in original EM connectomes (e.g. Albertson et al. 1976),
might subsequently be distinguished because of less stringent criteria in annotating
chemical synapses, or neuro-muscular contacts (Bhatla et al. 2015). This reevaluation
or revisiting requires that the original, raw EM image volumes remain associated
and in the same coordinate system as the published circuit maps. Our framework
supports this use case naturally, as circuits are mapped from the raw image data and
can remain in the same system after public release.

Connectomes are useful to different neuroscience subfields

Maps of neural circuit connectivity are therefore an invaluable resources to advance
research in different subfields of neuroscience. Modern studies of the neural basis
of behavior in model organism such as Drosophila have access to powerful genetic
toolkit to monitor and manipulate the neural activity of cell types in behaving
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animals (Meinertzhagen et al. 2012). In genetic model systems, hypotheses about
the mechanism of neural computations can be generated from synaptic connectivity
maps that can then be functionally and behaviorally tested. Circuit maps with
identified neural pathways can restrict the space of possible experiments that have
to be performed, for instance, by providing candidate cell types involved in certain
pathways.

Novel imaging methods can record the activity of populations of neurons at the
whole-brain scale (Keller et al. 2015). The correlated neural activity of populations
of neurons defines functional circuits. The understanding of neural dynamics in
functional circuits could be tremendously informed by the availability of whole-
brain scale structural connectivity maps. For instance, the changes in neural activity
invoked by behavioral learning are related to anatomical network constraints (Sadtler
et al. 2014). Network connectivity can make learning of more familiar patterns easier
than unfamiliar ones, because familiar patterns can arise more naturally from already
existing connectivity structure.

At the cellular level, single neuron reconstructions from EM have a high degree
of anatomical detail and are useful for computational models. Biologically-realistic
compartmental models of the morphology of single neurons can be combined with
the distribution of specific types of synaptic inputs across their dendritic arboriza-
tions (O’Connor et al. 2009). Such detailed models combined with physiological
parameters might provide insights into how specific patterns of synaptic inputs
interact with the postsynaptic membrane properties to generate neuronal responses.

Neural connectivity data stored in our framework could be accessed by researchers
in labs from these different subdisciplines of neuroscience. Researchers do not need to
know about the particular process that generated the circuits maps. They can access
a project online, search for their favorite neuron types and retrieve the information
about their connectivity structure.

Neuronal and circuit data can also be exported in a variety of formats depending on
the researcher’s needs for further postprocessing. For instance, neuron morphology
data can be exported in the standard SWC or NeuroML formats (Gleeson et al. 2010),
or network connectivity as matrices in CSV format or other graph formats such
as GraphML. Data export options into formats such as NeuroML facilitates data
interoperability, for instance to use mapped neuronal morphologies and circuits in
computational models that are shared on public platforms such as the Open Source
Brain6.

6 http://opensourcebrain.org/
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Impact of the CATMAID circuit mapping framework

Publicly available information on neural circuitry is expected to have a big impact
on neuroscience, neurology, psychiatry and other fields, analogically to the avail-
ability of genome datasets to biochemistry, molecular biology and cell biology. Our
framework offers convenient means to make structural circuit data available online
to researchers around the world. As a proof-of-concept of the versatility of our frame-
work, I have imported several published neural circuit datasets in CATMAID with
associated annotations (Figure 6.3). These circuits were mapped using independent
EM mapping workflows (Figure 6.3a,b) or by reconstructing neurons from light
microscopy images and inferring connectivity (Figure 6.3c).

At the time of writing, two circuit maps have been mapped in our framework
and were already published in Drosophila larva (Ohyama et al. 2015), as well as in
Platynereis, a polychaete worm (Randel et al. 2015). Currently, a number of labs
world-wide and a few large-scale projects use CATMAID for neural circuit mapping.
This includes the efforts at HHMI Janelia Research Campus to map a whole adult
fly brain from a large, serial-section TEM dataset as part of the FlyTEM project,
with more than 25 concurrent annotators (August 2015). Another large-scale effort
aims at mapping the wiring diagrams of C. elegans larvae at different developmental
stages using CATMAID7. In a two year period, the C. elegans mapping project has
seen contributions from more than 25 different annotators world-wide. Futhermore,
CATMAID is currently used to map circuits in the zebrafish8 and mouse visual
cortex9.

7 Principal Investigators of this project are Mei Zhen - University of Toronto and Lunenfeld-Tanenbaum
Research Institute, Toronto, ON, Canada; Aravinthan D.T. Samuel - Center for Brain Science, Harvard
University, MA; Jeff Lichtman - Center for Brain Science, Harvard University, MA; Andrew Chisholm -
Division of Biological Sciences, University of California, San Diego, CA; David Hall - Albert Einstein
College of Medicine, New York, NY.

8 David Hildebrand at Harvard University
9 Clay Reid at Allen Brain Institute; Wei-Chung Allen Lee at Harvard University
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Figure 6.3.: Neural circuits mapped by different workflows imported into CAT-
MAID. a) Several Mi1 neurons reconstructed from the Drosophila adult
medulla circuit in Takemura et al. 2013. b) Singular column neu-
rons of the Drosophila adult seven-column medulla circuit color-coded.
(Data from Janelia Research Campus FlyEMgithub.com/janelia-flyem/
ConnectomeHackathon2015) c) Dendrite of a layer 5 pyramidal neuron with
more than 20’000 postsynaptic sites from Narayanan et al. 2015. Inputs from
cortical layer-specific local interneurons are interactively color-coded and visu-
alized in CATMAID. (Data kindly provided by M. Oberlaender and R. Egger).
Scale bars, 8 µm a) and b), 200 µm c).
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6.2 C O M PA R AT I V E C O N N E C T O M I C S I N D R O S O P H I L A

The search for invariants in neural circuit structure promises to be a fruitful avenue to
find general architectural principles underlying brain function (Helmstaedter 2015).
In order to find such invariants, it is necessary to be able to compare neural circuits.
With the ability to compare and analyze many circuits, it will become possible to
extract general structural patterns such as network motifs. If we can understand
how certain network motifs underlie particular canonical neural computation in
one model system, it might be possible to understand how these motifs combine in
different and more complex circuits (Carandini et al. 2011).

Applying connectomics to small invertebrate model systems, such as Drosophila,
has important advantages (Meinertzhagen et al. 2012). The smallness and the ge-
netic tractability of these systems allow to monitor and manipulate neural activity
with exquisite detail at the level of individual cell types (Simpson 2009). Thereby,
small organisms provide the unique opportunity to discover network motifs and
reveal neural computational principles. The integration and association of data from
anatomical, physiological and behavioral levels should allow to derive principles of
circuit operation.

The hope is that principles and insights discovered in small system can inspire
and guide research in larger, more complex systems. For instance, the conservation
of homologous genes and biochemical pathways has been proven as a useful guide
to find homologies, for instance, between invertebrate and vertebrate species (Katz
et al. 2013). The evolutionary conservation of molecular pathways can also lead
to conserved principles of neural circuit formation, such as in the case of dendritic
morphogenesis (Jan et al. 2010). Similarly, the hope on the neural circuit level is that
insights gained from studying circuits of invertebrate systems and their operation
principles could translate and inspire our understanding of more complex circuit
architectures, such as those in vertebrate systems.

In the same fashion, principles of neural circuit development might generalize
across a wide range of species. In Chapters 3 and 4, I have focused my efforts to inves-
tigate the development of neural circuits at the synaptic level in isogenic Drosophila
melanogaster larvae. Here, I mapped complete neurons and synaptic circuits in
Drosophila larvae at several distinct developmental stages by taking advantage of the
possibility of EM volumes that cover large parts of its nervous system. Similarly, C.
elegans is small enough at distinct stages to enable mapping of circuits at the whole
animal level. Genetic model organisms such as Drosophila larva or C. elegans provide
thus an important opportunity, not possible in other larger systems, to gain insights
into how synaptic circuits self-assemble and develop. Ultimately, such invertebrate
studies can contribute importantly to tracing the effects of genetic mutations to the
development of the wiring diagram and the resulting consequences for physiology
and behavior (Brenner 2003).

Neurodegenerative diseases have presently unknown causes at the synaptic circuit
level. Neurite degeneration, for instance, occurs after brain trauma and could
underlie the functional loss observed in patients. Key signaling pathways that
promote this destructive processes are now investigated in Drosophila and could

178



6.2 C O M PA R AT I V E C O N N E C T O M I C S I N D R O S O P H I L A

inform the understanding in vertebrate systems, including human patients (Rooney
et al. 2014). Pure neurite degeneration can be studied without recurrence to EM
connectomics. However, a better understanding of changes and reorganization at
the circuit level will benefit from ultrastructural maps of the wiring diagram, in
particular to evaluate treatment methods that target neurite regrowth. Neurons need
to regrow and form again synapses with their appropriate partners, which can be
tested using EM connectomics.

Also for many neurodevelopmental diseases, there are no good model systems to
study how circuits differ in the diseased compared to normal individuals. Dendritic
morphogenesis is a key factor in circuit formation, and its regulation by genes has
been extensively studied in the past decades (Jan et al. 2010). Mutations in genes
may create alterations in normal developmental processes, such as overgrowth or
lack of arbor pruning or changes in synaptogenesis. These differences could be
discovered with EM level connectivity maps immediately if good baseline datasets
are available that describe the normal processes of circuit development. With the
high level of detail available from EM micrographs, alterations beyond changes in the
synaptic connectivity between cell types could be discovered. The properties studied
in Chapters 3 and 4 might serve as a basis for future studies on the development of
neural circuits in a genetically-tractable model system.

The rich digital data of detailed neuronal morphologies including synaptic distribu-
tions and connectivity obtained in this work could also be reused for computational
studies of development. Computational models have tried to recapitulate develop-
mental processes of circuit formation. For instance in tadpole, the connectome of the
spinal cord has been produced using models of axonal growth (Borisyuk et al. 2011).
The produced in silico neural circuit exhibited overall network features that were not
preprogrammed in the developmental algorithms and were consistent with experi-
mental data. Another framework aimed at modeling the development of neocortex
by defining simple sets of genetic rules for circuit formation (Zubler et al. 2013).
Due to the public availability of large datasets of single neuron morphologies 10,
researchers interested in computationally modeling neuronal growth could use the
realistic neuronal reconstructions to fit the parameters of their models. The sharing
of circuit datasets at the EM level will further facilitate such computational research
that can also be extended to integrate synaptic information into models. A number of
software packages implement algorithms to generate realistic neuronal morphologies
in silico. The packages could be extended with synaptic level information (Eberhard
et al. 2006; Gleeson et al. 2007; Koene et al. 2009; Wolf et al. 2012).

The here reconstructed connectomic datasets and many future circuit maps could
be used in a similar way to develop more sophisticated models of circuit formation.
These models may reveal the minimal descriptions and parameters necessary to
produce the wiring diagrams we observe in vivo. The set of different cell types
contained in our data could provide insights into cell-type-specific variation in
defining parameters of these models, as different neuron types express different
developmental programs and thus may follow different growth logic. Such models
would not only need to incorporate neuronal morphologies but also specific features

10 e.g. http://neuromorpho.org, also see Parekh et al. 2013
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of synaptic distributions. As we have shown, the distribution of synapses is not
uniform across a Drosophila arbor. For instance, most of the synaptic inputs are
confined to distal, microtubuli-free twig processes. Information on the microtubuli
distribution should be a constraint in such developmental models. Eventually,
artificially generated circuits should display physiological and behavioral responses
that are not previously encoded in the model. Recent studies in tadpole spinal cord
indeed succeeded in validating artificial models with experimental data (Roberts
et al. 2014).

I have chosen the nociceptive system of Drosophila larvae for this study, because it
contains a comparatively small number of neurons for mapping but is still sufficiently
large for circuit comparisons. Furthermore, it can provide a basis for future studies
that aim at functionally dissecting nociceptive processing mechanism with possible
implications for understanding pain perception in other systems. Far from being just
a simple, reactive reflex system, the nociceptive circuits in Drosophila larva show a
variety of hallmarks that one would not expect from a simple sensory system that
has to presumably only signal a simple noxious-yes/noxious-no. Unexpectedly, the
polymodal nociceptors in larvae not only transduce a variety of noxious stimuli,
but have recently been implicated in aspects of proprioception (Gorczyca et al.
2014). Of course, from the careful description and observation of circuit structure
and combining knowledge from the literature about this circuit’s inputs, one can
speculate about the possible functional implication of observed connectivity patterns.
In order to make conclusive statements about functional involvements of particular
neurons and pathways, however, monitoring and manipulation of neuronal activity
in defined cell types with behavioral monitoring is necessary (e.g. Ohyama et al.
2015).

The nociceptive circuit maps presented in this work facilitate a host of avenues for
further functional investigations. For this the existence of light-level neuron catalogs
of neuronal cell types (for Drosophila larva by Jim Truman et al.) enable matching of
reconstructed EM neuronal morphologies with neuronal cell types labeled in genetic
driver lines (e.g. the GAL4/UAS system by Brand et al. 1993). This is crucial to
create the link from synaptic circuit maps to genetic lines that can then be employed
in optical imaging, electrophysiological or behavioral experiments. In Drosophila
larvae, the advantage to have a limited set of cell types with usually only one or a
few instantiation of neurons allows high confidence when matching reconstructed
EM morphologies to labeled single neurons in confocal stacks at the resolution of
light microscopy. With the identification of all downstream partner interneurons
of primary nociceptors and their mapping to GAL4 lines, genetic manipulation of
the cell types can be used to further dissect the function of different nociceptive
pathways (Dierick et al. 2015). Drosophila larvae have been proposed as an emerging
model system to study basic circuit mechanism of nociception (Im et al. 2012) and
the synaptic nociceptive circuit maps allow for a rigorous, targeted approach aimed
at a mechanistic, functional understanding.
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The availability of high-throughput genome sequencing methods opened up the
possibility to obtain genomes of many species as the basis for large comparative
phylogenetic studies. Similarly, the field of comparative EM connectomics studies is
likely going to grow considerably once EM data generation and connectome mapping
becomes more automatized (Hale 2014).

In this thesis, I have singled out and focused on one aspect of the comparative
connectomics spectrum, namely comparing neural circuits at different developmental
time points. The development of neural circuits, however, is just one out of many
possible axes of comparison such as for instance in aging, in health and disease, in
learning or between species. The number of comparisons and questions that can be
addressed are vast. Importantly, comparative connectomics studies between species
have the potential to provide deep insights into similarities and differences in neural
network architectures and the evolution of neural computation (Yuste 2008; Katz
et al. 2013).

Circuit comparison across species

A pioneering EM study compared neural circuitry in closely related nematode species
(Bumbarger et al. 2013). Both nematode species exhibit differences in their feeding
behaviors and were found to have marked differences in synaptic connectivity of
identifiable, homologous neurons of the pharyngeal system. This finding suggests
that synaptic connectivity differences might be responsible for divergent behav-
ioral outputs. However, nothing precludes the possibility that in principle, very
similar network architecture can produce divergent behavioral outputs. Such multi-
functional circuits can be switched, for instance, by neuromodulatory effects that
bias network dynamics into different operating regimes (Briggman et al. 2006b).

A large body of structural and functional data across many related species will be
necessary to conclusively state the effective influence of network topology and con-
nection strength on behavioral performance. Storing collections of structural maps
of many species and brain regions, for instance in a framework such as CATMAID,
would simplify such comparisons tremendously. Akin to the genomics commu-
nity, where newly sequenced and published genomes are deposited in centralized
databases, neural circuit datasets from different species could be made accessible in
centralized repositories in a similar fashion. Although the brains of invertebrate and
vertebrate species might differ vastly in scale, gross similarities in the basic ground
plan of brain architecture have been proposed to be preserved (Strausfeld et al. 2013).
Comparing cell types, neural circuits and network motifs between species at different
spatial scales, from brain regions to the individual neuron level, would allow for
an in-depth study of the evolutionary origins of neural circuits required for neural
computations that are common between species (Shinomiya et al. 2015).

181



D I S C U S S I O N

Circuit comparison across brain regions

The comparison of neural circuits across brain regions in the same species is another,
potentially very fruitful, endeavor. For instance, similarities in the organization
of different primary sensory cortical areas have been established, but the extent of
uniformity of fine-level details such as synaptic connectivity of existing cell types are
unknown (Streissler et al. 2002). Scaling volumetric EM connectomics to larger areas
of the cortical sheet might provide sufficient information to reveal invariant circuit
motifs and also differences at the synaptic level that could underlie the atoms of neural
computation (Marcus et al. 2014). Despite known differences, canonical synaptic
connectivity motifs, and thus potentially principles of elementary functions could
be shared across cortical areas (Douglas et al. 2007). A shared organization would
indicate that streams of inputs originating from different sensory modalities in the
periphery are processed centrally with fixed sets of computational primitives before
propagation to higher association areas. In this context, the comparison of differences
in species could provide important insights into the diversity of such computational
primitives, if increasingly sophisticated sensory and cognitive capabilities of different
species and regions could be reflected in their neural circuit substrate (Marı́n-Padilla
1998; Elston et al. 2006).

Circuit comparison in learning and memory

Another interesting avenue to pursue for comparative connectomics is investigating
the extent of structural changes in synapses and synaptic circuits in the context of
learning and memory (e.g. Holtmaat et al. 2009; Seung 2013). Experience, that is
the ongoing activity in neural circuits, shapes the underlying circuit structures at
molecular, synaptic and network levels. Large-scale EM volumes will provide the
opportunity to compare changes of synaptic properties and network level synaptic
structure in populations of organism before and after learning. Learning can take
a variety of forms, from simple habituation to more complex associate learning
tasks such as operant conditioning. Simpler forms of learning, such as habituation,
might not have easily discernible signature at the ultrastructural level and might
be implemented by changing synaptic efficacy on the molecular level. For more
complex forms of learning, such as associative learning, distinct brain structures
have been shown to be necessary, such as the mushroom bodies in Drosophila (e.g.
Séjourné et al. 2011). Such learning processes are thought to modify a circuit’s
synaptic strength by changing, for instance, properties of individual synapses or the
formation of new synapses between sets of neurons (Bailey et al. 2015). Depending
on the exact morphological properties (Marrone et al. 2002), these changes could be
extracted from large EM volumes, and linked to network function and behavioral
phenotypes. However, being able to generate large samples will likely be crucial to
find the structural instantiation of memories, and to be able to distinguish them from
individual variation arising, for instance, from developmental variability.

The discovery of the structural substrate of long-term memories has so far eluded
scientific studies. The novel views offered by volumetric EM connectomics might
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be able to provide new avenues for its study. Recently, a hypothesis proposed that
long-term memories could be stored in patterns of holes in the perineuronal nets
(Tsien 2013). These nets are specialized extracellular structures that envelop neurons
and can constrain both the outgrowth of neurites as well as the formation of synapses.
Together with an arsenal of genetic methods, volumetric EM could provide the means
to map these nets and their relationship with neurons and synapses and help clarify
their role in long-term memory storage.

Other proposals for the substrate of long-term memory have been made where
volumetric EM may provide data to test their predictions. The cytoskeleton of
neurons, consisting of stable, intracellular microtubules, were suggested to provide
long-term structural support for the persistence of synaptic connectivity (Smythies
2015). This hypothesis could be tested by using a model circuit where sets of neurons
are known to be necessary for long-term memory support. These neurons could
be reconstructed from volume EM including their microtubules cytoskeleton in
conditions with and without induced long-term memory. Then, their cytoskeletal
and synaptic characteristics could be compared, similar to the analyses in Chapter 4.

Circuit comparison in health and disease

With brain disease and mental illness being among the largest cost drivers in health
care in the world (Collins et al. 2011), comparative EM connectomics of healthy
and diseased circuits is prone to become a major connectomics focus in the coming
decades. Overly simplified explanatory models of mental disorders, such as chemical
imbalances of the brain in depression, may hamper progress in understanding asso-
ciated circuit changes to a sufficient level of detail and thereby misguide intervention
strategies (Castrén 2005). Finding structural markers in the synaptic connectivity in
diseased compared to healthy circuits would facilitate the development of specific,
targeted intervention strategies. In model organism, the effect of pharmacological
interventions on circuit connectivity, function and behavior could be monitored
and treatment outcomes evaluated in a more principled way. Interventions could
be evaluated with regard to their effectiveness to transform aberrant connectivity
structure back to normal.

Furthermore, the detailed knowledge of aberrant circuit connectivity can inform
our understanding of disease etiology by delineating genetic, developmental vs. en-
vironmental, experience-based origins. The elucidation of how a particular genotype
of an individual might contribute to the development of neural circuitry that is more
susceptible to environmental factors, such as stressful life events, leading to mental
disorders would be a major medical advance. At present it is unknown to what
extent such advances can rely solely, or at all, on structural circuit data obtained from
EM, but careful comparative circuit studies with large sample sizes might reveal
potential signatures.

However, future research into comparative connectomics will only advance if
reliable high-throughput data acquisition and circuit reconstruction pipelines can be
built. Pipelines in genomics have reduced the time it takes to sequence a few genes
from a whole PhD project to fractions of a second within a few decades and the same
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can be achieved for EM connectomics11. What then remains are the challenges to
make sense of the data, and to spend all of our available brain cycles to analyze and
understand the intricate system that is cycling itself.

11 A story told by the director of Janelia Research Campus, Dr. Gerry Rubin, about his PhD project in
genomics. I am positive to tell a similar story about my PhD project in a not too distant future.
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A
E L E C T R O N M I C R O S C O P Y D ATA S E T S

The electron microscopy datasets used in this thesis project were generated at HHMI
Janelia Research Campus using serial-section Transmission Electron Microscopy
(ssTEM). The four datasets cover various portions of the central nervous system
(CNS) of Drosophila melanogaster larvae at early and late developmental stages. In the
following sections, the people and labs are mentioned that funded and were involved
in the various aspects of the data generation and alignment process. Additionally,
technical details on the individual datasets are given.

The transverse views provide orientation of the CNS coverage of individual
datasets and include the brain or portions of the thoracic and abdominal segments of
the ventral nerve cord (VNC). The views were generated using the BigDataViewer
by referencing the original CATMAID tile sources of the respective image stacks
(Pietzsch et al. 2015). The cross-sectional views demonstrate the sample quality
and contrast at the highest available magnification. Typically, circuit mapping is
performed at the highest magnification level.
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E L E C T R O N M I C R O S C O P Y D ATA S E T S

A.1 L 1 A : FI R S T- I N S TA R W H O L E L A RVA L C N S

Funding HHMI Janelia Research Campus, FlyEM Project
Sample preparation Richard Fetter
Sectioning/Collection Richard Fetter
Imaging Richard Fetter, Shirley Lauchie, Andrea Brothers
Microscope FEI Spirit BioTWIN TEM and Leginon
Alignment Albert Cardona, Stephan Saalfeld with TrakEM2
Reference publication Ohyama et al. 2015
Covering tissue Brain/SOG/VNC L1

(The larva was kept and screened for sex-specific DNA
and found to be female)

XY dimension 28128 x 31840
Raw tile dimension 4k x 4k pixels
Raw tile size 15.6 µmx 15.6 µm
Number of sections 4841
Number of missing sections 56
XY resolution 3.8 x 3.8 nm
Section thickness 50 nm
CNS volume 874,283 µm3

Neuropil volume 226,652 µm3

Neuropil filling fraction 25.9%
Time to image 29 weeks (4597 TEM hrs)
Number of images 187,048
Raw dataset size 5.98 TB (MRC)
Image pyramid size 994 GB (JPG)

Table A.1.: Dataset information
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E L E C T R O N M I C R O S C O P Y D ATA S E T S

A.2 L 1 B : FI R S T- I N S TA R L A RVA L V E N T R A L N E RV E C O R D

Funding HHMI Janelia Research Campus
Visiting Scientist Program to Albert Cardona
sponsored by Julie Simpson and Richard Fetter

Sample preparation Richard Fetter
Sectioning/Collection Richard Fetter
Imaging Albert Cardona and Wayne Pereanu
Microscope FEI T20 TEM
Alignment Albert Cardona, Stephan Saalfeld with TrakEM2
Reference publication Schneider-Mizell et al. 2015
Covering tissue VNC (mid-A2 to A3)

Raw tile dimension 2k x 2k pixels
Raw tile size 8.9 µmx 8.9 µm
XY dimension 22775 x 18326
Number of sections 462
Number of missing sections 4
XY resolution 4.4 nm/pixel (CATMAID:4)
Section thickness 50 nm (CATMAID:45)
Image pyramid size 90 GB (JPG)

Table A.2.: Dataset information
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A.2 L 1 B : FI R S T- I N S TA R L A RVA L V E N T R A L N E RV E C O R D

A2
A3

P A
D

V

Figure A.2.: First-instar dataset L1b. Transverse section through the abdominal
ventral nerve cord covering segments A2 and A3. Section thickness is
approximately 50 nanometer. Scale bar 10 µm.
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E L E C T R O N M I C R O S C O P Y D ATA S E T S

A.3 L 1 C : FI R S T- I N S TA R L A RVA L V E N T R A L N E RV E C O R D

Funding HHMI Janelia Research Campus
FlyEM Project and Harald Hess lab

Sample preparation Richard Fetter
Sectioning/Collection Richard Fetter
Imaging Mehdi Bolorizadeh (Hess lab) with STEM
Alignment Stephan Gerhard, with help of Stephan Saalfeld.
Alignment Method Elastic alignment with modification

to deal with large tile sizes in TrakEM2
Reference publication -
Dataset availability http://neurocity.janelia.org/catmaidstem
Covering tissue Ventral Nerve Cord (posterior T3 to anterior A4)

Raw tile dimension 20k x 20k
Raw tile size 80 µmx 80 µm
Tiles per section 1
XY dimension 25344 x 17408
Number of sections 1996
Number of missing sections 71
XY resolution 4 x 4 nm
Section thickness 50 nm
Image pyramid size 826 GB (PNG)

Table A.3.: Dataset information
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A.3 L 1 C : FI R S T- I N S TA R L A RVA L V E N T R A L N E RV E C O R D

A3A4
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A1

T3
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D

V

Figure A.3.: First-instar dataset L1c. Transverse section through the abdominal ven-
tral nerve cord covering segments from thoracic T3 to abdominal A4.
Section thickness is approximately 50 nanometer. Scale bar 15 µm.
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E L E C T R O N M I C R O S C O P Y D ATA S E T S

A.4 L 3 : T H I R D - I N S TA R L A RVA V E N T R A L N E RV E C O R D

Funding HHMI Janelia Research Campus, FlyEM Project
Sample preparation Richard Fetter
Sectioning/Collection Richard Fetter
Imaging Richard Fetter, Shirley Lauchie, Andrea Brothers
Microscope FEI Spirit BioTWIN TEM and Leginon
Alignment Stephan Gerhard, with help of Stephan Saalfeld in TrakEM2
Reference publication Gerhard et al. (in preparation)
Larval stage L3 (wandering)
Covering tissue VNC (mid-A2 to mid-A6)

Raw tile dimension 4k x 4k pixels
Raw tile size 9.4 µmx 9.4 µm
XY dimension 61952 x 46592
Number of sections 2156
Number of missing sections 50
XY resolution 2.3 x 2.3 nm
Section thickness 50 nm
Time to image 10 weeks (1642 TEM hrs)
Number of images 336,326
Image pyramid size Compressed JPEG

scale level 0: 1.4 TB
scale level 1: 515 GB
scale level 2: 103 GB
scale level 3: 25 GB
scale level 4: 5.9 GB
scale level 5: 1.5 GB
scale level 6: 375 MB

Raw dataset size 10.76 TB (MRC format)

Table A.4.: Dataset information
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Figure A.4.: Third-instar dataset L3. Transverse section through the abdominal ven-
tral nerve cord covering segments from abdominal A2 to abdominal A6.
Section thickness is approximately 50 nanometer. Scale bar 15 µm.
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E L E C T R O N M I C R O S C O P Y D ATA S E T S

A.5 E M M I C R O G R A P H S O F F O U R D ATA S E T S

Figure A.5.: Dataset L1a View of a cross-section (XY) of the dataset at acquisition
magnification. Scale bar 1µm. Pixel resolution 3.8 nm/pixel.

196



A.5 E M M I C R O G R A P H S O F F O U R D ATA S E T S

Figure A.6.: Dataset L1b View of a cross-section (XY) of the dataset at acquisition
magnification. Scale bar 1µm. Pixel resolution 4.4 nm/pixel.
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E L E C T R O N M I C R O S C O P Y D ATA S E T S

Figure A.7.: Dataset L1c View of a cross-section (XY) of the dataset at acquisition
magnification. Scale bar 1µm. Pixel resolution 4 nm/pixel.
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A.5 E M M I C R O G R A P H S O F F O U R D ATA S E T S

Figure A.8.: Dataset L3 View of a cross-section (XY) of the dataset at acquisition
magnification. Scale bar 500 nm. Pixel resolution 2.3 nm/pixel.
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B
C AT M A I D P R O J E C T

B.1 C O N T R I B U T O R S

Figure B.1.: History of contributions as numbers of commits by the six major con-
tributors in a time window of five years: The development of the neural
circuit reconstruction tool in CATMAID started with an initial commit to the
repository of the original CATMAID code-base published in Saalfeld et al. 2009
(http://fly.mpi-cbg.de/˜saalfeld/catmaid/). This original version
implemented a multi-scale browsing interface for 3D and 2D datasets with basic
text annotation capability and a cropping tool. Contributors full name: Tom
Kazimiers (tomka), Andrew Champion (aschampion), Albert Cardona (acar-
dona), Stephan Gerhard (unidesigner), Mark Longair (mhl), Stephan Saalfeld
(axtimwalde).
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C AT M A I D P R O J E C T

B.2 T R A FFI C T O C AT M A I D . O R G

Figure B.2.: Access statistics for www.catmaid.org Bottom panel shows the top
25 countries that accessed the website since its creation. (Screenshot from
Google Analytics)
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B.3 O P E N - S O U R C E T O O L S TA C K

B.3 O P E N - S O U R C E T O O L S TA C K

backend

nginx webserver nginx.org
postgres relational database postgresql.org
django web framework djangoproject.com
celery distributed task queue celeryproject.org
pgmagick image manipulation pgmagick.readthedocs.org
travis continuation integration travis-ci.org

javascipt frontend libraries

jquery web page manipulations jquery.com
datatables table plug-in for jquery datatables.net
numeric.js web matrix computations numericjs.com
jsnetworkx graph manipulation jsnetworkx.org
raphaeljs scalar vector graphics for overlays raphaeljs.com
gRaphael charting library based on raphaeljs g.raphaeljs.com
colorwheel interactive colorwheel jweir.github.io/colorwheel
d3.js interactive plots and charts d3js.org
three.js 3d graphics based on WebGL threejs.org
cytoscapejs interactive graphs cytoscape.github.io/cytoscape.js
fabric.js HTML5 canvas library fabricjs.com
sylvester vector, matrix and geometry library sylvester.jcoglan.com
arbor.js a graph vizualization toolkit arborjs.org
filesaver.js implements the saveAs interface github.com/eligrey/FileSaver.js

python libraries for client-side analysis and visualization

networkx graph library networkx.github.io
scipy and numpy numerical computations scipy.org
pandas data analysis library pandas.pydata.org
matplotlib 2d plotting library matplotlib.org
mayavi2 3d visualization code.enthought.com/projects/mayavi
scikit-learn machine learning package scikit-learn.org
scikit-image 2d image manipulation scikit-image.org
ipython 2d interactive python ipython.org

Table B.1.: The CATMAID framework build on a large number of open-source
tools and libraries In the backend, we count on a tool stack that is widely
used world-wide in web production systems with millions of users. The
development of the CATMAID frontend user interface was tremendously
accelerated by using a number of widely-used JavaScript libraries. A
number libraries for the Python programming language were used for
connectomics data analysis and visualization.
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C AT M A I D P R O J E C T

B.4 D ATA M O D E L

Figure B.3.: Entity-Relationship diagram of the CATMAID data model. With more
than 70 tables, the CATMAID data model has grown considerably over
the years. Models include for instance tables for user managment and
permissions, circuit and annotation data, region of interests or project
and stack configurations.

Figure B.4.: The core neural circuit data models. Representations for neural circuit
data is separated by semantic information about neuron identities, names,
annotations and tags, and spatial, geometric information (skeletons for
neurons, connectors for synapses), and the relationships between these
two domains.
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B.5 R E M O T E A P I A C C E S S T O C AT M A I D U S I N G P Y T H O N

B.5 R E M O T E A P I A C C E S S T O C AT M A I D U S I N G P Y T H O N

# Create a connection to a CATMAID instance in Python.

from cat.connection import Connection

c = Connection( CATMAID_URL, USERNAME, PASSWORD, CATMAID_PROJECT_ID )

c.login()

# Retrieve a skeleton morphology, its name and

# synapse information

from cat import morphology

skeleton = morphology.get_skeleton(c, SKELETON_ID )

# Update the skeleton graph edges with distance between to skeleton

# nodes and compute the total cable length of the skeleton

from cat import labeling, features

labeling.update_skeleton_edge_with_distance( skeleton )

print features.get_total_cable_length( skeleton )

1
Figure B.5.: Example code to interact with a remote CATMAID instance from

Python Web services provide a mechanism to retrieve neural circuit
data from the remote CATMAID instances. The example demonstrates
how to login into a CATMAID instance, retrieve a skeleton morphol-
ogy of a neuron given a SKELETON ID and compute a morpholog-
ical feature, namely the total arbor cable length. We provide a thin
library for authentication and access to CATMAID web server instances
(github.com/catmaid/cat). With this approach, neurons and cir-
cuit data can be pooled across multiple CATMAID instances in a local
IPython shell and custom, offline circuit analysis and visualization can
be performed.
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C AT M A I D P R O J E C T

B.6 C AT M A I D W I D G E T S

A CATMAID instance is accessed via a web-browser, such as Google Chrome or
Firefox, by visiting its URL. After the login and the selection of the image stack, the
user is presented with the Stack Widget showing the first 2D image of the image stack
at low resolution (Figure B.6). In the top toolbar, a number of tools are available,
including the the tracing tool for circuit mapping and analysis. Functionality of the
tracing tool that supports the mapping, analysis and visualization workflows are en-
capsulated in individual widgets. Widgets can be resized and arranged individually
in the visible window to optimally layout the workspace. In the following figures, a
number of widgets and their functionality are briefly described.

Figure B.6.: Stack Widget Large 3D image stacks can be browsed at multiple scale
levels. Zoomed out, low resolutions views of the image data are shown
here from a cross-section of larva ventral nerve cord. These low reso-
lution views are useful to navigate and orient using gross anatomical
landmarks such as cell bodies. The scale bar shows the absolute size of
image data displayed at a given scale level (bottom left).
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B.6 C AT M A I D W I D G E T S

Figure B.7.: Image Stack With Annotation Overlay 3D image stack of raw EM
data is shown overlayed with reconstructed skeletons (pink nodes) and
synapses (orange nodes). Skeletons can be activated in the interactive
overlay to create new nodes or move or delete existing nodes. Presynap-
tic and postsynaptic links to connector nodes (big orange nodes) define
connectivity between skeleton nodes at synaptic locations. The widget
can show arbitrary number of layers stacked on top of each other with
controls for transparency (top-left sliders). The thumbnail overview of
the whole 2D plane of the current field-of-view allows quick navigation
to distant locations by clicking (bottom-right). Scale bars are displayed
in physical units (bottom-left).
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C AT M A I D P R O J E C T

Figure B.8.: Skeleton Node Table Table to display information about skeleton nodes.
Rows can be filtered by skeleton node type such as branch, leaf, continu-
ation or root node. Leaf nodes are shown with tags, confidence value,
spatial location, section index, radius value, user who created the node,
last modification date and users who reviewed the node. Each column
can be sorted and rows filtered by specific tags. Double-click on a row
navigates to the particular node location in the image stack widget and
activates the skeleton node.

Figure B.9.: Connector Node Table All connector nodes that are associated with
a skeleton (either outgoing or incoming synapses) are displayed. For
outgoing connectors, each individual connector can span multiple rows
to individual target skeletons with their spatial location, section index,
tags, number of nodes in the target skeleton, username of creator and
the target skeleton node ID shown.
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B.6 C AT M A I D W I D G E T S

Figure B.10.: Review System Multiple users can review a particular skeleton. The
skeleton is split into non-overlapping segments of cable that are re-
viewed for errors individually. Iteration over the skeleton nodes while
reviewing with keyshort short cuts (Q,W: Forward, Backwards; Shift-
Q,W: Next unreviewed node on segment; E: next segment). See the
supplemental text in Chapter 2 for details.

Figure B.11.: Notification System When skeleton nodes are tagged by users, this
table notifies the original node creator about the event and the modifi-
cation can be approved or rejected.
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C AT M A I D P R O J E C T

Figure B.12.: Connectivity Widget Given a single skeleton or a set of skeletons, all
upstream and downstream skeletons are displayed with their respective
synapse counts, review status, and number of nodes. Sets of skeletons
can be selected to populate other widgets.
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B.6 C AT M A I D W I D G E T S

Figure B.13.: Graph Widget The widget shows the connectivity between a selected
set of skeletons as an interactive network graph. Individual nodes can
be moved and their their color changed, or they can be made invisible
grouped into supernodes to facilitate understanding. The graph can be
grown based on a set of selected nodes via synaptic adjacency. A variety
of graph layouting algorithms can be run used to position visible nodes.
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C AT M A I D P R O J E C T

Figure B.14.: Circuit Graph Plot Scatter plot of skeleton attributes. The attributes
for the x and y axes are interactively specified. Selectable attributes
include for instance the number of input or output synapses, difference
of input and output synaptic counts or arbor cable length. Network-
based attributes include for instance signal flow, eigenvalues of the
graph Laplacian, the graph partition or betweenness centrality. The
generated plots can be exported to SVG or to a CSV file.
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B.6 C AT M A I D W I D G E T S

Figure B.15.: Selection Table Most of the widgets have a group of skeletons associ-
ated. This skeleton selection can be used to populate the content of other
widgets. This mechanism allows to flexibly combine sets of skeletons
and analyze and visualize them appropriately. In the selection table,
skeletons can be colored or annotated. The table can be synchronized,
for instance, to the 3D viewer to define which skeletons to show.

Figure B.16.: Skeleton Measurements Table The measurements table computes at-
tributes of single skeletons such as cable length, smoothed cable length,
the number of synaptic inputs and outputs, or skeleton node counts.
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C AT M A I D P R O J E C T

Figure B.17.: Search Window In this widget, the current project is queried for any
string, such as skeleton node tags or neuron names or annotations.
Resulting skeleton tags can be used to directly move to the skeleton
node with the associated tag. This facilitates bookmarking of individual
locations in large volumes for fast revisiting.

Figure B.18.: Neuron Search Neurons can be queried by their name, by a combina-
tion of their annotations, by creator and within a given time interval
of creation. Intersectional search queries using a combination of these
attributes can also be performed. The search result shows neurons along
with associated annotations in a table.
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B.6 C AT M A I D W I D G E T S

Figure B.19.: 3D Viewer The skeleton morphology of a set of neurons and their
synapses is shown in an interactive 3D window based on WebGL. The
skeleton colors and other attributes can be modified individually for
each neuron. By selecting individual synapses in the 3D view, one
can directly navigate to their location in the 3D image stack window.
Various shading and filtering modes, as well as export options including
animated videos are available.
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C AT M A I D P R O J E C T

Figure B.20.: Skeleton Analytics Widget Automated detection of issues ensures
quality and consistency of skeletons. For instance, neurons do not
normally synapse onto themselves, which is indicated as an autapse
issue. See the supplemental text in Chapter 2 for details on other issues.

Figure B.21.: Project Statistics Contribution of users in terms of newly created nodes
and connectors and the number of reviewed nodes are shown. Further-
more, the overall skeleton node contributions of individual users to the
project is shown as a pie chart.
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B.6 C AT M A I D W I D G E T S

Figure B.22.: Log widget Every user action (e.g. joining, splitting skeletons, renaming
or deleting neurons) is logged and can be queried.

Figure B.23.: Dendrogram view of left Chair-1 neuron of a first-instar larva The
root node at the center corresponds to the soma location. Red circles
denote leaf and branch nodes downstream of the microtubules ends tag
(which tag should be used for highlighting can choosen). A random
node was selected and all the descending nodes downstream of that
nodes are shown in blue. (Widget developed by Tom Kazimiers)
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C AT M A I D P R O J E C T

Figure B.24.: Connectivity Matrix A connectivity matrix can be generated on de-
mand for a set of presynaptic and postsynaptic neurons. Exporting the
matrix to a CSV file allows to further process it outside of CATMAID.
(Widget developed by Tom Kazimiers)
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B.6 C AT M A I D W I D G E T S

Figure B.25.: Orthogonal views of EM image data, skeletons and image filters. A
serial-section TEM dataset with anisotropic voxel resolution (4x4x50nm)
is shown in CATMAID with 3 orthogonal, synchronized views and over-
layed skeletons. Orthoviews of EM data with more isotropic voxel size,
e.g. from FIBSEM or SBEM, allow to trace neurons and see synapses
from optimal cut planes. The bottom right widget shows the applica-
tion of image filters in the browser, for instance for on-the-fly contrast
and brightness correction, implemented as shaders in WebGL. (De-
veloped by Tom Kazimiers and Andrew Champion. Image source:
twitter.com/albertcardona.)
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C
N E U R O N C ATA L O G S

C.1 T H I R D - I N S TA R L O C A L I N T E R N E U R O N S O F T H E N O C I C E P T I V E N E T W O R K

Neuron Raw cable (nm) Smooth cable (nm) # inputs # outputs # presyn # nodes # branches # ends
A02m_a3l Pseudolooper-3 738439 678176 305 247 67 8227 202 210
A02m_a3r Pseudolooper-3 731110 664090 298 311 83 7756 222 228
A02n_a3l Pseudolooper-4 803064 734151 346 280 76 9087 230 237
A02n_a3r Pseudolooper-4 702934 640755 287 285 82 7282 216 223

A09a_a3l Basin-2 1855481 1679959 1601 1037 198 19920 1150 1219
A09a_a3r Basin-2 1863558 1674293 1585 1161 237 19438 1019 1071
A09c_a3l Basin-4 1455267 1321245 1077 744 170 15994 601 619
A09c_a3r Basin-4 1601876 1450079 1101 731 177 17404 650 671

A09l_a3l Down-and-back-1 1271136 1157308 833 739 176 14115 447 458
A09l_a3r Down-and-back-1 1197451 1089692 788 897 184 13159 473 487

A10a_a3l Chair-1 1178205 1061426 555 827 213 13116 384 404
A10a_a3r Chair-1 1204255 1089528 618 815 176 13179 407 415

Table C.1.: Anatomical properties of local interneurons Properties of the six local
interneuron types downstream of primary nociceptors in the abdominal
segment A3 in the third-instar datasets L3.
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N E U R O N C ATA L O G S

Figure C.1.: Right Pseudolooper-4 (A02n) in abdominal segment A3. Posterior
view (left) and lateral view (right). Presynaptic sites (red) and post-
synaptic sites (bright blue) are shown with spheres.

Figure C.2.: Left Pseudolooper-4 (A02n) in abdominal segment A3.
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C.1 T H I R D - I N S TA R L O C A L I N T E R N E U R O N S O F T H E N O C I C E P T I V E N E T W O R K

Figure C.3.: Left Pseudolooper-3 (A02m) in abdominal segment A3.

Figure C.4.: Right Pseudolooper-3 (A02m) in abdominal segment A3.
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N E U R O N C ATA L O G S

Figure C.5.: Right Chair-1 (A10a) in abdominal segment A3.

Figure C.6.: Left Chair-1 (A10a) in abdominal segment A3.
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C.1 T H I R D - I N S TA R L O C A L I N T E R N E U R O N S O F T H E N O C I C E P T I V E N E T W O R K

Figure C.7.: Left Down-and-back-1 (A09l) in abdominal segment A3.

Figure C.8.: Right Down-and-back-1 (A09l) in abdominal segment A3.
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N E U R O N C ATA L O G S

Figure C.9.: Left Basin-2 (A09a) in abdominal segment A3.

Figure C.10.: Right Basin-2 (A09a) in abdominal segment A3.
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C.1 T H I R D - I N S TA R L O C A L I N T E R N E U R O N S O F T H E N O C I C E P T I V E N E T W O R K

Figure C.11.: Left Basin-4 (A09c) in abdominal segment A3.

Figure C.12.: Right Basin-4 (A09c) in abdominal segment A3.
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L-dbd R-dbd L-dmd1 R-dmd1

L-vbd R-vbd L-RP2 R-RP2

L-aCC R-aCC L-RP5 R-RP5

L-U1 R-U1 L-U2 R-U2

Figure C.13.: Morphology of identified proprio-motor circuit neurons A gallery of
neurons mapped and identified in Chapter 2. Red points denote presynaptic
sites, blue points denote postsynaptic sites. The top view is a cross-sectional,
posterior view of the ventral nerve cord. For reference, the red outline denotes
the motor area, the blue outline the proprioceptive area. The bottom view is a
dorsal view (top is anterior, bottom is posterior). All skeletons were mapped
in dataset L1b. Presynaptic sites are in red, postsynaptic sites are in dark blue.
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L-A00f R-A00f L-A02a R-A02a

L-A02b R-A02b L-A02d R-A02d

L-A02l R-A02l L-A02m R-A02m

L-A02n R-A02n L-A03a3 R-A03a3

Figure C.14.: Morphology of identified proprio-motor circuit neurons (continued)
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L-A03x1 R-A03x1 L-A03x2 R-A03x2

L-A05e R-A05e L-A06a R-A06a

L-A07b R-A07b L-A07f2 R-A07f2

L-A08a R-A08a L-A08e R-A08e

Figure C.15.: Morphology of identified proprio-motor circuit neurons (continued)
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L-A08i2 R-A08i2 L-A10a R-A10a

L-A10x1 R-A10x1 L-A10x2 R-A10x2

L-A12f R-A12f L-A18a R-A18a

L-A18b2 R-A18b2 L-A18b R-A18b

Figure C.16.: Morphology of identified proprio-motor circuit neurons (continued)
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L-A18j R-A18j L-A23a R-A23a

L-A27e R-A27e L-A27h R-A27h

L-A27j R-A27j L-A27l R-A27l

L-A31b R-A31b L-A31k R-A31k

Figure C.17.: Morphology of identified proprio-motor circuit neurons (continued)
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D.1 S E P TAT E J U N C T I O N S I N T H E D R O S O P H I L A L A RVA C N S

Beyond the well-known chemical synapses and electrical gap junction, other types
of intercellular junctions have been known to exist from ultrastructural studies. In
particular, a class of junctions called septate junctions has been found in both inverte-
brate and vertebrate cells (Banerjee et al. 2006). One of their defining characteristic is
a ladder-like arrangement along the contact surface between cells. It is believed that
their main function is to act as para cellular barriers to restrict the flow of extracellular
molecules and to compartmentalize tissue. In Drosophila epithelial cells, they are
implicated in cell growth and cell shape (Lewin et al. 2006).

In our circuit mapping efforts, we discovered putative septate-junctions in the
central nervous system of Drosophila larva at both early and late stage, which have not
been described previously. The junctions were observed extensively between the pri-
mary axonal terminals of sensory neurons, and also between interneuronal processes.
Some of these observed junctions presented a ladder-like arrangement in the EM
micrographs (Figure D.1). To confirm and further investigate these details, additional
high-resolution reimaging was performed with TEM at 49,000x magnification with
pixel x,y dimensions of 0.22 nm.

Septate junctions have parallel running membranes in close apposition, and have
been previously mistaken to be gap junctions (Hall et al. 1983). We performed reimag-
ing at different tilt-angles to better resolve individual parts of these junctions (Figure
D.2 - D.5). Measurements at optimal, perpendicular orientation to the junctional
complex revealed that they are approximately 25 nm wide. This size range suggests
that these junctions are not gap junctions, which are known to be only 2-3 nm wide
(Maeda et al. 2009). This structural measurement provides evidence for the putative
existence of septate junctions in the central nervous system of Drosophila melanogaster
larvae.

The functional implications of these septate-like junctions in the CNS are unknown.
We could not find any form of systematic barriers that could constrain the flow
of extracellular material, but are sample size is very limited. Our observations
suggest that the junctions could act as a structural support to bind together neuronal
processes of the same type. We did not further reconstruct the neurons constrained
by these junctions. Future mapping studies could elaborate whether sensory or
interneurons show preferred junctional coupling if they are of the same type or
function. We observed, however, that by the junctional coupling of sets of axons, the
surface area where synaptic contacts could be potentially formed is reduced.

The powerful genetic toolkit available in Drosophila will allow to interfer with the
cell-type-specific expression of constituting junction proteins (Banerjee et al. 2006) to
study their effect on neural function and behavior.
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250nm

250nm

L1b

L3

Figure D.1.: Example of putative septate-junction in Drosophila larva CNS. Exam-
ples of putative septate-junctions in third-instar (L3) and first-instar
(L1b) datasets. Their characteristic ladder-like arrangement is hardly
visible from these EM micrographs. They appear in most of the cases as
linear walls between cells with a fixed width. Examples are from sensory
nerves, sensory axonal terminal within the CNS and interneurons within
the CNS.
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Figure D.2.: Multi-tilt images of putative third-instar septate junction. Putative
septate junction connecting sensory or motor processes in the nerves
of a third-instar larva. Location of the junction is at x=101620.8nm,
y=43552.2nm and z=4000nm in the L3 dataset. Tilt angles are -10,-20,-
30,-40,0,10,20,30,40 degree from top-left to bottom-right.
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Figure D.3.: Multi-tilt images of putative third-instar septate junction. Putative
septate junction between axonal arbors in the CNS of a third-instar larva.
Location of the junction is at x=77808.5nm, y=35495.5nm and z=61250nm
in the L3 dataset. Tilt angles are -10,-20,-30,-40,0,10,20,30,40 degree from
top-left to bottom-right.
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Figure D.4.: Multi-tilt images of putative third-instar septate junction. Putative
septate junction between axonal arbors in the CNS of a third-instar larva.
Location of the junction is at x=85859nm, y=55232nm and z=62150nm in
the L3 dataset. Tilt angles are -10,-20,-30,-40,-50,0,10,20,30 degree from
top-left to bottom-right.
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Figure D.5.: Multi-tilt images of putative third-instar septate junction. Putative
septate junction between axonal arbors in the CNS of a third-instar
larva. Location of the junction is at x=87383.025nm, y=51868.78nm and
z=62300nm in the L3 dataset. Tilt angles are -10,-20,-30,-40,0,10,20,30,40
degree from top-left to bottom-right.
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D.2 D E V E L O P M E N TA L M I S TA K E S O F A F E W N E U R O N S
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L1a: vdaB_a1r
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L3: Basin-4L
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for axonal arbor growth
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Figure D.6.: Gallery of non-canonical neuronal morphologies a) L1b Chair-1: Non-
canonical side branch and connectivity with slight deviation from canonical
axonal trajectory b) L1b Chair-1: The exceptional occurrence of presynaptic sites
on Chair-1 dendrites is explained by a side branch that also contains dense-core
vesicles, similar to axonal branches of Chair-1. c) L3: Basin-4L: Two processes
growing towards dorsal from a non-canonical part of the dendritic tree. One
process terminates early, does not form any synapses and does not contain
microtubuli at its final tips. A second upwards process reaches the appropriate
height at the same level for correct formation of axonal projection and forms
a single presynaptic site. It contains microtubuli up to the presynaptic site. A
branch has formed hosting a few postsynaptic input sites. d) Pseudolooper-4
Second upwards branch from cell body with postsynaptic sites e) vdaB axonal
detour f) L1b: vada a3r. Deviation from canonical path g) L3 vdaB a3l: early
split axon.
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Figure E.1.: Teststack 2 of the third-instar Drosophila larva VNC dataset L3 com-
prises 20 sections. Sections 1 - 4 are shown. A single image has XY
dimension of 4.7 x 4.7 µm(1024x1024 pixels) and the Z section thick-
ness is 50 nm. The image were classified with an extended version of
the convolutional neural network by Ciresan et al. 2012. Membrane in
blue, mitochondria in green, synapses in red, glia in bright blue and cell
interior is transparent.
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Figure E.2.: Third-instar Drosophila larva VNC dataset - Teststack 2 - Sections 5 -
8.
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Figure E.3.: Third-instar Drosophila larva VNC dataset - Teststack 2 - Sections 9 -
12.
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Figure E.4.: Third-instar Drosophila larva VNC dataset - Teststack 2 - Sections 13 -
16.
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Figure E.5.: Third-instar Drosophila larva VNC dataset - Teststack 2 - Sections 17 -
20.
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Muñoz, Adam Packer, Carl C. H. Petersen, Kathleen S. Rockland, Jean Rossier,
Bernardo Rudy, Peter Somogyi, Jochen F. Staiger, Gabor Tamas, Alex M. Thom-
son, Maria Toledo-Rodriguez, Yun Wang, David C. West, and Rafael Yuste (2008).
“Petilla terminology: nomenclature of features of GABAergic interneurons of the
cerebral cortex.” In: Nature Reviews Neuroscience 9.7, pp. 557–568 (cit. on p. 172).

Audesirk, Gerald, Leigh Cabell, and Marcey Kern (1997). “Modulation of neurite
branching by protein phosphorylation in cultured rat hippocampal neurons.” In:
Developmental Brain Research 102.2, pp. 247–260 (cit. on p. 132).

Bailey, C. H. and M. Chen (1988). “Morphological basis of short-term habituation in
Aplysia.” In: The Journal of Neuroscience 8.7, pp. 2452–2459 (cit. on p. 1).

Bailey, Craig H., Eric R. Kandel, and Kristen M. Harris (2015). “Structural Compo-
nents of Synaptic Plasticity and Memory Consolidation.” In: Cold Spring Harbor
Perspectives in Biology 7.7, a021758 (cit. on p. 182).

Bamburg, J. R., D. Bray, and K. Chapman (1986). “Assembly of microtubules at the
tip of growing axons.” In: Nature 321.6072, pp. 788–790 (cit. on p. 132).

Banerjee, Swati, Aurea D. Sousa, and Manzoor A. Bhat (2006). “Organization and
function of septate junctions: an evolutionary perspective.” In: Cell Biochemistry
and Biophysics 46.1, pp. 65–77 (cit. on p. 235).

Bargmann, CI (2012). “Beyond the connectome: how neuromodulators shape neural
circuits.” In: Bioessays 34.6, pp. 458–65 (cit. on p. 43).

Bargmann, Cornelia I (2015). “How the new neuroscience will advance medicine.”
In: JAMA 314.3, pp. 221–222 (cit. on p. 2).

249



Bibliography

Bargmann, Cornelia I and Eve Marder (2013). “From the connectome to brain func-
tion.” In: Nature Methods 10.6, pp. 483–490 (cit. on pp. 1, 166).

Basbaum, Allan I, Diana M Bautista, Grégory Scherrer, and David Julius (2009).
“Cellular and molecular mechanisms of pain.” In: Cell 139.2, pp. 267–284 (cit. on
p. 14).

Becker, Carlos, Karim Ali, Graham Knott, and Pascal Fua (2012). “Learning Context
Cues for Synapse Segmentation in EM Volumes.” In: Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2012. Ed. by Nicholas Ayache,
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Nicholas J. Strausfeld, Roland Strauss, and Leslie B. Vosshall (2014). “A System-
atic Nomenclature for the Insect Brain.” In: Neuron 81.4, pp. 755–765 (cit. on
p. 172).

Iyer, Eswar Prasad R., Srividya Chandramouli Iyer, Luis Sullivan, Dennis Wang, Ra-
makrishna Meduri, Lacey L. Graybeal, and Daniel N. Cox (2013). “Functional Ge-
nomic Analyses of Two Morphologically Distinct Classes of Drosophila Sensory
Neurons: Post-Mitotic Roles of Transcription Factors in Dendritic Patterning.” In:
PLoS ONE 8.8, e72434 (cit. on p. 133).

Jain, V, HS Seung, and SC Turaga (2010). “Machines that learn to segment images: a
crucial technology for connectomics.” In: Current Opinion in Neurobiology 20.5,
pp. 653–66 (cit. on p. 24).

Jan, Y and L Jan (2010). “Branching out: mechanisms of dendritic arborization.” In:
Nature Reviews Neuroscience 11.5, pp. 316–328 (cit. on pp. 79, 132, 178, 179).

Jaworski, Jacek, Lukas C. Kapitein, Susana Montenegro Gouveia, Bjorn R. Dortland,
Phebe S. Wulf, Ilya Grigoriev, Paola Camera, Samantha A. Spangler, Paola Di
Stefano, Jeroen Demmers, Harm Krugers, Paola Defilippi, Anna Akhmanova,
and Casper C. Hoogenraad (2009). “Dynamic microtubules regulate dendritic
spine morphology and synaptic plasticity.” In: Neuron 61.1, pp. 85–100 (cit. on
p. 132).

Jenett, Arnim, Gerald M Rubin, Teri-TB Ngo, David Shepherd, Christine Murphy,
Heather Dionne, Barret D Pfeiffer, Amanda Cavallaro, Donald Hall, Jennifer
Jeter, et al. (2012). “A GAL4-Driver Line Resource for Drosophila Neurobiology.”
In: Cell reports 2.4, pp. 991–1001 (cit. on p. 35).

Johnson, Wayne A. and Justin W. Carder (2012). “Drosophila Nociceptors Mediate
Larval Aversion to Dry Surface Environments Utilizing Both the Painless TRP
Channel and the DEG/ENaC Subunit, PPK1.” In: PLoS ONE 7.3, e32878 (cit. on
p. 99).

Johnston, Jamie and Leon Lagnado (2015). “General features of the retinal connec-
tome determine the computation of motion anticipation.” In: eLife 4, e06250
(cit. on p. 2).

Jonas, Eric and Konrad Kording (2015). “Automatic discovery of cell types and
microcircuitry from neural connectomics.” In: eLife 4, e04250 (cit. on pp. 42, 171).

Jorgenson, Lyric A., William T. Newsome, David J. Anderson, Cornelia I. Bargmann,
Emery N. Brown, Karl Deisseroth, John P. Donoghue, Kathy L. Hudson, Geoffrey
S. F. Ling, Peter R. MacLeish, Eve Marder, Richard A. Normann, Joshua R.
Sanes, Mark J. Schnitzer, Terrence J. Sejnowski, David W. Tank, Roger Y. Tsien,

257



Bibliography

Kamil Ugurbil, and John C. Wingfield (2015). “The BRAIN Initiative: developing
technology to catalyse neuroscience discovery.” In: Philosophical Transactions of
the Royal Society of London B: Biological Sciences 370.1668, p. 20140164 (cit. on pp. 3,
170).

Kaas, Jon H (1997). “Topographic Maps are Fundamental to Sensory Processing.” In:
Brain Research Bulletin 44.2, pp. 107–112 (cit. on p. 99).

Kandel, Eric R., James H. Schwartz, Thomas M. Jessell, Steven A. Siegelbaum, and
A. J. Hudspeth, eds. (2012). Principles of Neural Science, Fifth Edition. 5th edition.
New York: McGraw-Hill Education / Medical. 1760 pp. (cit. on p. 14).

Karayiorgou, Maria, Jonathan Flint, Joseph A. Gogos, and Robert C. Malenka (2012).
“The best of times, the worst of times for psychiatric disease.” In: Nature Neuro-
science 15.6, pp. 811–812 (cit. on p. 2).

Kasthuri, Narayanan, Kenneth Jeffrey Hayworth, Daniel Raimund Berger, Richard
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Buzsáki, Kevan Martin, Eve Marder, William Kristan, Rainer Friedrich, and
Dmitri “Mitya” Chklovskii (2013). “Vertebrate versus invertebrate neural cir-
cuits.” In: Current Biology 23.12, R504–R506 (cit. on pp. 178, 181).

Kaye, Jane, Catherine Heeney, Naomi Hawkins, Jantina de Vries, and Paula Bod-
dington (2009). “Data sharing in genomics — re-shaping scientific practice.” In:
Nature Reviews Genetics 10.5, pp. 331–335 (cit. on p. 170).

Kaynig, Verena, Amelio Vazquez-Reina, Seymour Knowles-Barley, Mike Roberts,
Thouis Jones, Narayanan Kasthuri, Eric Miller, Jeff Lichtman, and Hanspeter
Pfister (2015). “Large-Scale Automatic Reconstruction of Neuronal Processes
from Electron Microscopy Images.” In: Medical Image Analysis 22.1, pp. 77–88
(cit. on p. 161).

Keller, Philipp J. and Misha B. Ahrens (2015). “Visualizing Whole-Brain Activity and
Development at the Single-Cell Level Using Light-Sheet Microscopy.” In: Neuron
85.3, pp. 462–483 (cit. on p. 175).

Kim, Jinseop S., Matthew J. Greene, Aleksandar Zlateski, Kisuk Lee, Mark Richard-
son, Srinivas C. Turaga, Michael Purcaro, Matthew Balkam, Amy Robinson,
Bardia F. Behabadi, Michael Campos, Winfried Denk, H. Sebastian Seung, and
The EyeWirers (2014). “Space-time wiring specificity supports direction selec-
tivity in the retina.” In: Nature 509.7500, pp. 331–336 (cit. on pp. 2, 10, 24, 25, 36,
42).

Klein, Jonas (2014). “Cost Functions for Structured Learning for Anisotropic Neuron
Reconstruction.” Master Thesis. ETH Zurich (cit. on p. 161).

Koch, Christof (2004). Biophysics of Computation: Information Processing in Single Neu-
rons. 1 edition. New York: Oxford University Press. 588 pp. (cit. on p. 2).

Koch, Christof (2014). Building Brain Observatories: The Ten Year Vision (cit. on p. 168).

258



Bibliography

Koene, Randal A., Betty Tijms, Peter van Hees, Frank Postma, Alexander de Ridder,
Ger J. A. Ramakers, Jaap van Pelt, and Arjen van Ooyen (2009). “NETMORPH:
A Framework for the Stochastic Generation of Large Scale Neuronal Networks
With Realistic Neuron Morphologies.” In: Neuroinformatics 7.3, pp. 195–210 (cit.
on p. 179).

Kohsaka, Hiroshi, Etsuko Takasu, Takako Morimoto, and Akinao Nose (2014). “A
Group of Segmental Premotor Interneurons Regulates the Speed of Axial Loco-
motion in Drosophila Larvae.” In: Current Biology (cit. on pp. 31, 43, 62).

Kreshuk, Anna, Ullrich Koethe, Elizabeth Pax, Davi D. Bock, and Fred A. Hamprecht
(2014). “Automated detection of synapses in serial section transmission electron
microscopy image stacks.” In: PloS One 9.2, e87351 (cit. on p. 42).

Kreshuk, Anna, Christoph N Straehle, Christoph Sommer, Ullrich Koethe, Marco Can-
toni, Graham Knott, and Fred A Hamprecht (2011). “Automated detection and
segmentation of synaptic contacts in nearly isotropic serial electron microscopy
images.” In: PloS ONE 6.10, e24899 (cit. on pp. 24, 42).

Landgraf, M, T Bossing, GM Technau, and M Bate (1997). “The origin, location,
and projections of the embryonic abdominal motorneurons of Drosophila.” In: J
Neurosci 17.24, pp. 9642–55 (cit. on p. 26).

Landgraf, Matthias, Natalia Sánchez Soriano, Gerd M. Technau, Joachim Urban, and
Andreas Prokop (2003). “Charting the Drosophila neuropile: a strategy for the
standardised characterization of genetically amenable neurites.” In: Developmen-
tal Biology 260.1, pp. 207–25 (cit. on p. 51).

Lau, Pak-ming, Robert S. Zucker, and David Bentley (1999). “Induction of Filopodia
by Direct Local Elevation of Intracellular Calcium Ion Concentration.” In: The
Journal of Cell Biology 145.6, pp. 1265–1276 (cit. on p. 147).

Laughlin, Simon B, Rob R de Ruyter van Steveninck, and John C Anderson (1998).
“The metabolic cost of neural information.” In: Nature neuroscience 1.1, pp. 36–41
(cit. on p. 29).

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning.” In: Nature
521.7553, pp. 436–444 (cit. on p. 18).

Leiss, Florian, Claudia Grohand, Nancy J. Butcherand, Ian A. Meinertzhagen, and
Gaia Tavosanis (2009a). “Synaptic organization in the adult Drosophila mushroom
body calyx.” In: J Comp Neurol 517.6, pp. 808–24 (cit. on pp. 24, 26).

Leiss, Florian, Ewa Koper, Irina Hein, Wernher Fouquet, Jana Lindner, Stephan
Sigrist, and Gaia Tavosanis (2009b). “Characterization of dendritic spines in the
Drosophila central nervous system.” In: Developmental Neurobiology 69.4, pp. 221–
234 (cit. on p. 132).

Lewin, Benjamin, Lynne Cassimeris, Vishwanath R. Lingappa, and George Plopper
(2006). CELLS. 1 edition. Sudbury, Mass: Jones & Bartlett Learning. 863 pp. (cit.
on p. 235).

Li, H.-H., J. R. Kroll, S. M. Lennox, O. Ogundeyi, J. Jeter, G. Depasquale, and J. W.
Truman (2014). “A GAL4 Driver Resource for Developmental and Behavioral
Studies on the Larval CNS of Drosophila.” In: Cell Reports 8.3, pp. 897–908 (cit. on
pp. 31, 35, 44, 56).

259



Bibliography

Li, Wen-Chang, Tom Cooke, Bart Sautois, Stephen R Soffe, Roman Borisyuk, and Alan
Roberts (2007). “Axon and dendrite geography predict the specificity of synaptic
connections in a functioning spinal cord network.” In: Neural Development 2, p. 17
(cit. on p. 168).

Li, Zheng, Ken-Ichi Okamoto, Yasunori Hayashi, and Morgan Sheng (2004). “The
Importance of Dendritic Mitochondria in the Morphogenesis and Plasticity of
Spines and Synapses.” In: Cell 119.6, pp. 873–887 (cit. on p. 162).

Lichtman, Jeff W., Hanspeter Pfister, and Nir Shavit (2014). “The big data challenges
of connectomics.” In: Nature Neuroscience 17.11, pp. 1448–1454 (cit. on pp. 18,
168).

Lichtman, Jeff W and Joshua R Sanes (2008). “Ome sweet ome: what can the genome
tell us about the connectome?” In: Current Opinion in Neurobiology. Signalling
mechanisms 18.3, pp. 346–353 (cit. on p. 165).

Lucchi, A., K. Smith, R. Achanta, G. Knott, and P. Fua (2011). “Supervoxel-Based
Segmentation of Mitochondria in EM Image Stacks With Learned Shape Features.”
In: IEEE transactions on medical imaging (cit. on p. 42).

Macagno, E. R., V. Lopresti, and C. Levinthal (1973). “Structure and Development
of Neuronal Connections in Isogenic Organisms: Variations and Similarities in
the Optic System of Daphnia magna.” In: Proceedings of the National Academy of
Sciences of the United States of America 70.1, pp. 57–61 (cit. on p. 9).

Maeda, Shoji, So Nakagawa, Michihiro Suga, Eiki Yamashita, Atsunori Oshima,
Yoshinori Fujiyoshi, and Tomitake Tsukihara (2009). “Structure of the connexin
26 gap junction channel at 3.5 A resolution.” In: Nature 458.7238, pp. 597–602
(cit. on p. 235).

Malanowski, Sarah and Carl F. Craver (2014). “The spine problem: finding a function
for dendritic spines.” In: Frontiers in Neuroanatomy 8, p. 95 (cit. on p. 147).

Marblestone, Adam H., Evan R. Daugharthy, Reza Kalhor, Ian D. Peikon, Justus M.
Kebschull, Seth L. Shipman, Yuriy Mishchenko, David A. Dalrymple, Bradley M.
Zamft, Konrad P. Kording, Edward S. Boyden, Anthony M. Zador, and George M.
Church (2013). “Conneconomics: The Economics of Large-Scale Neural Connec-
tomics.” In: bioRxiv (cit. on pp. 10, 168).

Marblestone, Adam H., Evan R. Daugharthy, Reza Kalhor, Ian D. Peikon, Justus M.
Kebschull, Seth L. Shipman, Yuriy Mishchenko, Je Hyuk Lee, Konrad P. Kording,
Edward S. Boyden, Anthony M. Zador, and George M. Church (2014). “Rosetta
Brains: A Strategy for Molecularly-Annotated Connectomics.” In: arXiv:1404.5103
[q-bio]. arXiv: 1404.5103 (cit. on p. 168).

Marc, Robert E., James R. Anderson, Bryan W. Jones, Crystal L. Sigulinsky, and
James S. Lauritzen (2014). “The AII amacrine cell connectome: a dense network
hub.” In: Frontiers in Neural Circuits 8, p. 104 (cit. on p. 10).

Marcus, Gary, Adam Marblestone, and Thomas Dean (2014). “The atoms of neural
computation.” In: Science 346.6209, pp. 551–552 (cit. on p. 182).

Marı́n-Padilla, M. (1998). “Cajal-Retzius cells and the development of the neocortex.”
In: Trends in Neurosciences 21.2, pp. 64–71 (cit. on pp. 6, 182).

260

http://arxiv.org/abs/1404.5103


Bibliography

Marrone, Diano F and Ted L Petit (2002). “The role of synaptic morphology in neural
plasticity: structural interactions underlying synaptic power.” In: Brain Research
Reviews 38.3, pp. 291–308 (cit. on p. 182).

Marx, Vivien (2013). “Neurobiology: Brain mapping in high resolution.” In: Nature
503.7474, pp. 147–152 (cit. on p. 10).

Mason, Peggy (2012). “Medullary circuits for nociceptive modulation.” In: Current
Opinion in Neurobiology 22.4, pp. 640–645 (cit. on p. 101).

Mattson, M. P. and S. B. Kater (1987). “Calcium regulation of neurite elongation and
growth cone motility.” In: The Journal of Neuroscience 7.12, pp. 4034–4043 (cit. on
p. 147).

Mayford, Mark, Steven A. Siegelbaum, and Eric R. Kandel (2012). “Synapses and
Memory Storage.” In: Cold Spring Harbor Perspectives in Biology 4.6, a005751 (cit.
on p. 1).

Meinertzhagen, IA and SD O’Neil (1991). “Synaptic organization of columnar ele-
ments in the lamina of the wild type in Drosophila melanogaster.” In: J Comp Neurol
305, pp. 232–63 (cit. on p. 25).

Meinertzhagen, Ian A and Chi-Hon Lee (2012). “The genetic analysis of functional
connectomics in Drosophila.” In: Advances in genetics 80, pp. 99–151 (cit. on
pp. 166, 175, 178).

Merritt, D J and P M Whitington (1995). “Central projections of sensory neurons
in the Drosophila embryo correlate with sensory modality, soma position, and
proneural gene function.” In: The Journal of Neuroscience: The Official Journal of the
Society for Neuroscience 15.3, pp. 1755–1767 (cit. on pp. 15, 79).

Micheva, Kristina D. and Stephen J. Smith (2007). “Array tomography: a new tool
for imaging the molecular architecture and ultrastructure of neural circuits.” In:
Neuron 55.1, pp. 25–36 (cit. on p. 12).

Mikula, Shawn and Winfried Denk (2015). “High-resolution whole-brain staining for
electron microscopic circuit reconstruction.” In: Nature Methods (cit. on pp. 11, 18,
165, 168).

Millard, S Sean, Zhiyuan Lu, S Lawrence Zipursky, and Ian A Meinertzhagen (2010).
“Drosophila dscam proteins regulate postsynaptic specificity at multiple-contact
synapses.” In: Neuron 67.5, pp. 761–768 (cit. on p. 100).

Molofsky, Anna V., Robert Krenick, Erik Ullian, Hui-hsin Tsai, Benjamin Deneen,
William D. Richardson, Ben A. Barres, and David H. Rowitch (2012). “Astrocytes
and disease: a neurodevelopmental perspective.” In: Genes & Development 26.9,
pp. 891–907 (cit. on p. 163).

Morgan, Joshua L. and Jeff W. Lichtman (2013). “Why not connectomics?” In: Nature
Methods 10.6, pp. 494–500 (cit. on pp. 1, 165, 168).

Narayanan, Rajeevan T., Robert Egger, Andrew S. Johnson, Huibert D. Mansvelder,
Bert Sakmann, Christiaan P. J. de Kock, and Marcel Oberlaender (2015). “Be-
yond Columnar Organization: Cell Type- and Target Layer-Specific Principles of
Horizontal Axon Projection Patterns in Rat Vibrissal Cortex.” In: Cerebral Cortex,
bhv053 (cit. on p. 177).

Nat Neurosci Editorial (2007). “Got data?” In: Nature Neuroscience 10.8, pp. 931–931
(cit. on p. 170).

261



Bibliography

Nern, Aljoscha, Barret D. Pfeiffer, and Gerald M. Rubin (2015). “Optimized tools for
multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the
fly visual system.” In: Proceedings of the National Academy of Sciences, p. 201506763
(cit. on pp. 31, 104).

Newman, Mark (2010). Networks: An Introduction. OUP Oxford (cit. on p. 34).
Nicolai, Laura JJ, Ariane Ramaekers, Tim Raemaekers, Andrzej Drozdzecki, Alex S

Mauss, Jiekun Yan, Matthias Landgraf, Wim Annaert, and Bassem A Hassan
(2010). “Genetically encoded dendritic marker sheds light on neuronal connec-
tivity in Drosophila.” In: Proceedings of the National Academy of Sciences 107.47,
pp. 20553–20558 (cit. on p. 26).

Niell, Cristopher M., Martin P. Meyer, and Stephen J. Smith (2004). “In vivo imaging
of synapse formation on a growing dendritic arbor.” In: Nature Neuroscience 7.3,
pp. 254–260 (cit. on p. 147).

Nielsen, Michael (2013). Reinventing Discovery: The New Era of Networked Science.
Reprint edition. Princeton, N.J.: Princeton University Press. 272 pp. (cit. on p. 9).

Oberti, Daniele, Moritz A. Kirschmann, and Richard H. R. Hahnloser (2011). “Pro-
jection Neuron Circuits Resolved Using Correlative Array Tomography.” In:
Frontiers in Neuroscience 5 (cit. on p. 12).

O’Connor, Daniel H., Daniel Huber, and Karel Svoboda (2009). “Reverse engineering
the mouse brain.” In: Nature 461.7266, pp. 923–929 (cit. on p. 175).

Ohyama, Tomoko, Tihana Jovanic, Gennady Denisov, Tam C Dang, Dominik Hoff-
mann, Rex A Kerr, and Marta Zlatic (2013). “High-throughput analysis of
stimulus-evoked behaviors in Drosophila larva reveals multiple modality-specific
escape strategies.” In: PloS one 8.8, e71706 (cit. on p. 166).

Ohyama, Tomoko, Casey M. Schneider-Mizell, Richard D. Fetter, Javier Valdes Ale-
man, Romain Franconville, Marta Rivera-Alba, Brett D. Mensh, Kristin M. Bran-
son, Julie H. Simpson, James W. Truman, Albert Cardona, and Marta Zlatic (2015).
“A multilevel multimodal circuit enhances action selection in Drosophila.” In:
Nature 520.7549, pp. 633–639 (cit. on pp. 12, 20, 24–26, 29, 31, 43, 62, 78, 84, 98–100,
102, 103, 166, 176, 180, 188).

Okusawa, Satoko, Hiroshi Kohsaka, and Akinao Nose (2014). “Serotonin and Down-
stream Leucokinin Neurons Modulate Larval Turning Behavior in Drosophila.”
In: The Journal of Neuroscience 34.7, pp. 2544–2558 (cit. on p. 62).

Ooyen, Arjen van (2011). “Using theoretical models to analyse neural development.”
In: Nature Reviews Neuroscience 12.6, pp. 311–326 (cit. on pp. 132, 134).

Ossipov, Michael H., Gregory O. Dussor, and Frank Porreca (2010). “Central modula-
tion of pain.” In: The Journal of Clinical Investigation 120.11, pp. 3779–3787 (cit. on
p. 101).

Palade, G (1954). “Electron Microscope Observations of interneuronal and neuro-
muscular synapses.” In: The anatomical record 118.2, pp. 335–336 (cit. on pp. 1,
7).

Palay, Sanford L. and George E. Palade (1955). “The Fine Structure of Neurons.” In:
The Journal of Biophysical and Biochemical Cytology 1.1, pp. 69–88 (cit. on p. 1).

262



Bibliography

Pannese, E. (2007). “The contribution of Camillo Golgi to our understanding of the
structure of the nervous system.” In: Archives Italiennes De Biologie 145.2, pp. 111–
115 (cit. on p. 5).

Parekh, Ruchi and Giorgio A. Ascoli (2013). “Neuronal Morphology Goes Digital: A
Research Hub for Cellular and System Neuroscience.” In: Neuron 77.6, pp. 1017–
1038 (cit. on p. 179).

Pelt, J. van, R. W. H. Verwer, and H. B. M. Uylings (1989). “Centrifugal-order dis-
tributions in binary topological trees.” In: Bulletin of Mathematical Biology 51.4,
pp. 511–536 (cit. on p. 135).

Pelt, Jaap van and Harry B M Uylings (2002). “Branching rates and growth functions
in the outgrowth of dendritic branching patterns.” In: Network: Computation in
Neural Systems 13.3, pp. 261–281 (cit. on p. 132).

Perez, Fernando (2015). Project Jupyter: Computational Narratives as the Engine of Collabo-
rative Data Science. Project Jupyter. URL: http://blog.jupyter.org/2015/
07/07/project- jupyter- computational- narratives- as- the-
engine-of-collaborative-data-science/ (visited on 07/21/2015) (cit.
on p. 171).
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